
25.4 SYSTEMS OF EQUATIONS 737

costs and the accuracy requirements of the problem also must be considered when choos-
ing a solution technique. Such trade-offs will be explored in detail in the engineering
applications in Chap. 28 and in the epilogue for Part Seven.

25.3.5 Computer Algorithms for Runge-Kutta Methods

As with all the methods covered in this chapter, the RK techniques fit nicely into the gen-
eral algorithm embodied in Fig. 25.7. Figure 25.17 presents pseudocode to determine the
slope of the classic fourth-order RK method [Eq. (25.40)]. Subroutines to compute slopes
for all the other versions can be easily programmed in a similar fashion.

25.4 SYSTEMS OF EQUATIONS

Many practical problems in engineering and science require the solution of a system of si-
multaneous ordinary differential equations rather than a single equation. Such systems may
be represented generally as

dy1

dx
= f1(x, y1, y2, . . . , yn)

dy2

dx
= f2(x, y1, y2, . . . , yn)

.

.

.

dyn

dx
= fn(x, y1, y2, . . . , yn) (25.42)

The solution of such a system requires that n initial conditions be known at the starting
value of x.

FIGURE 25.17
Pseudocode to determine a single step of the fourth-order RK method.

SUB RK4 (x, y, h, ynew)
CALL Derivs(x, y, k1)
ym � y � k1 � h�2
CALL Derivs(x � h�2, ym, k2)
ym � y � k2 � h�2
CALL Derivs(x � h�2, ym, k3)
ye � y � k3 � h
CALL Derivs(x � h, ye, k4)
slope � (k1 � 2(k2 � k3) � k4)�6
ynew � y � slope � h
x � x � h

END SUB
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25.4.1 Euler’s Method

All the methods discussed in this chapter for single equations can be extended to the sys-
tem shown above. Engineering applications can involve thousands of simultaneous equa-
tions. In each case, the procedure for solving a system of equations simply involves apply-
ing the one-step technique for every equation at each step before proceeding to the next
step. This is best illustrated by the following example for the simple Euler’s method.

EXAMPLE 25.9 Solving Systems of ODEs Using Euler’s Method

Problem Statement. Solve the following set of differential equations using Euler’s
method, assuming that at x = 0, y1 = 4, and y2 = 6. Integrate to x = 2 with a step size
of 0.5.

dy1

dx
= −0.5y1

dy2

dx
= 4 − 0.3y2 − 0.1y1

Solution. Euler’s method is implemented for each variable as in Eq. (25.2):

y1(0.5) = 4 + [−0.5(4)]0.5 = 3

y2(0.5) = 6 + [4 − 0.3(6) − 0.1(4)]0.5 = 6.9

Note that y1(0) = 4 is used in the second equation rather than the y1(0.5) = 3 computed
with the first equation. Proceeding in a like manner gives

x y1 y2

0 4 6
0.5 3 6.9
1.0 2.25 7.715
1.5 1.6875 8.44525
2.0 1.265625 9.094087

25.4.2 Runge-Kutta Methods

Note that any of the higher-order RK methods in this chapter can be applied to systems of
equations. However, care must be taken in determining the slopes. Figure 25.15 is helpful
in visualizing the proper way to do this for the fourth-order method. That is, we first de-
velop slopes for all variables at the initial value. These slopes (a set of k1’s) are then used
to make predictions of the dependent variable at the midpoint of the interval. These mid-
point values are in turn used to compute a set of slopes at the midpoint (the k2’s). These new
slopes are then taken back to the starting point to make another set of midpoint predictions
that lead to new slope predictions at the midpoint (the k3’s). These are then employed to
make predictions at the end of the interval that are used to develop slopes at the end of the
interval (the k4’s). Finally, the k’s are combined into a set of increment functions [as in
Eq. (25.40)] and brought back to the beginning to make the final prediction. The following
example illustrates the approach.
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EXAMPLE 25.10 Solving Systems of ODEs Using the Fourth-Order RK Method

Problem Statement. Use the fourth-order RK method to solve the ODEs from Exam-
ple 25.9.

