'CHAPTER

Case Studies: Linear
Algebraic Equations
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The purpose of this chapter is to use the numerical procedures discussed in Chaps. 9, 10,
and 11 to solve systems of linear algebraic equations for some cngineering case studies.
These systematic numerical techniques have practical significance because engineers fre-
quently encounter problems involving systems of equations that are too large to solve by

iR e o e At A zor

hand. The numerical algorithms in these applications are particularly convenient to imple- E
.;' ment on personal computers. -.;
Section 12.1 shows how a mass balance can be employed to model a system of reac- 1
. tors. Section 12.2 places special emphasis on the use of the matrix inverse to determine the "
| complex cause-effect interactions between [orces in the members of a truss. Secrion /2.3 is :ﬁ
' an example of the use of Kirchhofl’s laws to compute the currents and voltages in a resis- N

tor circuit. Finally, Sec. /2.4 is an illustration of how linear equations are employed to 'f'?-'

i determine the steady-state configuration of a mass-spring system.

12.1 STEADY-STATE ANALYSIS OF A SYSTEM OF REACTORS
(CHEMICAL/BIO ENGINEERING)

Background.  One of the most important organizing principles in chemical engineering
is the conservation of mass (recall Table 1.1). In quantitative terms, the principle is ex-
pressed as a mass balance that accounts for all sources and sinks of a material that pass in
and out of a volume (Fig. 12.1). Over a finite period of time, this can be expressed as

Accumulation = inputs — outputs (12.1)

bl

The mass balance represents a bookkeeping exercise for the particular substance being

. i . . p . E
modeled. For the period of the computation, if the inputs are greater than the outputs, the |
mass of the substance within the volume increases. If the outputs are greater than the in- ‘
puts, the mass decreasces. If inputs are equal to the outputs, accumulation is zero and mass o
remains constant. For this stable condition, or steady state, Eq. (12.1) can be expressed as |

B &
1
Inputs = outputs (12.2) 8
1N
i
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FIGURE 12.1

A schematic representation of mass balance.

Employ the conservation of mass to determine the steady-state concentrations of a system
of coupled reactors.

Solution. The mass balance can be used for engineering problem solving by expressing
the inputs and outputs in terms of measurable variables and parameters. For example, if we
were performing a mass balance for a conservative substance (that is, one that does not in-
crease or decrease due to chemical transformations) in a reactor (Fig. 12.2), we would have
to quantify the rate at which mass flows into the reactor through the two inflow pipes and
out of the reactor through the outflow pipe. This can be done by taking the product of the
flow rate Q (in cubic meters per minute) and the concentration ¢ (in milligrams per cubic
meter) for each pipe. For example, for pipe | in Fig. 122, 0, =2 m/min and ¢| =
25 mg/m?*; therefore the rate at which mass flows into the reactor through pipe | is Qi) =
(2 m*/min)(25 mg/m*) = 50 mg/min. Thus, 50 mg of chemical flows into the reactor
through this pipe each minute. Similarly, for pipe 2 the mass inflow rate can be calculated
as Qe = (1.5 m3/min)(10 mg/m?) = 15 mg/min.

Notice that the concentration out of the reactor through pipe 3 is not specified by
Fig. 12.2. This is because we already have sufficient information to calculate it on the basis
of the conservation of mass. Because the reactor is at steady state, Eq. (12.2) holds and the
inputs should be in balance with the outputs, as in

Qi1 + Qac2 = Q3¢3
Substituting the given values into this equation yields

50 + 15 =3.5¢3

which can be solved for ¢3 = 18.6 mg/m°. Thus, we have determined the concentration in
the third pipe. However, the computation yiclds an additional bonus. Because the reactor is
well mixed (as represented by the propeller in Fig. 12.2), the concentration will be uniform,
or homogeneous, throughout the tank. Therefore the concentration in pipe 3 should be
identical to the concentration throughout the reactor. Consequently, the mass balance has
allowed us to compute both the concentration in the reactor and in the outflow pipe. Such
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Five reactors linked by pipes.
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12.2

and the rate of mass flow out 1S

Q1c1 + Q151

1 is at steady state, the inflows and outflows must be equal:

Because the systel
5(10) 4+ Quea = Qe + Qi5¢1

or, substituting the values for flow from Fig. 12.3,

er reactors:

Sjmilar equations can be developed for the oth

’3('1 + 3(‘3 =0
—Cy + 9cy = 160
—cy—8ca+ Hlea—
B e [ 0

od can be used to solve these five equations

2¢5=0

A numerical meth for the five unknowt
concentrations:

(cy" = L11.51

In addition, the matrix inverse can be computed as

11.51 19.06 17.00 11.51)

