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Preface: 2008 edition

We are publishing this edition of Calculus in Context online to make it freely
available to all users. It is essentially unchanged from the 1994 edition.

The continuing support of Five Colleges, Inc., and especially of the Five
College Coordinator, Lorna Peterson, has been crucial in paving the way for
this new edition. We also wish to thank the many colleagues who have shared
with us their experiences in using the book over the last twenty years—and
have provided us with corrections to the text.
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Preface: 1994 edition

Our point of view We believe that calculus can be for our students what
it was for Euler and the Bernoullis: A language and a tool for exploring
the whole fabric of science. We also believe that much of the mathematical
depth and vitality of calculus lies in these connections to the other sciences.
The mathematical questions that arise are compelling in part because the
answers matter to other disciplines as well.

The calculus curriculum that this book represents started with a “clean
slate;” we made no presumptive commitment to any aspect of the traditional
course. In developing the curriculum, we found it helpful to spell out our
starting points, our curricular goals, our functional goals, and our view
of the impact of technology. Our starting points are a summary of what
calculus is really about. Our curricular goals are what we aim to convey
about the subject in the course. Our functional goals describe the attitudes
and behaviors we hope our students will adopt in using calculus to approach
scientific and mathematical questions. We emphasize that what is missing
from these lists is as significant as what appears. In particular, we did not
not begin by asking what parts of the traditional course to include or discard.

Starting Points

• Calculus is fundamentally a way of dealing with functional rela-
tionships that occur in scientific and mathematical contexts. The
techniques of calculus must be subordinate to an overall view of the
underlying questions.

• Technology radically enlarges the range of questions we can ex-
plore and the ways we can answer them. Computers and graphing
calculators are much more than tools for teaching the traditional
calculus.

iii
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Starting Points—continued

• The concept of a dynamical system is central to science Therefore,
differential equations belong at the center of calculus, and technol-
ogy makes this possible at the introductory level.

• The process of successive approximation is a key tool of calculus,
even when the outcome of the process—the limit—cannot be ex-
plicitly given in closed form.

Curricular Goals

• Develop calculus in the context of scientific and mathematical ques-
tions.

• Treat systems of differential equations as fundamental objects of
study.

• Construct and analyze mathematical models.
• Use the method of successive approximations to define and solve

problems.
• Develop geometric visualization with hand-drawn and computer

graphics.
• Give numerical methods a more central role.

Functional Goals

• Encourage collaborative work.
• Empower students to use calculus as a language and a tool.
• Make students comfortable tackling large, messy, ill-defined prob-

lems.
• Foster an experimental attitude towards mathematics.
• Help students appreciate the value of approximate solutions.
• Develop the sense that understanding concepts arises out of working

on problems, not simply from reading the text and imitating its
techniques.

Impact of Technology

• Differential equations can now be solved numerically, so they can
take their rightful place in the introductory calculus course.

• The ability to handle data and perform many computations allows
us to explore examples containing more of the messiness of real
problems.

• As a consequence, we can now deal with credible models, and the
role of modelling becomes much more central to our subject.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

v

Impact of Technology—continued

• In particular, introductory calculus (and linear algebra) now have
something more substantial to offer to life and social scientists, as
well as to physical scientists, engineers and mathematicians.

• The distinction between pure and applied mathematics becomes
even less clear (or useful) than it may have been.

By studying the text you can see, quite explicitly, how we have pursued
the curricular goals. In particular, every one of those goals is addressed
within the very first chapter. It begins with questions about describing and
analyzing the spread of a contagious disease. A model is built, and the model
is a system of coupled non-linear differential equations. We then begin a
numerical assault on those equations, and the door is opened to a solution
by successive approximations.

Our implementation of the functional goals is less obvious, but it is still
evident. For instance, the text has many more words than the traditional
calculus book—it is a book to be read. Also, the exercises make unusual
demands on students. Most exercises are not just variants of examples that
have been worked in the text. In fact, the text has rather few simple “tem-
plate” examples.

Shifts in Emphasis It will also become apparent to you that the text
reflects substantial shifts in emphasis in comparison to the traditional course.
Here are some of the most striking:

How the emphasis shifts:

increase decrease

concepts techniques

geometry algebra

graphs formulas

brute force elegance

numerical closed-form
solutions solutions

Euler’s method is a good example of what we mean by “brute force.”
It is a general method of wide applicability. Of course when we use it to
solve a differential equation like y′(t) = t, we are using a sledgehammer to
crack a peanut. But at least the sledgehammer does work. Moreover, it
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works with coconuts (like y′ = y(1−y/10)), and it will just as happily knock
down a house (like y′ = cos2(t)). Of course, students also see the elegant
special methods that can be invoked to solve y′ = t and y′ = y(1 − y/10)
(separation of variables and partial fractions are discussed in chapter 11),
but they understand that they are fortunate indeed when a real problem will
succumb to these special methods.

Audience Our curriculum is not aimed at a special clientele. On the con-
trary, we think that calculus is one of the great bonds that unifies science, and
all students should have an opportunity to see how the language and tools
of calculus help forge that bond. We emphasize, though, that this is not a
“service” course or calculus “with applications,” but rather a course rich in
mathematical ideas that will serve all students well, including mathematics
majors. The student population in the first semester course is especially di-
verse. In fact, since many students take only one semester, we have aimed
to make the first six chapters stand alone as a reasonably complete course.
In particular, we have tried to present contexts that would be more or less
broadly accessible. The emphasis on the physical sciences is clearly greater
in the later chapters; this is deliberate. By the second semester, our stu-
dents have gained skill and insight that allows them to tackle this added
complexity.

Handbook for Instructors Working toward our curricular and functional
goals has stretched us as well as our students. Teaching in this style is
substantially different from the calculus courses most of us have learned from
and taught in the past. Therefore we have prepared a handbook based on
our experiences and those of colleagues at other schools. We urge prospective
instructors to consult it.