Solution. First, we must solve for all the slopes at the beginning of the interval:

k1,1 = f1(0, 4, 6) = −0.5(4) = −2

k1,2 = f2(0, 4, 6) = 4 − 0.3(6) − 0.1(4) = 1.8

where ki, j is the ith value of k for the jth dependent variable. Next, we must calculate the
first values of y1 and y2 at the midpoint:

y1 + k1,1
h

2
= 4 + (−2)

0.5

2
= 3.5

y2 + k1,2
h

2
= 6 + (1.8)

0.5

2
= 6.45

which can be used to compute the first set of midpoint slopes,

k2,1 = f1(0.25, 3.5, 6.45) = −1.75

k2,2 = f2(0.25, 3.5, 6.45) = 1.715

These are used to determine the second set of midpoint predictions,

y1 + k2,1
h

2
= 4 + (−1.75)

0.5

2
= 3.5625

y2 + k2,2
h

2
= 6 + (1.715)

0.5

2
= 6.42875

which can be used to compute the second set of midpoint slopes,

k3,1 = f1(0.25, 3.5625, 6.42875) = −1.78125

k3,2 = f2(0.25, 3.5625, 6.42875) = 1.715125

These are used to determine the predictions at the end of the interval

y1 + k3,1h = 4 + (−1.78125)(0.5) = 3.109375

y2 + k3,2h = 6 + (1.715125)(0.5) = 6.857563

which can be used to compute the endpoint slopes,

k4,1 = f1(0.5, 3.109375, 6.857563) = −1.554688

k4,2 = f2(0.5, 3.109375, 6.857563) = 1.631794

The values of k can then be used to compute [Eq. (25.40)]:

y1(0.5) = 4 + 1

6
[−2 + 2(−1.75 − 1.78125) − 1.554688]0.5 = 3.115234

y2(0.5) = 6 + 1

6
[1.8 + 2(1.715 + 1.715125) + 1.631794]0.5 = 6.857670
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Proceeding in a like manner for the remaining steps yields

x y1 y2

0 4 6
0.5 3.115234 6.857670
1.0 2.426171 7.632106
1.5 1.889523 8.326886
2.0 1.471577 8.946865

25.4.3 Computer Algorithm for Solving Systems of ODEs

The computer code for solving a single ODE with Euler’s method (Fig. 25.7) can be easily
extended to systems of equations. The modifications include:

1. Inputting the number of equations, n.
2. Inputting the initial values for each of the n dependent variables.
3. Modifying the algorithm so that it computes slopes for each of the dependent variables.
4. Including additional equations to compute derivative values for each of the ODEs.
5. Including loops to compute a new value for each dependent variable.

Such an algorithm is outlined in Fig. 25.18 for the fourth-order RK method. Notice
how similar it is in structure and organization to Fig. 25.7. Most of the differences relate to
the fact that

1. There are n equations.
2. The added detail of the fourth-order RK method.

EXAMPLE 25.11 Solving Systems of ODEs with the Computer

Problem Statement. A computer program to implement the fourth-order RK method for
systems can be easily developed based on Fig. 25.18. Such software makes it convenient to
compare different models of a physical system. For example, a linear model for a swinging
pendulum is given by [recall Eq. (PT7.11)]

dy1

dx
= y2

dy2

dx
= −16.1y1

where y1 and y2 = angular displacement and velocity. A nonlinear model of the same sys-
tem is [recall Eq. (PT7.9)]

dy3

dx
= y4

dy4

dx
= −16.1 sin(y3)

where y3 and y4 = angular displacement and velocity for the nonlinear case. Solve these
systems for two cases: (a) a small initial displacement (y1 = y3 = 0.1 radians; y2 = y4 = 0)
and (b) a large displacement (y1 = y3 = π/4 = 0.785398 radians; y2 = y4 = 0).
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25.4 SYSTEMS OF EQUATIONS 741

FIGURE 25.18
Pseudocode for the fourth-order RK method for systems.