0.16981 0.00629 0.01887 0 0
0.16981 0.33962 0.01887 0 0
1A]'1 — | 0.01887 0.03774 0.11321 0 0
0.06003 0.07461 0.08748 0.09091 0.04545
0.16981 0.08962 0.01887 0 (.25000

the change in concentration of reactor i due to al
Thus, the zeros in column 4 indicate that a loading 10 €
tor 4 will have no impact on reactors 1,2,3,and 5. This is consistent with the system¢
figuration (Fig. 12.3), which indicates that flow out of reactor 4 does not feed back into
of the other reactors. In contrast, loadings 10 any of the first three reactors will affect
entire system as indicated by the lack of zeros in the first three columns. Such informa
is of great utility t0 engineers who design and manage such systems.

ANALYSIS OF A STATICALLY DETERMINATE TRUSS
(CIVIL/ ENVIRONMENTAL ENGINEERING)
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FGURE 12.4
forces on a statically determi-
fae fruss.

URE 12.5
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This type of structure can be described as a system of coupled linear algebraic
equations. Free-body force diagrams are shown for each node in Fig. 12.5. The sum of the
forces in both horizontal and vertical directions must be zero at each node

, because the sys-
tem is at rest. Therefore, for node |,

EFH =0= —F] cos 30" + F_} cos 60° + F[.h

(12.3)
ZFy =0=—Fsin30° — F3sin60° + F| , (12.4)

for node 2,
YFyp=0=F+ F cos30° + Foyy + H» (12.5)

EFy =0= F;sin30° 4+ Fry+ Vo (12.6)
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for node 3,
LFy =0=—F — F3c0s60° + F3, (12.7)§
SFy =0= F3sin60° + F3, + V3 (128 §

where F; is the external horizontal force applied to node 7 (where a positive force is from ¢
left to right) and F , is the external vertical force applied to node i (where a positive force |
is upward). Thus, in this problem, the 1000-1b downward force on node | correspondsto’
F » = —1000. For this case all other F;,'s and F; s are zcro. Note that the directions of |
the internal forces and reactions are unknown. Proper application of Newton's laws re- |
quires only consistent assumptions regarding direction. Solutions are negative if the direc-
tions are assumed incorrectly. Also note that in this problem, the forces in all members are |
assumed to be in tension and act to pull adjoining nodes together. A ncgative solution there- §
fore corresponds to compression. This problem can be written as the following system of
six equations and six unknowns:

TEERT o

086 0 —05 0 0 O[H 0 b
05 0 086 0 0 0| ~1000 i
086 -1 0 1 0o of|)Jml_] o il
05 0 0 0 -1 0|]H 0
0 I 05 0 0 of|w 0

0 0 —086 0 0 -1V 0

Notice that, as formulated in Eq. (12.9), partial pivoting is required to avoid division b
by zero diagonal elements. Employing a pivot strategy, the system can be solved using any £
of the elimination techniques discussed in Chap. 9 or 10. However, because this problemis
an ideal case study for demonstrating the utility of the matrix inverse, the LU decompos-
tion can be used to compute

F) = =500 F> =433 F; = —866
H, =0 Vo = 250 V3 =750

and the matrix inverse is

0.866 0.5 o 0 0 0
025 —0433 0 0 1 0O L
—0.5  0.866 o 0 0 0 ye

-1 _
8™ = —1 0 =i B =]

0
-0.433 -0.25 0 -l 0 0
0.433 —0.75 0 0 0 -1

¥

legy

Now. realize that the right-hand-side vector represents the externally applied horizontd s
- . i
and vertical forces on each node, as in g
i

(FY' =Ry Fie Fn P Fu Pl

Because the external forces have no effect on the LU decomposition, the method necd
not be implemented over and over again (o study the effect of different external forces on the
truss. Rather, all that we have to do is perform the forward- and backward-substitution steps
for each right-hand-side vector to efficiently obtain alternative solutions. For example,
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o test cases showing (o) winds

from the left and (b) winds from the right.

al forces induced by a wind blowing from left

we might want to study the effect of horizont
two point forces of 1000 Ib on nodes 1 and 2

to right. If the wind force can be idealized as
(Fig. 12.6a), the right-hand-side vector is

(F})T =|—1000 0 1000 0 O 0]

which can be used to compute
Fy = 866 Fy =250 Fy = =500
H, = —2000 Vo = —433 Vi =433

For a wind from the right (Fig. 12.6b), Fi = —1000, F3 4 = — 1000, and all other external

forces are zero, with the result that

F, = —866 Fy = —1250 F3 =500

H> = 2000 Vo = 433 Vi = —433

The results indicate that the winds have markedly different effects on the structure. Both

cases are depicted in Fig. 12.6.