Origins The Five College Calculus Project has a singular history. It begins
almost thirty years ago, when the Five Colleges were only Four: Amherst,
Mount Holyoke, Smith, and the large Amherst campus of the University of
Massachusetts. These four resolved to create a new institution which would
be a site for educational innovation at the undergraduate level; by 1970,
Hampshire College was enrolling students and enlisting faculty.

Early in their academic careers, Hampshire students grapple with pri-
mary sources in all fields—in economics and ecology, as well as in history
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and literature. And journal articles don’t shelter their readers from home
truths: if a mathematical argument is needed, it is used. In this way, stu-
dents in the life and social sciences found, sometimes to their surprise and
dismay, that they needed to know calculus if they were to master their chosen
fields. However, the calculus they needed was not, by and large, the calculus
that was actually being taught. The journal articles dealt directly with the
relation between quantities and their rates of change—in other words, with
differential equations.

Confronted with a clear need, those students asked for help. By the mid-
1970s, Michael Sutherland and Kenneth Hoffman were teaching a course
for those students. The core of the course was calculus, but calculus as it
is used in contemporary science. Mathematical ideas and techniques grew
out of scientific questions. Given a process, students had to recast it as a
model; most often, the model was a set of differential equations. To solve
the differential equations, they used numerical methods implemented on a
computer.

The course evolved and prospered quietly at Hampshire. More than a
decade passed before several of us at the other four institutions paid some
attention to it. We liked its fundamental premise, that differential equations
belong at the center of calculus. What astounded us, though, was the reve-
lation that differential equations could really be at the center—thanks to the
use of computers.

This book is the result of our efforts to translate the Hampshire course for
a wider audience. The typical student in calculus has not been driven to study
calculus in order to come to grips with his or her own scientific questions—as
those pioneering students had. If calculus is to emerge organically in the
minds of the larger student population, a way must be found to involve that
population in a spectrum of scientific and mathematical questions. Hence,
calculus in context. Moreover, those contexts must be understandable to
students with no special scientific training, and the mathematical issues they
raise must lead to the central ideas of the calculus—to differential equations,
in fact.

Coincidentally, the country turned its attention to the undergraduate sci-
ence curriculum, and it focused on the calculus course. The National Science
Foundation created a program to support calculus curriculum development.
To carry out our plans we requested funds for a five-year project; we were for-
tunate to receive the only multi-year curriculum development grant awarded
in the first year of the NSF program. This text is the outcome of our effort.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

viii

Acknowledgements

Certainly this book would have been possible without the support of the
National Science Foundation and of Five Colleges, Inc. We particularly want
to thank Louise Raphael who, as the first director of the calculus program
at the National Science Foundation, had faith in us and recognized the value
of what had already been accomplished at Hampshire College when we be-
gan our work. Five College Coordinators Conn Nugent and Lorna Peterson
supported and encouraged our efforts, and Five College treasurer and busi-
ness manager Jean Stabell has assisted us in countless ways throughout the
project.

We are very grateful to the members of our Advisory Board: to Peter
Lax, for his faith in us and his early help in organizing and chairing the
Board; to Solomon Garfunkel, for his advice on politics and publishing; to
Barry Simon, for using our text and giving us his thoughtful and imaginative
suggestions for improving it; to Gilbert Strang, for his support of a radical
venture; to John Truxal, for his detailed commentaries and insights into the
world of engineering.

Among our colleagues, James Henle of Smith College deserves special
thanks. Besides his many contributions to our discussions of curriculum and
pedagogy, he developed the computer programs that have been so valuable
for our teaching: Graph, Slinky, Superslinky, and Tint. Jeff Gelbard and
Fred Henle ably extended Jim’s programs to the MacIntosh and to DOS
Windows and X Windows. All of this software is available on anonymous
ftp at emmy.smith.edu. Mark Peterson, Robert Weaver, and David Cox also
developed software that has been used by our students.

Several of our colleagues made substantial contributions to our frequent
editorial conferences and helped with the writing of early drafts. We of-
fer thanks to David Cohen, Robert Currier and James Henle at Smith;
David Kelly at Hampshire; and Frank Wattenberg at the University of Mas-
sachusetts. Mary Beck, who is now at the University of Virginia, gave heaps
of encouragement and good advice as a co-teacher of the earliest version of
the course at Smith. Anne Kaufmann, an Ada Comstock Scholar at Smith,
assisted us with extensive editorial reviews from the student perspective.

Two of the most significant new contributions to this edition are the
appendix for graphing calculators and a complete set of solutions to all the
exercises. From the time he first became aware of our project, Benjamin
Levy has been telling us how easy and natural it would be to adapt our



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

ix

Basic programs for graphing calculators. He has always used them when
he taught Calculus in Context, and he created the appendix which contains
translations of our programs for most of the graphing calculators in common
use today. Lisa Hodsdon, Diane Jamrog, and Marcia Lazo have worked long
hours over an entire summer to solve all the exercises and to prepare the
results as LATEX documents for inclusion in the Handbook for Instructors.
We think both these contributions do much to make the course more useful
to a wider audience.

We appreciate the contributions of our colleagues who participated in
numerous debriefing sessions at semester’s end and gave us comments on
the evolving text. We thank George Cobb, Giuliana Davidoff, Alan Dur-
fee, Janice Gifford, Mark Peterson, Margaret Robinson, and Robert Weaver
at Mount Holyoke; Michael Albertson, Ruth Haas, Mary Murphy, Marjorie
Senechal, Patricia Sipe, and Gerard Vinel at Smith. We learned, too, from
the reactions of our colleagues in other disciplines who participated in faculty
workshops on Calculus in Context.

We profited a great deal from the comments and reactions of early users
of the text. We extend our thanks to Marian Barry at Aquinas College,
Peter Dolan and Mark Halsey at Bard College, Donald Goldberg and his
colleagues at Occidental College, Benjamin Levy at Beverly High School,
Joan Reinthaler at Sidwell Friends School, Keith Stroyan at the University
of Iowa, and Paul Zorn at St. Olaf College. Later users who have helped
us are Judith Grabiner and Jim Hoste at Pitzer College; Allen Killpatrick,
Mary Scherer, and Janet Beery at the University of Redlands; and Barry
Simon at Caltech.

