

Tobias Bleninger

MATEMÁTICA APLICADA I

Source: Chapra, Numerical Methods for Engineers, 2008

Differentiation

The mathematical definition of a derivative begins with a difference approximation:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

and as Δx is allowed to approach zero, the difference becomes a derivative:

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

Source:

Chapra, Numerical Methods for Engineers, 2008

High-Accuracy Differentiation Formulas

Taylor series expansion can be used to generate high-accuracy formulas for derivatives by using linear algebra to combine the expansion around several points.

Three categories for the formula include forward finite-difference, backward finite-difference, and centered finite-difference.

Source:

Forward Finite-Difference

First Derivative	Error
$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$	O(h)
$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h}$	$O(h^2)$
Second Derivative	
$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2}$	O(h)
$f''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2}$	$O(h^2)$
Third Derivative	
$f'''(x_i) = \frac{f(x_{i+3}) - 3f(x_{i+2}) + 3f(x_{i+1}) - f(x_i)}{h^3}$	O(h)
$f'''(x_i) = \frac{-3f(x_{i+4}) + 14f(x_{i+3}) - 24f(x_{i+2}) + 18f(x_{i+1}) - 5f(x_i)}{2h^3}$	$O(h^2)$
Fourth Derivative	
$f''''(x_i) = \frac{f(x_{i+4}) - 4f(x_{i+3}) + 6f(x_{i+2}) - 4f(x_{i+1}) + f(x_i)}{h^4}$	O(h)
$f''''(x_i) = \frac{-2f(x_{i+5}) + 11f(x_{i+4}) - 24f(x_{i+3}) + 26f(x_{i+2}) - 14f(x_{i+1}) + 3f(x_i)}{h^4}$	$O(h^2)$

Source: Chapra, Numerical Methods for Engineers, 2008

Backward Finite-Difference

First Derivative	Error
$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$	O(h)
$f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h}$	$O(h^2)$
Second Derivative	
$f''(x_i) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2}$	O(h)
$f''(x_i) = \frac{2f(x_i) - 5f(x_{i-1}) + 4f(x_{i-2}) - f(x_{i-3})}{h^2}$	$O(h^2)$
Third Derivative	
$f'''(x_i) = \frac{f(x_i) - 3f(x_{i-1}) + 3f(x_{i-2}) - f(x_{i-3})}{h^3}$	O(h)
$f'''(x_i) = \frac{5f(x_i) - 18f(x_{i-1}) + 24f(x_{i-2}) - 14f(x_{i-3}) + 3f(x_{i-4})}{2h^3}$	$O(h^2)$
Fourth Derivative	
$f''''(x_i) = \frac{f(x_i) - 4f(x_{i-1}) + 6f(x_{i-2}) - 4f(x_{i-3}) + f(x_{i-4})}{h^4}$	O(h)
$f''''(x_i) = \frac{3f(x_i) - 14f(x_{i-1}) + 26f(x_{i-2}) - 24f(x_{i-3}) + 11f(x_{i-4}) - 2f(x_{i-5})}{h^4}$	$O(h^2)$

Source: Chapra, Numerical Methods for Engineers, 2008

(

 $O(h^4)$

Centered Finite-Difference

First Derivative	Erro
$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$	O(h
$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$	O(h
Second Derivative	
$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2}$	O(h
$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2}$	O(h
Third Derivative	
$f'''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + 2f(x_{i-1}) - f(x_{i-2})}{2h^3}$	O(h
$f'''(x_i) = \frac{-f(x_{i+3}) + 8f(x_{i+2}) - 13f(x_{i+1}) + 13f(x_{i-1}) - 8f(x_{i-2}) + f(x_{i-3})}{8h^3}$	O(I
Fourth Derivative	
$f''''(x_i) = \frac{f(x_{i+2}) - 4f(x_{i+1}) + 6f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{h^4}$	0(1

 $f''''(x_i) = \frac{-f(x_{i+3}) + 12f(x_{i+2}) + 39f(x_{i+1}) + 56f(x_i) - 39f(x_{i-1}) + 12f(x_{i-2}) + f(x_{i-3})}{6h^4}$ Source: Chapra, Numerical Methods for Engineers, 2008

Ordinary Differential Equations

 Methods described here are for solving differential equations of the form:

$$\frac{dy}{dt} = f(t,y)$$

• The methods in this chapter are all *one-step* methods and have the general format:

$$y_{i+1} = y_i + \phi h$$

where ϕ is called an *increment function*, and is used to extrapolate from an old value y_i to a new value y_{i+1} .