The individual elements of the inverted matri
actions for the structure. Each element represents L
ge of one of the external stimuli. For example, ele-
F3) will change 0.866 due to a unit change of
if the vertical load at the first node were in-
creased by 1, F3 would increase by 0.866. The fact that elements are 0 indicates that certain
unknowns are unaffected by some of the external stimuli. For instance a,’}f = () means that
F, is unaffected by changes in Fa . This ability to isolate interactions has a number of
uding the identification of those components that aré most
d. as a consequence, most prone to failure. In addition, it can
at may be unnecessary (se¢ Prob. 12.18).

x also have direct utility in elucidating

stimulus-response inter he change of one
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ment a3, indicates that the third unknown (
the second external stimulus (Fi ). Thus,

engineering applications, incl
sensitive to external stimuli an
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FIGURE 12.7

Schematic representations of
(a) Kirchhoff's current rule and
(b) Ohm's low.
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- AR ALGEBRAIL EQUATIONS

The foregoing approach becomes particularly useful when applied to large cony
structures. In engineering practice, it may be necessary (0 solve trusses with hundred
even thousands of structural members. Lincar equations provide one powerful approach
gaining insight into the behavior of these structures,

CURRENTS AND VOLTAGES IN RESISTOR CIRCUITS
(ELECTRICAL ENGINEERING)

Background. A common problem in electrical enginee

ring involves determining {
currents and voltages at various locations in resistor circu

its. These problems are solt
using Kirchhoff’s current and voltage rules. The current (or point) rule states that the alg
braic sum of all currents entering a node must be zero (see Fig. 12.7a), or

Li=0 (124
where all current entering the node is considered positive in sign. The current rule is3
application of the principle of conservation of charge (recall Table 1.1), :

The voltage (or loop) rule specifies that the algebraic sum of the potential differenc
(that is, voltage changes) in any loop must equal zero. For a resistor circuit. this g
expressed as

LE-ZiR=0 (121
where £ is the emf (electromotive force) of the voltage sources and is the resistance d
any resistors on the loop. Note that the second term derives from Ohm’s law (Fig. 127
which states that the voltage drop across an id
rent and the resistance. Kirchhoff's volt
energy.

eal resistor is equal to the product of the cur
age rule is an expression of the conservation of

Solution. Application of these rules results in systems of simultancous linear algebrai
equations because the various loops within a circuit are coupled. For example, consid
the circuit shown in Fig. 12.8. The currents associated with this circuit are unknown bott
in magnitude and direction. This presents no great difficulty because one simply assumes
a direction for each current. If the resultant solution from Kirchhoff’s |
then the assumed direction was incorrect. For example, Fig.
currents,

aws is negative,
12.9 shows some assumed|

FIGURE 12.8

A resistor circuit fo be solved using simultaneous linear algebraic equations.
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12.3 CURRENTS AND VOLTAGES IN RESISTOR CIRCUITS

e e = v b

e ————

3 A A 2 Iy A
‘v’f‘.'"" et _"I,..,\J.\\, —
— P
I3 i
= 1 = t
<1 < |
i . . 51 .
r " 5 o les
| i
L Ak e
4 5 6

FIGURE 12.9

Assumed currents

Given these assumptions, Kirchhoff’s current rule is applied at each node to yield
inn+tisa+in=0
i6s —is2 —isy =0
i3 —ipn =0
isy— i3 =0
Application of the voltage rule to each of the two loops gives
—isaRsy — i3 R43 — iaR3pp +is2Rsy =0
—l65Ros — isaRs2 +i1aR12 — 200 =0
or, substituting the resistances from Fig. 12.8 and bringing constants to the right-hand side,
—15is4 — 5143 — 10i32 + 10i5, = 0
—20igs — 10i53 + 5i1 = 200

Therefore, the problem amounts to solving the following set of six equations with six un-
known currents:

| | 1 0 0 01 (i 0
0 -1 0 1 -1 0| ]is 0
0 0 =l 0 0 L {)in| ) O
0 0 0 0 I =1 ies| ] O
0 10 =10 0 =15 =5 |/|is 0
5 —10 0 =20 0 0| i 200

Although impractical to solve by hand, this system is casily handled using an elimination
method. Proceceding in this manner, the solution is

I|3:6l538 153:—4(}154 !13:—1.5385

igs = —6.1538 isy = —1.5385 iy3 = —1.5385
Thus, with proper interpretation of the signs of the result, the circuit currents and voltages

arc as shown in Fig. 12.10. The advantages of using numerical algorithms and computers
for problems of this type should be evident.
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12.4

V=153.86  V=169.23 )
[ —W—7——/MW—0 v =200

| SR
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V =146.15 vV =123.08

FIGURE 12.10

The solution for currents and voliages obtained using an elimination method.