Dissemination grants from the NSF have funded regional workshops for
faculty planning to adopt Calculus in Context. We are grateful to Donald
Goldberg, Marian Barry, Janet Beery, and to Henry Warchall of the Univer-
sity of North Texas for coordinating workshops.

We owe a special debt to our students over the years, especially those
who assisted us in teaching, but also those who gave us the benefit of their
thoughtful reactions to the course and the text. Seeing what they were
learning encouraged us at every step.

We continue to find it remarkable that our text is to be published the
way we want it, not softened or ground down under the pressure of anony-
mous reviewers seeking a return to the mean. All of this is due to the
bold and generous stance of W. H. Freeman. Robert Biewen, its president,
understands—more than we could ever hope—what we are trying to do, and



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

x

he has given us his unstinting support. Our aquisitions editors, Jeremiah
Lyons and Holly Hodder, have inspired us with their passionate conviction
that our book has something new and valuable to offer science education.
Christine Hastings, our production editor, has shown heroic patience and
grace in shaping the book itself against our often contrary views. We thank
them all.

To the Student

In a typical high school math text, each section has a “technique” which you
practice in a series of exercises very like the examples in the text. This book
is different. In this course you will be learning to use calculus both as a tool
and as a language in which you can think coherently about the problems
you will be studying. As with any other language, a certain amount of time
will need to be spent learning and practicing the formal rules. For instance,
the conjugation of être must be almost second nature to you if you are to
be able to read a novel—or even a newspaper—in French. In calculus, too,
there are a number of manipulations which must become automatic so that
you can focus clearly on the content of what is being said. It is important
to realize, however, that becoming good at these manipulations is not the
goal of learning calculus any more than becoming good at declensions and
conjugations is the goal of learning French.

Up to now, most of the problems you have met in math classes have had
definite answers such as “17,” or “the circle with radius 1.75 and center at
(2,3).” Such definite answers are satisfying (and even comforting). However,
many interesting and important questions, like “How far is it to the planet
Pluto,” or “How many people are there with sickle-cell anemia,” or “What
are the solutions to the equation x5 + x + 1 = 0” can’t be answered exactly.
Instead, we have ways to approximate the answers, and the more time
and/or money we are willing to expend, the better our approximations may
be. While many calculus problems do have exact answers, such problems
often tend to be special or atypical in some way. Therefore, while you will be
learning how to deal with these “nice” problems, you will also be developing
ways of making good approximations to the solutions of the less well-behaved
(and more common!) problems.

The computer or the graphing calculator is a tool that that you will need
for this course, along with a clear head and a willing hand. We don’t assume
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that you know anything about this technology ahead of time. Everything
necessary is covered completely as we go along.

You can’t learn mathematics simply by reading or watching others. The
only way you can internalize the material is to work on problems yourself. It
is by grappling with the problems that you will come to see what it is you
do understand, and to see where your understanding is incomplete or fuzzy.

One of the most important intellectual skills you can develop is that of
exploring questions on your own. Don’t simply shut your mind down when
you come to the end of an assigned problem. These problems have been
designed not so much to capture the essence of calculus as to prod your
thinking, to get you wondering about the concepts being explored. See if
you can think up and answer variations on the problem. Does the problem
suggest other questions? The ability to ask good questions of your own is at
least as important as being able to answer questions posed by others.

We encourage you to work with others on the exercises. Two or three
of you of roughly equal ability working on a problem will often accomplish
much more than would any of you working alone. You will stimulate one
another’s imaginations, combine differing insights into a greater whole, and
keep up each other’s spirits in the frustrating times. This is particularly
effective if you first spend time individually working on the material. Many
students find it helpful to schedule a regular time to get together to work on
problems.

Above all, take time to pause and admire the beauty and power of what
you are learning. Aside from its utility, calculus is one of the most elegant and
richly structured creations of the human mind and deserves to be profoundly
admired on those grounds alone. Enjoy!



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

xii



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

Contents

1 A Context for Calculus 1
1.1 The Spread of Disease . . . . . . . . . . . . . . . . . . . . . . 1

Making a Model . . . . . . . . . . . . . . . . . . . . . . 1
A Simple Model for Predicting Change . . . . . . . . . 4
The Rate of Recovery . . . . . . . . . . . . . . . . . . . 6
The Rate of Transmission . . . . . . . . . . . . . . . . 8
Completing the Model . . . . . . . . . . . . . . . . . . 9
Analyzing the Model . . . . . . . . . . . . . . . . . . . 11
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 The Mathematical Ideas . . . . . . . . . . . . . . . . . . . . . 27
Functions . . . . . . . . . . . . . . . . . . . . . . . . . 27
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Linear Functions . . . . . . . . . . . . . . . . . . . . . 30
Functions of Several Variables . . . . . . . . . . . . . . 35
The Beginnings of Calculus . . . . . . . . . . . . . . . 37
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.3 Using a Program . . . . . . . . . . . . . . . . . . . . . . . . . 49
Computers . . . . . . . . . . . . . . . . . . . . . . . . . 49
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 57
The Main Ideas . . . . . . . . . . . . . . . . . . . . . . 57
Expectations . . . . . . . . . . . . . . . . . . . . . . . 57
Chapter Exercises . . . . . . . . . . . . . . . . . . . . . 58