(a) Main or “Driver” Program

Assign values for
n � number of equations
yi � initial values of n dependent

variables
xi � initial value independent 

variable
xf � final value independent variable
dx � calculation step size
xout � output interval

x � xi
m � 0
xpm � x
DOFOR i � 1, n
ypi,m � yii
yi � yii

END DO
DO
xend � x � xout
IF (xend � xf) THEN xend � xf
h � dx
CALL Integrator (x, y, n, h, xend)
m � m � 1
xpm � x
DOFOR i � 1, n
ypi,m � yi

END DO
IF (x � xf) EXIT

END DO
DISPLAY RESULTS
END

(b) Routine to Take One Output Step

SUB Integrator (x, y, n, h, xend)
DO
IF (xend � x 	 h) THEN h � xend � x
CALL RK4 (x, y, n, h)
IF (x � xend) EXIT

END DO
END SUB

(c) Fourth-Order RK Method for a System
of ODEs

SUB RK4 (x, y, n, h)
CALL Derivs (x, y, k1)
DOFOR i � 1, n
ymi � yi � k1i * h / 2

END DO
CALL Derivs (x � h / 2, ym, k2)
DOFOR i � 1, n
ymi � yi � k2i * h / 2

END DO
CALL Derivs (x � h / 2, ym, k3)
DOFOR i � 1, n
yei � yi � k3i * h

END DO
CALL Derivs (x � h, ye, k4)
DOFOR i � 1, n
slopei � (k1i � 2*(k2i�k3i)�k4i)/6
yi � yi � slopei * h

END DO
x � x � h

END SUB

(d) Routine to Determine Derivatives

SUB Derivs (x, y, dy)
dy1 � ...
dy2 � ...

END SUB
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Solution.

(a) The calculated results for the linear and nonlinear models are almost identical
(Fig. 25.19a). This is as expected because when the initial displacement is small,
sin (θ) ∼= θ .

(b) When the initial displacement is π/4 = 0.785398, the solutions are much different and
the difference is magnified as time becomes larger and larger (Fig. 25.19b). This is
expected because the assumption that sin (θ) = θ is poor when theta is large.

25.5 ADAPTIVE RUNGE-KUTTA METHODS

To this point, we have presented methods for solving ODEs that employ a constant step
size. For a significant number of problems, this can represent a serious limitation. For
example, suppose that we are integrating an ODE with a solution of the type depicted in
Fig. 25.20. For most of the range, the solution changes gradually. Such behavior suggests
that a fairly large step size could be employed to obtain adequate results. However, for a lo-
calized region from x = 1.75 to x = 2.25, the solution undergoes an abrupt change. The
practical consequence of dealing with such functions is that a very small step size would be
required to accurately capture the impulsive behavior. If a constant step-size algorithm
were employed, the smaller step size required for the region of abrupt change would have
to be applied to the entire computation. As a consequence, a much smaller step size than
necessary—and, therefore, many more calculations—would be wasted on the regions of
gradual change.

742 RUNGE-KUTTA METHODS

FIGURE 25.19
Solutions obtained with a computer program for the fourth-order RK method. The plots represent 
solutions for both linear and nonlinear pendulums with (a) small and (b) large initial 
displacements.
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Algorithms that automatically adjust the step size can avoid such overkill and hence be
of great advantage. Because they “adapt” to the solution’s trajectory, they are said to have
adaptive step-size control. Implementation of such approaches requires that an estimate of
the local truncation error be obtained at each step. This error estimate can then serve as a
basis for either lengthening or decreasing the step size.

Before proceeding, we should mention that aside from solving ODEs, the methods de-
scribed in this chapter can also be used to evaluate definite integrals. As mentioned previ-
ously in the introduction to Part Six, the evaluation of the integral

I =
∫ b

a
f(x) dx

is equivalent to solving the differential equation

dy

dx
= f(x)

for y(b) given the initial condition y(a) = 0. Thus, the following techniques can be em-
ployed to efficiently evaluate definite integrals involving functions that are generally
smooth but exhibit regions of abrupt change.