Euler's Method

The first derivative provides a direct estimate of the slope at t_i:

$$\left. \frac{dy}{dt} \right|_{t_i} = f(t_i, y_i)$$

and the Euler method uses that estimate as the increment

function:

$$\phi = f(t_i, y_i)$$

$$y_{i+1} = y_i + f(t_i, y_i)h$$

Figure 25.4

Error Analysis for Euler's Method

- The numerical solution of ODEs involves two types of error:
 - Truncation errors, caused by the nature of the techniques employed
 - Roundoff errors, caused by the limited numbers of significant digits that can be retained
- The total, or *global* truncation error can be further split into:
 - local truncation error that results from an application method in question over a single step, and
 - propagated truncation error that results from the approximations produced during previous steps.

Error Analysis for Euler's Method

- The local truncation error for Euler's method is O(h²) and proportional to the derivative of f(t,y) while the global truncation error is O(h).
- This means:
 - The global error can be reduced by decreasing the step size, and
 - Euler's method will provide error-free predictions if the underlying function is linear.
- Euler's method is conditionally stable, depending on the size of h.

Heun's Method

 One method to improve Euler's method is to determine derivatives at the beginning and predicted ending of the interval and average them:

- This process relies on making a prediction of the new value of y, then correcting it based on the slope calculated at that new value.
- This predictor-corrector approach can be iterated to convergence:

Midpoint Method

 Another improvement to Euler's method is similar to Heun's method, but predicts the slope at the midpoint of an interval rather than at the end:

• This method has a local truncation error of $O(h^3)$ and global error of $O(h^2)$

Runge-Kutta Methods

- Runge-Kutta (RK) methods achieve the accuracy of a Taylor series approach without requiring the calculation of higher derivatives.
- For RK methods, the increment function φ can be generally written as:

$$\phi = a_1 k_1 + a_2 k_2 + \dots + a_n k_n$$

where the a's are constants and the k's are

$$\begin{aligned} k_1 &= f\big(t_i, y_i\big) \\ k_2 &= f\big(t_i + p_1 h, y_i + q_{11} k_1 h\big) \\ k_3 &= f\big(t_i + p_2 h, y_i + q_{21} k_1 h + q_{22} k_2 h\big) \\ &\vdots \\ k_n &= f\big(t_i + p_{n-1} h, y_i + q_{n-1,1} k_1 h + q_{n-1,2} k_2 h + \dots + q_{n-1,n-1} k_{n-1} h\big) \\ \text{where the p's and q's are constants.} \end{aligned}$$

Classical Fourth-Order Runge-Kutta Method

 The most popular RK methods are fourth-order, and the most commonly used form is:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$

where:

$$k_{1} = f(t_{i}, y_{i})$$

$$k_{2} = f\left(t_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{1}h\right)$$

$$k_{3} = f\left(t_{i} + \frac{1}{2}h, y_{i} + \frac{1}{2}k_{2}h\right)$$

$$k_{4} = f(t_{i} + h, y_{i} + k_{3}h)$$

Systems of Equations

Many practical problems require the solution of a system of equations:

$$\frac{dy_1}{dt} = f_1\big(t,y_1,y_2,\cdots,y_n\big)$$

$$\frac{dy_2}{dt} = f_2\big(t,y_1,y_2,\cdots,y_n\big)$$

$$\vdots$$

$$\frac{dy_n}{dt} = f_n\big(t,y_1,y_2,\cdots,y_n\big)$$
 • The solution of such a system requires that n initial conditions be

known at the starting value of t.

Solution Methods

- Single-equation methods can be used to solve systems of ODE's as well; for example, Euler's method can be used on systems of equations - the one-step method is applied for every equation at each step before proceeding to the next step.
- Fourth-order Runge-Kutta methods can also be used, but care must be taken in calculating the *k*'s.

Figure 25.14

Referências

- Chapra, Numerical Methods for Engineers, 2008
- School of Computing Science, University of Cincinatti, http://www.cs.uc.edu
- Markus Uhlmann, "Numerical Fluid Mechanics I", IfH, Karlsruhe Institute of Technology (www.ifh.kit.edu)