2 Successive Approximations 61
2.1 Making Approximations . . . . . . . . . . . . . . . . . . . . . 61

The Longest March Begins with a Single Step . . . . . 62
One Picture Is Worth a Hundred Tables . . . . . . . . 67

xiii



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

xiv CONTENTS

Piecewise Linear Functions . . . . . . . . . . . . . . . . 71
Approximate versus Exact . . . . . . . . . . . . . . . . 74
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.2 The Mathematical Implications—
Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Approximate Solutions . . . . . . . . . . . . . . . . . . 79
Exact Solutions . . . . . . . . . . . . . . . . . . . . . . 81
A Caution . . . . . . . . . . . . . . . . . . . . . . . . . 84
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.3 Approximate Solutions . . . . . . . . . . . . . . . . . . . . . . 88
Calculating π—The Length of a Curve . . . . . . . . . 89
Finding Roots with a Computer . . . . . . . . . . . . . 91
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 98
The Main Ideas . . . . . . . . . . . . . . . . . . . . . . 98
Expectations . . . . . . . . . . . . . . . . . . . . . . . 98
Chapter Exercises . . . . . . . . . . . . . . . . . . . . . 99

3 The Derivative 101
3.1 Rates of Change . . . . . . . . . . . . . . . . . . . . . . . . . . 101

The Changing Time of Sunrise . . . . . . . . . . . . . . 101
Changing Rates . . . . . . . . . . . . . . . . . . . . . . 103
Other Rates, Other Units . . . . . . . . . . . . . . . . 104
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.2 Microscopes and Local Linearity . . . . . . . . . . . . . . . . . 108
The Graph of Data . . . . . . . . . . . . . . . . . . . . 108
The Graph of a Formula . . . . . . . . . . . . . . . . . 109
Local Linearity . . . . . . . . . . . . . . . . . . . . . . 112
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.3 The Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Definition . . . . . . . . . . . . . . . . . . . . . . . . . 120
Language and Notation . . . . . . . . . . . . . . . . . . 122
The Microscope Equation . . . . . . . . . . . . . . . . 124
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.4 Estimation and Error Analysis . . . . . . . . . . . . . . . . . . 136
Making Estimates . . . . . . . . . . . . . . . . . . . . . 136
Propagation of Error . . . . . . . . . . . . . . . . . . . 138
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 141



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

CONTENTS xv

3.5 A Global View . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Derivative as Function . . . . . . . . . . . . . . . . . . 145
Formulas for Derivatives . . . . . . . . . . . . . . . . . 147
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.6 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Combining Rates of Change . . . . . . . . . . . . . . . 157
Chains and the Chain Rule . . . . . . . . . . . . . . . 159
Using the Chain Rule . . . . . . . . . . . . . . . . . . . 163
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3.7 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 167
Partial Derivatives as Multipliers . . . . . . . . . . . . 169
Formulas for Partial Derivatives . . . . . . . . . . . . . 170
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 172

3.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 176
The Main Ideas . . . . . . . . . . . . . . . . . . . . . . 176
Expectations . . . . . . . . . . . . . . . . . . . . . . . 177

4 Differential Equations 179
4.1 Modelling with Differential Equations . . . . . . . . . . . . . . 179

Single-species Models: Rabbits . . . . . . . . . . . . . 181
Two-species Models: Rabbits and Foxes . . . . . . . . 186
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 189

4.2 Solutions of Differential Equations . . . . . . . . . . . . . . . . 201
Differential Equations are Equations . . . . . . . . . . 201
World Population Growth . . . . . . . . . . . . . . . . 206
Differential Equations Involving Parameters . . . . . . 214
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 218

4.3 The Exponential Function . . . . . . . . . . . . . . . . . . . . 227
The Equation y′ = ky . . . . . . . . . . . . . . . . . . 227
The Number e . . . . . . . . . . . . . . . . . . . . . . . 229
Differential Equations Define Functions . . . . . . . . . 232
Exponential Growth . . . . . . . . . . . . . . . . . . . 237
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 238

4.4 The Logarithm Function . . . . . . . . . . . . . . . . . . . . . 246
Properties of the Logarithm Function . . . . . . . . . . 248
The Derivative of the Logarithm Function . . . . . . . 249
Exponential Growth . . . . . . . . . . . . . . . . . . . 252
The Exponential Functions bx . . . . . . . . . . . . . . 253



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

xvi CONTENTS

Inverse Functions . . . . . . . . . . . . . . . . . . . . . 255
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 257

4.5 The Equation y′ = f(t) . . . . . . . . . . . . . . . . . . . . . . 261
Antiderivatives . . . . . . . . . . . . . . . . . . . . . . 262
Euler’s Method Revisited . . . . . . . . . . . . . . . . . 264
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 270

4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 272
The Main Ideas . . . . . . . . . . . . . . . . . . . . . . 272
Expectations . . . . . . . . . . . . . . . . . . . . . . . 273

5 Techniques of Differentiation 275
5.1 The Differentiation Rules . . . . . . . . . . . . . . . . . . . . . 275

Derivatives of Basic Functions . . . . . . . . . . . . . . 276
Combining Functions . . . . . . . . . . . . . . . . . . . 279
Informal Arguments . . . . . . . . . . . . . . . . . . . 282
A Formal Proof: the Product Rule . . . . . . . . . . . 284
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 286

5.2 Finding Partial Derivatives . . . . . . . . . . . . . . . . . . . . 296
Some Examples . . . . . . . . . . . . . . . . . . . . . . 296
Eradication of Disease . . . . . . . . . . . . . . . . . . 296
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 299

5.3 The Shape of the Graph of a Function . . . . . . . . . . . . . 301
Language . . . . . . . . . . . . . . . . . . . . . . . . . 302
The Existence of Extremes . . . . . . . . . . . . . . . . 305
Finding Extremes . . . . . . . . . . . . . . . . . . . . . 307
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 309

5.4 Optimal Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . 314
The Problem of the Optimal Tin Can . . . . . . . . . . 314
The Solution . . . . . . . . . . . . . . . . . . . . . . . 314
The Mathematical Context: Optimal Shapes . . . . . . 316
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 318

5.5 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . 319
Finding Critical Points . . . . . . . . . . . . . . . . . . 319
Local Linearity and the Tangent Line . . . . . . . . . . 320
The Algorithm . . . . . . . . . . . . . . . . . . . . . . 322
Examples . . . . . . . . . . . . . . . . . . . . . . . . . 324
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 328