There are two primary approaches to incorporate adaptive step-size control into one-
step methods. In the first, the error is estimated as the difference between two predic-
tions using the same-order RK method but with different step sizes. In the second, the local

25.5 ADAPTIVE RUNGE-KUTTA METHODS 743

FIGURE 25.20
An example of a solution of an ODE that exhibits an abrupt change. Automatic step-size
adjustment has great advantages for such cases.
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truncation error is estimated as the difference between two predictions using different-
order RK methods.

25.5.1 Adaptive RK or Step-Halving Method

Step halving (also called adaptive RK) involves taking each step twice, once as a full step
and independently as two half steps. The difference in the two results represents an esti-
mate of the local truncation error. If y1 designates the single-step prediction and y2 desig-
nates the prediction using the two half steps, the error � can be represented as

� = y2 − y1 (25.43)

In addition to providing a criterion for step-size control, Eq. (25.43) can also be used to cor-
rect the y2 prediction. For the fourth-order RK version, the correction is

y2 ← y2 + �

15
(25.44)

This estimate is fifth-order accurate.

EXAMPLE 25.12 Adaptive Fourth-Order RK Method

Problem Statement. Use the adaptive fourth-order RK method to integrate y ′ = 4e0.8x −
0.5y from x = 0 to 2 using h = 2 and an initial condition of y(0) = 2. This is the same dif-
ferential equation that was solved previously in Example 25.5. Recall that the true solu-
tions is y(2) = 14.84392.

Solution. The single prediction with a step of h is computed as

y(2) = 2 + 1

6
[3 + 2(6.40216 + 4.70108) + 14.11105]2 = 15.10584

The two half-step predictions are

y(1) = 2 + 1

6
[3 + 2(4.21730 + 3.91297) + 5.945681]1 = 6.20104

and

y(2) = 6.20104 + 1

6
[5.80164 + 2(8.72954 + 7.99756) + 12.71283]1 = 14.86249

Therefore, the approximate error is

Ea = 14.86249 − 15.10584

15
= −0.01622

which compares favorably with the true error of

Et = 14.84392 − 14.86249 = −0.01857

The error estimate can also be used to correct the prediction

y(2) = 14.86249 − 0.01622 = 14.84627

which has an Et = −0.00235.
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25.5.2 Runge-Kutta Fehlberg

Aside from step halving as a strategy to adjust step size, an alternative approach for
obtaining an error estimate involves computing two RK predictions of different order.
The results can then be subtracted to obtain an estimate of the local truncation error. One
shortcoming of this approach is that it greatly increases the computational overhead. For
example, a fourth- and fifth-order prediction amount to a total of 10 function evaluations
per step. The Runge-Kutta Fehlberg or embedded RK method cleverly circumvents this
problem by using a fifth-order RK method that employs the function evaluations from the
accompanying fourth-order RK method. Thus, the approach yields the error estimate on the
basis of only six function evaluations!

For the present case, we use the following fourth-order estimate

yi+1 = yi +
(

37

378
k1 + 250

621
k3 + 125

594
k4 + 512

1771
k6

)
h (25.45)

along with the fifth-order formula:

yi+1 = yi +
(

2825

27,648
k1 + 18,575

48,384
k3 + 13,525

55,296
k4 + 277

14,336
k5 + 1

4
k6

)
h (25.46)

where

k1 = f(xi , yi )

k2 = f

(
xi + 1

5
h, yi + 1

5
k1h

)

k3 = f

(
xi + 3

10
h, yi + 3

40
k1h + 9

40
k2h

)

k4 = f

(
xi + 3

5
h, yi + 3

10
k1h − 9

10
k2h + 6

5
k3h

)

k5 = f

(
xi + h, yi − 11

54
k1h + 5

2
k2h − 70

27
k3h + 35

27
k4h

)

k6 = f

(
xi + 7

8
h, yi + 1631

55,296
k1h + 175

512
k2h + 575

13,824
k3h + 44,275

110,592
k4h

+ 253

4096
k5h

)

Thus, the ODE can be solved with Eq. (25.46) and the error estimated as the difference of
the fifth- and fourth-order estimates. It should be noted that the particular coefficients used
above were developed by Cash and Karp (1990). Therefore, it is sometimes called the
Cash-Karp RK method.