SPRING-MASS SYSTEMS (MECHANICAL/AEROSPACE
ENGINEERING)

Background. Idealized spring-mass systems play an important role in mechanical and
other engineering problems. Figure 12.11 shows such a system. After they are released, the
masses are pulled downward by the force of gravity. Notice that the resulting displacement

of ecach spring in Fig. 12.115 is measured along local coordinates referenced to its initial
position in Fig. 12.11a.

As introduced in Chap. I, Newton's second law can be employed in conjunction with
force balances to develop a mathematical model of the system. For each mass, the second
law can be expressed as

d*x X

Mm——s = Fp~ Fy (12.13)

de-

To simplify the analysis, we will assume that all the springs are identical and follow
Hooke’s law. A free-body diagram for the first mass is depicted in Fig. 12.12a. The upward
force is merely a direct expression of Hooke’s law:

Frp = kx (12.14)

The downward component consists of the two spring forces along with the action of grav-
ity on the mass,

Fp=kx—x))+k(xa—x)) =mg (12.15)

Note how the force component of the two springs is proportional to the displacement of the
second mass, X, corrected for the displacement of the first mass, x;.
Equations (12.14) and (12.15) can be substituted into Eq. (12.13) to give

"

d-x
my— ~,—| =2k(x2 —x;) +ng —kx (12.16)

Thus, we have derived a second-order ordinary differential equation to describe the dis-
placement of the first mass with respect to time. However, notice that the solution cannot
be obtained because the model includes a second dependent variable, x». Consequently, free-
body diagrams must be developed for the second and the third masses (Fig. 12.125 and c)




12.4 SPRING-MASS SYSTEMS

FIGURE 12.11
A syslem composed of three masses suspended vertically by a series of sp
before release, that is, prior to exlension o compression of the springs. (bl The system after

release. Note that the positions of the masses are relerenced to local coordinates with origins at

their posilion before release.

rings. (o] The system

kx, k(xy = xy) klxy = xy) klxy = X3)
|
my 4 My
k(xs = x)) mg klxy =) m.g k(xy — Xo) myg
(a) (b) (c)

FIGURE 12.12
Free-body diagrams for the three masses from Fig. 12.11.

that can be employed to derive

ﬂr‘\?
s — e = k(xy —x2) +m28 — 2k(x2 — X)) (12.17)
dt
and
(.-‘1\'
ni— 2 = ni3g — k(x3 —x2) (12.18)

dt?
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Equations (12.16), (12.17), and (12.18) form a system of three differential equations

with three unknowns. With the appropriate initial conditions, they could be used to solve &

for the displacements of the masses as a [unction of time (that is. their oscillations). We wil
discuss numerical methods for obtaining such solutions in Part Seven. For the present, we
can obtain the displacements that occur when the system eventually comes 1o rest, thatis,
to the steady state. To do this, the derivatives in Eqs. (12.16), (12.17), and (12.18) are st
to zero to give

3kxy —  2kx; = mg
=2kx; + 3kxa — kx3 = g
—  kxs + kxy = mag

or, in matrix form,
[K]{X}) ={W)

where [K], called the stiffness matrix, is

3k —2k
(Kl=|-2% 3k —k
—k &

and {X} and {W} are the column vectors of the unknowns X and the weights mg, respec-
tively.

Solution. At this point, numerical methods can be employed to obtain a solution. If m; =
2 kg, my =3 kg, my = 2.5 kg, and the k’s = 10 kg/s?, use LU decomposition to solve for
the displacements and generate the inverse of [K].

Substituting the model parameters gives

30 =20 19.6
[K]=|-20 30 —10 (W} =1{294
—10 10 24.5

LU decomposition can be employed to solve for x| = 7.35, x» = 10.045, and x3 = 12.495,
These displacements were used to construct Fig. 12.115. The inverse of the stiffness matrix
is computed as

0.1 0.1 0.1
[K17'=]0.1 015 0.5
0.1 0.15 0.25

Each element of this matrix kjf,.' tells us the displacement of mass i due to a unit force
imposed on mass j. Thus, the values of 0.1 in column 1 tell us that a downward unit load to
the first mass will displace all of the masses 0.1 m downward. The other elements can be
interpreted in a similar fashion. Therefore, the inverse of the stiffness matrix provides a
fundamental summary of how the system’s components respond to externally applied
forces.
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