5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 333



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

CONTENTS xvii

The Main Ideas . . . . . . . . . . . . . . . . . . . . . . 333
Expectations . . . . . . . . . . . . . . . . . . . . . . . 334
Chapter Exercises . . . . . . . . . . . . . . . . . . . . . 334

6 The Integral 337
6.1 Measuring Work . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Human Work . . . . . . . . . . . . . . . . . . . . . . . 337
Electrical Energy . . . . . . . . . . . . . . . . . . . . . 342
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 346

6.2 Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Calculating Distance Travelled . . . . . . . . . . . . . . 352
Calculating Areas . . . . . . . . . . . . . . . . . . . . . 354
Calculating Lengths . . . . . . . . . . . . . . . . . . . 356
Definition . . . . . . . . . . . . . . . . . . . . . . . . . 359
Summation Notation . . . . . . . . . . . . . . . . . . . 362
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 364

6.3 The Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Refining Riemann Sums . . . . . . . . . . . . . . . . . 373
Definition . . . . . . . . . . . . . . . . . . . . . . . . . 376
Visualizing the Integral . . . . . . . . . . . . . . . . . . 379
Error Bounds . . . . . . . . . . . . . . . . . . . . . . . 385
Integration Rules . . . . . . . . . . . . . . . . . . . . . 392
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 394

6.4 The Fundamental Theorem of Calculus . . . . . . . . . . . . . 401
Two Views of Power and Energy . . . . . . . . . . . . 401
Integrals and Differential Equations . . . . . . . . . . . 403
Antiderivatives . . . . . . . . . . . . . . . . . . . . . . 407
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 412

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 416
The Main Ideas . . . . . . . . . . . . . . . . . . . . . . 416
Expectations . . . . . . . . . . . . . . . . . . . . . . . 417

7 Periodicity 419
7.1 Periodic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 419
7.2 Period, Frequency, and

the Circular Functions . . . . . . . . . . . . . . . . . . . . . . 422
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 428

7.3 Differential Equations with Periodic Solutions . . . . . . . . . 433



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

xviii CONTENTS

Oscillating Springs . . . . . . . . . . . . . . . . . . . . 433
The Sine and Cosine Revisited . . . . . . . . . . . . . . 440
The Pendulum . . . . . . . . . . . . . . . . . . . . . . 441
Predator–Prey Ecology . . . . . . . . . . . . . . . . . . 444
Proving a Solution Is Periodic . . . . . . . . . . . . . . 447
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 451

7.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 459
The Main Ideas . . . . . . . . . . . . . . . . . . . . . . 459
Expectations . . . . . . . . . . . . . . . . . . . . . . . 460

8 Dynamical Systems 461
8.1 State Spaces and Vector Fields . . . . . . . . . . . . . . . . . 461

Predator–Prey Models . . . . . . . . . . . . . . . . . . 462
The Pendulum Revisited . . . . . . . . . . . . . . . . . 471
A Model for the Acquisition of Immunity . . . . . . . . 474
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 477

8.2 Local Behavior of Dynamical Systems . . . . . . . . . . . . . . 485
A Microscopic View . . . . . . . . . . . . . . . . . . . . 485
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 492

8.3 A Taxonomy of Equilibrium Points . . . . . . . . . . . . . . . 492
Straight-Line Trajectories . . . . . . . . . . . . . . . . 495
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 497

8.4 Limit Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 502

8.5 Beyond the Plane:
Three-Dimensional Systems . . . . . . . . . . . . . . . . . . . 502

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 506
8.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 508

The Main Ideas . . . . . . . . . . . . . . . . . . . . . . 508
Expectations . . . . . . . . . . . . . . . . . . . . . . . 509

9 Functions of Several Variables 511
9.1 Graphs and Level Sets . . . . . . . . . . . . . . . . . . . . . . 511

Examples of Graphs . . . . . . . . . . . . . . . . . . . 514
From Graphs to Levels . . . . . . . . . . . . . . . . . . 519
Technical Summary . . . . . . . . . . . . . . . . . . . . 523
Contours of a Function of Three Variables . . . . . . . 525
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 528



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

CONTENTS xix

9.2 Local Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Microscopic Views . . . . . . . . . . . . . . . . . . . . 534
Linear Functions . . . . . . . . . . . . . . . . . . . . . 535
The Gradient of a Linear Function . . . . . . . . . . . 541
The Microscope Equation . . . . . . . . . . . . . . . . 544
Linear Approximation . . . . . . . . . . . . . . . . . . 547
The Gradient . . . . . . . . . . . . . . . . . . . . . . . 550
The Gradient of a Function of Three Variables . . . . . 552
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 553

9.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
Visual Inspection . . . . . . . . . . . . . . . . . . . . . 564
Dimension-reducing Constraints . . . . . . . . . . . . . 569
Extremes and Critical Points . . . . . . . . . . . . . . 573
The Method of Steepest Ascent . . . . . . . . . . . . . 578
Lagrange Multipliers . . . . . . . . . . . . . . . . . . . 581
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 583

9.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 590
The Main Ideas . . . . . . . . . . . . . . . . . . . . . . 590
Expectations . . . . . . . . . . . . . . . . . . . . . . . 591

10 Series and Approximations 593
10.1 Approximation Near a Point or

Over an Interval . . . . . . . . . . . . . . . . . . . . . . . . . . 594
10.2 Taylor Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 596

New Taylor Polynomials from Old . . . . . . . . . . . . 603
Goodness of fit . . . . . . . . . . . . . . . . . . . . . . 605
Taylor’s theorem . . . . . . . . . . . . . . . . . . . . . 608
Applications . . . . . . . . . . . . . . . . . . . . . . . . 613
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 615

10.3 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 625

10.4 Power Series and Differential Equations . . . . . . . . . . . . . 632
Bessel’s Equation . . . . . . . . . . . . . . . . . . . . . 634
The S-I-R Model One More Time . . . . . . . . . . . . 637
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 641