EXAMPLE 25.13 Runge-Kutta Fehlberg Method

Problem Statement. Use the Cash-Karp version of the Runge-Kutta Fehlberg approach
to perform the same calculation as in Example 25.12 from x = 0 to 2 using h = 2.

25.5 ADAPTIVE RUNGE-KUTTA METHODS 745

cha01064_ch25.qxd  3/25/09  11:27 AM  Page 745



Solution. The calculation of the k’s can be summarized in the following table:

x y f(x, y)

k1 0 2 3
k2 0.4 3.2 3.908511
k3 0.6 4.20883 4.359883
k4 1.2 7.228398 6.832587
k5 2 15.42765 12.09831
k6 1.75 12.17686 10.13237

These can then be used to compute the fourth-order prediction

y1 = 2 +
(

37

378
3 + 250

621
4.359883 + 125

594
6.832587 + 512

1771
10.13237

)
2 = 14.83192

along with a fifth-order formula:

y1 = 2 +
(

2825

27,648
3 + 18,575

48,384
4.359883 + 13,525

55,296
6.832587

+ 277

14,336
12.09831 + 1

4
10.13237

)
2 = 14.83677

The error estimate is obtained by subtracting these two equations to give

Ea = 14.83677 − 14.83192 = 0.004842

25.5.3 Step-Size Control

Now that we have developed ways to estimate the local truncation error, it can be used to
adjust the step size. In general, the strategy is to increase the step size if the error is too
small and decrease it if the error is too large. Press et al. (1992) have suggested the follow-
ing criterion to accomplish this:

hnew = hpresent

∣∣∣∣ �new

�present

∣∣∣∣
α

(25.47)

where hpresent and hnew = the present and the new step sizes, respectively, �present = the
computed present accuracy, �new = the desired accuracy, and α = a constant power that is
equal to 0.2 when the step size is increased (that is, when �present ≤ �new) and 0.25 when
the step size is decreased (�present > �new).

The key parameter in Eq. (25.47) is obviously �new because it is your vehicle for spec-
ifying the desired accuracy. One way to do this would be to relate �new to a relative error
level. Although this works well when only positive values occur, it can cause problems for
solutions that pass through zero. For example, you might be simulating an oscillating func-
tion that repeatedly passes through zero but is bounded by maximum absolute values. For
such a case, you might want these maximum values to figure in the desired accuracy.
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A more general way to handle such cases is to determine �new as

�new = εyscale

where ε = an overall tolerance level. Your choice of yscale will then determine how the error
is scaled. For example, if yscale = y, the accuracy will be couched in terms of fractional rel-
ative errors. If you are dealing with a case where you desire constant errors relative to a
prescribed maximum bound, set yscale equal to that bound. A trick suggested by Press et al.
(1992) to obtain the constant relative errors except very near zero crossings is

yscale = |y| +
∣∣∣∣h dy

dx

∣∣∣∣
This is the version we will use in our algorithm.

25.5.4 Computer Algorithm

Figures 25.21 and 25.22 outline pseudocode to implement the Cash-Karp version of the
Runge-Kutta Fehlberg algorithm. This algorithm is patterned after a more detailed imple-
mentation by Press et al. (1992) for systems of ODEs.

Figure 25.21 implements a single step of the Cash-Karp routine (that is Eqs. 25.45 and
25.46). Figure 25.22 outlines a general driver program along with a subroutine that actu-
ally adapts the step size.
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FIGURE 25.21
Pseudocode for a single step of the Cash-Karp RK method.