10.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
Divergent Series . . . . . . . . . . . . . . . . . . . . . . 646
The Geometric Series . . . . . . . . . . . . . . . . . . . 649



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

xx CONTENTS

Alternating Series . . . . . . . . . . . . . . . . . . . . . 651
The Radius of Convergence . . . . . . . . . . . . . . . 655
The Ratio Test . . . . . . . . . . . . . . . . . . . . . . 657
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 661

10.6 Approximation Over Intervals . . . . . . . . . . . . . . . . . . 668
Approximation by polynomials . . . . . . . . . . . . . 668
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 676

10.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 678
The Main Ideas . . . . . . . . . . . . . . . . . . . . . . 678
Expectations . . . . . . . . . . . . . . . . . . . . . . . 680

11 Techniques of Integration 681
11.1 Antiderivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 682

Definition . . . . . . . . . . . . . . . . . . . . . . . . . 682
Inverse Functions . . . . . . . . . . . . . . . . . . . . . 684
Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 688
Using Antiderivatives . . . . . . . . . . . . . . . . . . . 690
Finding Antiderivatives . . . . . . . . . . . . . . . . . . 692
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 695

11.2 Integration by Substitution . . . . . . . . . . . . . . . . . . . . 702
Substitution in Definite Integrals . . . . . . . . . . . . 706
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 708

11.3 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . 711
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 713

11.4 Separation of Variables and
Partial Fractions . . . . . . . . . . . . . . . . . . . . . . . . . 720

The Differential Equation y′ = y . . . . . . . . . . . . . 720
Separation of Variables . . . . . . . . . . . . . . . . . . 723
Partial Fractions . . . . . . . . . . . . . . . . . . . . . 725
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 729

11.5 Trigonometric Integrals . . . . . . . . . . . . . . . . . . . . . . 734
Inverse Substitution . . . . . . . . . . . . . . . . . . . 735
Inverse Substitution and Definite Integrals . . . . . . . 738
Completing The Square . . . . . . . . . . . . . . . . . 740
Trigonometric Polynomials . . . . . . . . . . . . . . . . 742
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 749

11.6 Simpson’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 752
The Trapezoid Rule . . . . . . . . . . . . . . . . . . . . 753



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

CONTENTS xxi

Simpson’s Rule . . . . . . . . . . . . . . . . . . . . . . 756
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 758

11.7 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . 759
The Lifetime of Light Bulbs . . . . . . . . . . . . . . . 759
Evaluating Improper Integrals . . . . . . . . . . . . . . 761
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 763

11.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 767
The Main Ideas . . . . . . . . . . . . . . . . . . . . . . 767
Expectations . . . . . . . . . . . . . . . . . . . . . . . 768

12 Case Studies 769
12.1 Stirling’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . 770

Stage One: Deriving the General Form . . . . . . . . . 771
Stage Two: Evaluating c . . . . . . . . . . . . . . . . . 773
The Binomial Distribution . . . . . . . . . . . . . . . . 776
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 777

12.2 The Poisson Distribution . . . . . . . . . . . . . . . . . . . . . 781
A Linear Model for α-Ray Emission . . . . . . . . . . . 781
Probability Models . . . . . . . . . . . . . . . . . . . . 784
The Poisson Probability Distribution . . . . . . . . . . 789
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 795

12.3 The Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . 798
Signal + Noise . . . . . . . . . . . . . . . . . . . . . . 798
Detecting the Frequency of a Signal . . . . . . . . . . . 800
The Problem of Phase . . . . . . . . . . . . . . . . . . 807
The Power Spectrum . . . . . . . . . . . . . . . . . . . 810
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 816

12.4 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 832



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

Chapter 1

A Context for Calculus

Calculus gives us a language to describe how quantities are related to one
another, and it gives us a set of computational and visual tools for explor-
ing those relationships. Usually, we want to understand how quantities are
related in the context of a particular problem—it might be in chemistry,
or public policy, or mathematics itself. In this chapter we take a single
context—an infectious disease spreading through a population—to see how
calculus emerges and how it is used.

1.1 The Spread of Disease

Making a Model

Many human diseases are contagious: you “catch” them from someone who
is already infected. Contagious diseases are of many kinds. Smallpox, polio,
and plague are severe and even fatal, while the common cold and the child- Some properties of

contagious diseaseshood illnesses of measles, mumps, and rubella are usually relatively mild.
Moreover, you can catch a cold over and over again, but you get measles
only once. A disease like measles is said to “confer immunity” on someone
who recovers from it. Some diseases have the potential to affect large seg-
ments of a population; they are called epidemics (from the Greek words epi,
upon + demos, the people.) Epidemiology is the scientific study of these
diseases.

An epidemic is a complicated matter, but the dangers posed by contagion—
and especially by the appearance of new and uncontrollable diseases—compel

1
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us to learn as much as we can about the nature of epidemics. Mathemat-
ics offers a very special kind of help. First, we can try to draw out of the
situation its essential features and describe them mathematically. This is
calculus as language. We substitute an “ideal” mathematical world for the
real one. This mathematical world is called a model. Second, we can useThe idea of a

mathematical model mathematical insights and methods to analyze the model. This is calculus
as tool. Any conclusion we reach about the model can then be interpreted
to tell us something about the reality.

To give you an idea how this process works, we’ll build a model of an
epidemic. Its basic purpose is to help us understand the way a contagious
disease spreads through a population—to the point where we can even predict
what fraction falls ill, and when. Let’s suppose the disease we want to model
is like measles. In particular,

• it is mild, so anyone who falls ill eventually recovers;

• it confers permanent immunity on every recovered victim.

In addition, we will assume that the affected population is large but fixed in
size and confined to a geographically well-defined region. To have a concrete
image, you can imagine the elementary school population of a big city.

At any time, that population can be divided into three distinct classes:

Susceptible: those who have never had the illness and can catch it;

Infected: those who currently have the illness and are contagious;

Recovered: those who have already had the illness and are immune.

Suppose we let S, I, and R denote the number of people in each ofThe quantities that our
model analyzes these three classes, respectively. Of course, the classes are all mixed together

throughout the population: on a given day, we may find persons who are
susceptible, infected, and recovered in the same family. For the purpose
of organizing our thinking, though, we’ll represent the whole population as
separated into three “compartments” as in the following diagram:
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The goal of our model is to determine what happens to the numbers S,
I, and R over the course of time. Let’s first see what our knowledge and
experience of childhood diseases might lead us to expect. When we say there
is a “measles outbreak,” we mean that there is a relatively sudden increase
in the number of cases, and then a gradual decline. After some weeks or
months, the illness virtually disappears. In other words, the number I is a
variable; its value changes over time. One possible way that I might vary
is shown in the following graph.

-

6

time

I

During the course of the epidemic, susceptibles are constantly falling ill.
Thus we would expect the number S to show a steady decline. Unless we
know more about the illness, we cannot decide whether everyone eventually
catches it. In graphical terms, this means we don’t know whether the graph
of S levels off at zero or at a value above zero. Finally, we would expect
more and more people in the recovered group as time passes. The graph of
R should therefore climb from left to right. The graphs of S and R might
take the following forms:
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-

6

time

S

-

6

time

R

While these graphs give us an idea about what might happen, they raise
some new questions, too. For example, because there are no scales marked
along the axes, the first graph does not tell us how large I becomes when theSome quantitative

questions that the
graphs raise

infection reaches its peak, nor when that peak occurs. Likewise, the second
and third graphs do not say how rapidly the population either falls ill or
recovers. A good model of the epidemic should give us graphs like these and
it should also answer the quantitative questions we have already raised—
for example: When does the infection hit its peak? How many susceptibles
eventually fall ill?

A Simple Model for Predicting Change

Suppose we know the values of S, I, and R today; can we figure out what
they will be tomorrow, or the next day, or a week or a month from now?
Basically, this is a problem of predicting the future. One way to deal with
it is to get an idea how S, I, and R are changing. To start with a very
simple example, suppose the city’s Board of Health reports that the measles
infection has been spreading at the rate of 470 new cases per day for the
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last several days. If that rate continues to hold steady and we start with
20,000 susceptible children, then we can expect 470 fewer susceptibles with
each passing day. The immediate future would then look like this:

accumulated remaining
days after number of new number of

today infections susceptibles

0
1
2
3

0
470
940

1410

20 000
19 530
19 060
18 590

...
...

...

Of course, these numbers will be correct only if the infection continues
to spread at its present rate of 470 persons per day. If we want to follow S, Knowing rates, we can

predict future valuesI, and R into the future, our example suggests that we should pay attention
to the rates at which these quantities change. To make it easier to refer
to them, let’s denote the three rates by S ′, I ′, and R′. For example, in the
illustration above, S is changing at the rate S ′ = −470 persons per day. We
use a minus sign here because S is decreasing over time. If S ′ stays fixed we
can express the value of S after t days by the following formula:

S = 20000 + S ′ · t = 20000 − 470 t persons.

Check that this gives the values of S found in the table when t = 0, 1, 2, or
3. How many susceptibles does it say are left after 10 days?

Our assumption that S ′ = −470 persons per day amounts to a math-
ematical characterization of the susceptible population—in other words, a The equation

S′ = −470
is a model

model! Of course it is quite simple, but it led to a formula that told us what
value we could expect S to have at any time t.

The model will even take us backwards in time. For example, two days
ago the value of t was −2; according to the model, there were

S = 20000 − 470 ×−2 = 20940

susceptible children then. There is an obvious difference between going back-
wards in time and going forwards: we already know the past. Therefore, by
letting t be negative we can generate values for S that can be checked against
health records. If the model gives good agreement with known values of S
we become more confident in using it to predict future values.
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To predict the value of S using the rate S ′ we clearly need to have a
starting point—a known value of S from which we can measure changes. InPredictions depend on

the initial value, too our case that starting point is S = 20000. This is called the initial value
of S, because it is given to us at the “initial time” t = 0. To construct the
formula S = 20000 − 470 t, we needed to have an initial value as well as a
rate of change for S.

In the following pages we will develop a more complex model for all
three population groups that has the same general design as this simple one.
Specifically, the model will give us information about the rates S ′, I ′, and
R′, and with that information we will be able to predict the values of S, I,
and R at any time t.

The Rate of Recovery

Our first task will be to model the recovery rate R′. We look at the process of
recovering first, because it’s simpler to analyze. An individual caught in the
epidemic first falls ill and then recovers—recovery is just a matter of time. In
particular, someone who catches measles has the infection for about fourteen
days. So if we look at the entire infected population today, we can expect
to find some who have been infected less than one day, some who have been
infected between one and two days, and so on, up to fourteen days. Those in
the last group will recover today. In the absence of any definite information
about the fourteen groups, let’s assume they are the same size. Then 1/14-th
of the infected population will recover today:

today the change in the recovered population =
I persons

14 days
.

There is nothing special about today, though; I has a value at any time.
Thus we can make the same argument about any other day:

every day the change in the recovered population =
I persons

14 days
.

This equation is telling us about R′, the rate at which R is changing. We
can write it more simply in the form

The first piece of the
S-I-R model R′ =

1

14
I persons per day.
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We call this a rate equation. Like any equation, it links different quan-
tities together. In this case, it links R′ to I. The rate equation for R is the
first part of our model of the measles epidemic.

Are you uneasy about our claim that 1/14-th of the infected population recovers every day? You
have good reason to be. After all, during the first few days of the epidemic almost no one has
had measles the full fourteen days, so the recovery rate will be much less than I/14 persons per
day. About a week before the infection disappears altogether there will be no one in the early
stages of the illness. The recovery rate will then be much greater than I/14 persons per day.
Evidently our model is not a perfect mirror of reality!