SUBROUTINE RKkc (y,dy,x,h,yout,yerr)
PARAMETER (a2�0.2,a3�0.3,a4�0.6,a5�1.,a6�0.875,
b21�0.2,b31�3.�40.,b32�9.�40.,b41�0.3,b42��0.9,
b43�1.2,b51��11.�54.,b52�2.5,b53��70.�27.,
b54�35.�27.,b61�1631.�55296.,b62�175.�512.,
b63�575.�13824.,b64�44275.�110592.,b65�253.�4096.,
c1�37.�378.,c3�250.�621.,c4�125.�594.,
c6�512.�1771.,dc1�c1�2825.�27648.,
dc3�c3�18575.�48384.,dc4�c4�13525.�55296.,
dc5��277.�14336.,dc6�c6�0.25)

ytemp�y�b21*h*dy
CALL Derivs (x�a2*h,ytemp,k2)
ytemp�y�h*(b31*dy�b32*k2)
CALL Derivs(x�a3*h,ytemp,k3)
ytemp�y�h*(b41*dy�b42*k2�b43*k3)
CALL Derivs(x�a4*h,ytemp,k4)
ytemp�y�h*(b51*dy�b52*k2�b53*k3�b54*k4)
CALL Derivs(x�a5*h,ytemp,k5)
ytemp�y�h*(b61*dy�b62*k2�b63*k3�b64*k4�b65*k5)
CALL Derivs(x�a6*h,ytemp,k6)
yout�y�h*(c1*dy�c3*k3�c4*k4�c6*k6)
yerr�h*(dc1*dy�dc3*k3�dc4*k4�dc5*k5�dc6*k6)
END RKkc
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EXAMPLE 25.14 Computer Application of an Adaptive Fourth-Order RK Scheme

Problem Statement. The adaptive RK method is well-suited for the following ordinary
differential equation

dy

dx
+ 0.6y = 10e−(x−2)2/[2(0.075)2] (E25.14.1)

Notice for the initial condition, y(0) = 0.5, the general solution is

y = 0.5e−0.6x (E25.14.2)

which is a smooth curve that gradually approaches zero as x increases. In contrast, the par-
ticular solution undergoes an abrupt transition in the vicinity of x = 2 due to the nature of
the forcing function (Fig. 25.23a). Use a standard fourth-order RK scheme to solve
Eq. (E25.14.1) from x = 0 to 4. Then employ the adaptive scheme described in this section
to perform the same computation.

Solution. First, the classical fourth-order scheme is used to compute the solid curve in
Fig. 25.23b. For this computation, a step size of 0.1 is used so that 4/(0.1) = 40 applica-
tions of the technique are made. Then, the calculation is repeated with a step size of 0.05
for a total of 80 applications. The major discrepancy between the two results occurs in the
region from 1.8 to 2.0. The magnitude of the discrepancy is about 0.1 to 0.2 percent.
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FIGURE 25.22
Pseudocode for a (a) driver program and an (b) adaptive step routine to solve a single ODE.

(a) Driver Program

INPUT xi, xf, yi
maxstep�100
hi�.5; tiny � 1.� 10�30

eps�0.00005
print *, xi,yi
x�xi
y�yi
h�hi
istep�0
DO
IF (istep � maxstep AND x 
 xf) EXIT
istep�istep�1
CALL Derivs(x,y,dy)
yscal�ABS(y)�ABS(h*dy)�tiny
IF (x�h�xf) THEN h�xf�x
CALL Adapt (x,y,dy,h,yscal,eps,hnxt)
PRINT x,y
h�hnxt

END DO
END

(b) Adaptive Step Routine

SUB Adapt (x,y,dy,htry,yscal,eps,hnxt)
PARAMETER (safety�0.9,econ�1.89e�4)
h�htry
DO
CALL RKkc(y,dy,x,h,ytemp,yerr)
emax�abs(yerr/yscal/eps)
IF emax 
 1 EXIT
htemp�safety*h*emax�0.25

h�max(abs(htemp),0.25*abs(h))
xnew�x�h
IF xnew � x THEN pause

END DO
IF emax � econ THEN
hnxt�safety*emax�.2*h

ELSE
hnxt�4.*h

END IF
x�x�h
y�ytemp
END Adapt
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Next, the algorithm in Figs. 25.21 and 25.22 is developed into a computer program and
used to solve the same problem. An initial step size of 0.5 and an ε = 0.00005 were chosen.
The results were superimposed on Fig. 25.23b. Notice how large steps are taken in the
regions of gradual change. Then, in the vicinity of x = 2, the steps are decreased to ac-
commodate the abrupt nature of the forcing function.

The utility of an adaptive integration scheme obviously depends on the nature of the
functions being modeled. It is particularly advantageous for those solutions with long
smooth stretches and short regions of abrupt change. In addition, it has utility in those sit-
uations where the correct step size is not known a priori. For these cases, an adaptive rou-
tine will “feel” its way through the solution while keeping the results within the desired tol-
erance. Thus, it will tiptoe through the regions of abrupt change and step out briskly when
the variations become more gradual.

25.5 ADAPTIVE RUNGE-KUTTA METHODS 749

FIGURE 25.23
(a) A bell-shaped forcing function that induces an abrupt change in the solution of an ODE 
[Eq. (E25.14.1)]. (b) The solution. The points indicate the predictions of an adaptive
step-size routine.
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25.1 Solve the following initial value problem over the interval from
t = 0 to 2 where y(0) = 1. Display all your results on the same graph.

dy

dt
= yt3 − 1.5y

(a) Analytically.
(b) Euler’s method with h = 0.5 and 0.25.
(c) Midpoint method with h = 0.5.
(d) Fourth-order RK method with h = 0.5.
25.2 Solve the following problem over the interval from x = 0 to 1
using a step size of 0.25 where y(0) = 1. Display all your results on
the same graph.

dy

dx
= (1 + 2x)

√
y

(a) Analytically.
(b) Euler’s method.
(c) Heun’s method without the corrector.
(d) Ralston’s method.
(e) Fourth-order RK method.
25.3 Use the (a) Euler and (b) Heun (without iteration) methods to
solve

d2 y

dt2
− t + y = 0

where y(0) = 2 and y�(0) = 0. Solve from x = 0 to 4 using h = 0.1.
Compare the methods by plotting the solutions.
25.4 Solve the following problem with the fourth-order RK method:

d2 y

dx2
+ 0.5

dy

dx
+ 7y = 0

where y(0) = 4 and y�(0) = 0. Solve from x = 0 to 5 with h = 0.5.
Plot your results.
25.5 Solve from t = 0 to 3 with h = 0.1 using (a) Heun (without
corrector) and (b) Ralston’s 2nd-order RK method:

dy

dt
= y sin3(t) y(0) = 1

25.6 Solve the following problem numerically from t = 0 to 3:

dy

dt
= −y + t2 y(0) = 1

Use the third-order RK method with a step size of 0.5.
25.7 Use (a) Euler’s and (b) the fourth-order RK method to solve

dy

dx
= −2y + 4e−x

dz

dx
= − yz2

3

over the range x = 0 to 1 using a step size of 0.2 with y(0) = 2 and
z(0) = 4.
25.8 Compute the first step of Example 25.14 using the adaptive
fourth-order RK method with h = 0.5. Verify whether step-size
adjustment is in order.
25.9 If ε = 0.001, determine whether step size adjustment is
required for Example 25.12.
25.10 Use the RK-Fehlberg approach to perform the same calcula-
tion as in Example 25.12 from x = 0 to 1 with h = 1.
25.11 Write a computer program based on Fig. 25.7. Among other
things, place documentation statements throughout the program to
identify what each section is intended to accomplish.
25.12 Test the program you developed in Prob. 25.11 by duplicat-
ing the computations from Examples 25.1 and 25.4.
25.13 Develop a user-friendly program for the Heun method with
an iterative corrector. Test the program by duplicating the results in
Table 25.2.
25.14 Develop a user-friendly computer program for the classical
fourth-order RK method. Test the program by duplicating Exam-
ple 25.7.
25.15 Develop a user-friendly computer program for systems of
equations using the fourth-order RK method. Use this program to
duplicate the computation in Example 25.10.
25.16 The motion of a damped spring-mass system (Fig. P25.16)
is described by the following ordinary differential equation:

m
d2x

dt2
+ c

dx

dt
+ kx = 0

where x = displacement from equilibrium position (m), t = time
(s), m = 20-kg mass, and c = the damping coefficient (N · s/m).
The damping coefficient c takes on three values of 5 (under-
damped), 40 (critically damped), and 200 (overdamped). The
spring constant k = 20 N/m. The initial velocity is zero, and the ini-
tial displacement x = 1 m. Solve this equation using a numerical
method over the time period 0 ≤ t ≤ 15 s. Plot the displacement
versus time for each of the three values of the damping coefficient
on the same curve.
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Figure P25.16
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25.17 If water is drained from a vertical cylindrical tank by open-
ing a valve at the base, the water will flow fast when the tank is full
and slow down as it continues to drain. As it turns out, the rate at
which the water level drops is:

dy

dt
= −k

√
y

where k is a constant depending on the shape of the hole and the
cross-sectional area of the tank and drain hole. The depth of the
water y is measured in meters and the time t in minutes. If k = 0.06,
determine how long it takes the tank to drain if the fluid level is ini-
tially 3 m. Solve by applying Euler’s equation and writing a com-
puter program or using Excel. Use a step of 0.5 minutes.
25.18 The following is an initial value, second-order differential
equation:

d2x

dt2
+ (5x)

dx

dt
+ (x + 7) sin(ωt) = 0

where

dx

dt
(0) = 1.5 and x(0) = 6

Note that ω = 1. Decompose the equation into two first-order dif-
ferential equations. After the decomposition, solve the system from
t = 0 to 15 and plot the results.
25.19 Assuming that drag is proportional to the square of velocity,
we can model the velocity of a falling object like a parachutist with
the following differential equation:

dv

dt
= g − cd

m
v2

where v is velocity (m/s), t = time (s), g is the acceleration due to
gravity (9.81 m/s2), cd = a second-order drag coefficient (kg/m),
and m = mass (kg). Solve for the velocity and distance fallen by a
90-kg object with a drag coefficient of 0.225 kg/m. If the initial
height is 1 km, determine when it hits the ground. Obtain your so-
lution with (a) Euler’s method and (b) the fourth-order RK method. 
25.20 A spherical tank has a circular orifice in its bottom through
which the liquid flows out (Fig. P25.20). The flow rate through the
hole can be estimated as

Qout = CA
√

2gH

where Qout = outflow (m3/s), C = an empirically-derived coeffi-
cient, A = the area of the orifice (m2), g = the gravitational constant
(= 9.81 m/s2), and H = the depth of liquid in the tank. Use one of
the numerical methods described in this chapter to determine how
long it will take for the water to flow out of a 3-m diameter tank
with an initial height of 2.75 m. Note that the orifice has a diameter
of 3 cm and C = 0.55.

25.21 The logistic model is used to simulate population as in

dp

dt
= kgm (1 − p/pmax)p

where p = population, kgm = the maximum growth rate under un-
limited conditions, and pmax = the carrying capacity. Simulate the
world’s population from 1950 to 2000 using one of the numerical
methods described in this chapter. Employ the following initial
conditions and parameter values for your simulation: p0 (in 1950) =
2555 million people, kgm = 0.026/yr, and pmax = 12,000 million
people. Have the function generate output corresponding to the
dates for the following measured population data. Develop a plot of
your simulation along with the data.

t 1950 1960 1970 1980 1990 2000

p 2555 3040 3708 4454 5276 6079

25.22 Suppose that a projectile is launched upward from the
earth’s surface. Assume that the only force acting on the object is
the downward force of gravity. Under these conditions, a force bal-
ance can be used to derive,

dv

dt
= −g(0)

R2

(R + x)2

where v = upward velocity (m/s), t = time (s), x = altitude (m)
measured upwards from the earth’s surface, g(0) = the gravita-
tional acceleration at the earth’s surface (∼= 9.81 m/s2), and R = the
earth’s radius (∼= 6.37 × 106 m). Recognizing that dx/dt = v, use
Euler’s method to determine the maximum height that would be
obtained if v(t = 0) = 1400 m/s.
25.23 The following function exhibits both flat and steep regions
over a relatively short x region:

f (x) = 1

(x − 0.3)2 + 0.01
+ 1

(x − 0.9)2 + 0.04
− 6

Determine the value of the definite integral of this function be-
tween x = 0 and 1 using an adaptive RK method.

PROBLEMS 751

Figure P25.20
A spherical tank.
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