Don’t be particularly surprised or dismayed by this. Our goal is to gain insight into the
workings of an epidemic and to suggest how we might intervene to reduce its effects. So we start
off with a model which, while imperfect, still captures some of the workings. The simplifications
in the model will be justified if we are led to inferences which help us understand how an epidemic
works and how we can deal with it. If we wish, we can then refine the model, replacing the simple
expressions with others that mirror the reality more fully.

Notice that the rate equation for R′ does indeed give us a tool to predict
future values of R. For suppose today 2100 people are infected and 2500
have already recovered. Can we say how large the recovered population will
be tomorrow or the next day? Since I = 2100,

R′ =
1

14
× 2100 = 150 persons per day .

Thus 150 people will recover in a single day, and twice as many, or 300,
will recover in two. At this rate the recovered population will number 2650
tomorrow and 2800 the next day.

These calculations assume that the rate R′ holds steady at 150 persons
per day for the entire two days. Since R′ = I/14, this is the same as assuming
that I holds steady at 2100 persons. If instead I varies during the two days
we would have to adjust the value of R′ and, ultimately, the future values of
R as well. In fact, I does vary over time. We shall see this when we analyze
how the infection is transmitted. Then, in chapter 2, we’ll see how to make
the adjustments in the values of R′ that will permit us to predict the value
of R in the model with as much accuracy as we wish.

Other diseases. What can we say about the recovery rate for a contagious
disease other than measles? If the period of infection of the new illness is k
days, instead of 14, and if we assume that 1/k of the infected people recover
each day, then the new recovery rate is

R′ =
I persons

k days
=

1

k
I persons per day.
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If we set b = 1/k we can express the recovery rate equation in the form

R′ = bI persons per day.

The constant b is called the recovery coefficient in this context.

"
"

"
b

b
b

S

"
"

"

I
b

b
b

R
b

recovery

Let’s incorporate our understanding of recovery
into the compartment diagram. For the sake of il-
lustration, we’ll separate the three compartments. As
time passes, people “flow” from the infected compart-
ment to the recovered. We represent this flow by an
arrow from I to R. We label the arrow with the recov-
ery coefficient b to indicate that the flow is governed
by the rate equation R′ = bI.

The Rate of Transmission

Since susceptibles become infected, the compartment diagram above should
also have an arrow that goes from S to I and a rate equation for S ′ to show
how S changes as the infection spreads. While R′ depends only on I, because
recovery involves only waiting for people to leave the infected population, S ′

will depend on both S and I, because transmission involves contact between
susceptible and infected persons.

Here’s a way to model the transmission rate. First, consider a single
susceptible person on a single day. On average, this person will contact only
a small fraction, p, of the infected population. For example, suppose there are
5000 infected children, so I = 5000. We might expect only a couple of them—
let’s say 2—will be in the same classroom with our “average” susceptible. So
the fraction of contacts is p = 2/I = 2/5000 = .0004. The 2 contacts
themselves can be expressed as 2 = (2/I) · I = pI contacts per day per
susceptible.

To find out how many daily contacts the whole susceptible population willContacts are
proportional to both S
and I

have, we can just multiply the average number of contacts per susceptible
person by the number of susceptibles: this is pI · S = pSI.

Not all contacts lead to new infections; only a certain fraction q do.
The more contagious the disease, the larger q is. Since the number of daily
contacts is pSI, we can expect q · pSI new infections per day (i.e., to convert
contacts to infections, multiply by q). This becomes aSI if we define a to be
the product qp.
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Recall, the value of the recovery coefficient b depends only on the illness
involved. It is the same for all populations. By contrast, the value of a de-
pends on the general health of a population and the level of social interaction
between its members. Thus, when two different populations experience the
same illness, the values of a could be different. One strategy for dealing with
an epidemic is to alter the value of a. Quarantine does this, for instance; see
the exercises.

Since each new infection decreases the number of susceptibles, we have
the rate equation for S:

Here is the second
piece of the S-I-R

model
S ′ = −aSI persons per day .

The minus sign here tells us that S is decreasing (since S and I are positive).
We call a the transmission coefficient.

Just as people flow from the infected to the recov-
ered compartment when they recover, they flow from
the susceptible to the infected when they fall ill. To
indicate the second flow let’s add another arrow to
the compartment diagram. Because this flow is due to
the transmission of the illness, we will label the arrow
with the transmission coefficient a. The compartment
diagram now reflects all aspects of our model.

"
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"
b

b
b
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XX ��T
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transmission
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b

recovery

We haven’t talked about the units in which to measure a and b. They must be chosen so that
any equation in which a or b appears will balance. Thus, in R′ = bI the units on the left are
persons/day; since the units for I are persons, the units for b must be 1/(days). The units in
S′ = −aSI will balance only if a is measured in 1/(person-day).

The reciprocals have more natural interpretations. First of all, 1/b is the number of days a
person needs to recover. Next, note that 1/a is measured in person-days (i.e., persons × days),
which are the natural units in which to measure exposure. Here is why. Suppose you contact
3 infected persons for each of 4 days. That gives you the same exposure to the illness that you
get from 6 infected persons in 2 days—both give 12 “person-days” of exposure. Thus, we can
interpret 1/a as the level of exposure of a typical susceptible person.

Completing the Model

The final rate equation we need—the one for I ′—reflects what is already
clear from the compartment diagram: every loss in I is due to a gain in R,
while every gain in I is due to a loss in S.
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Here is the complete
S-I-R model S ′ = −aSI,

I ′ = aSI − bI,

R′ = bI.

If you add up these three rates you should get the overall rate of change of
the whole population. The sum is zero. Do you see why?

You should not draw the conclusion that the only use of rate equations is to model an epidemic.
Rate equations have a long history, and they have been put to many uses. Isaac Newton (1642–
1727) introduced them to model the motion of a planet around the sun. He showed that the
same rate equations could model the motion of the moon around the earth and the motion of an
object falling to the ground. Newton created calculus as a tool to analyze these equations. He
did the work while he was still an undergraduate—on an extended vacation, curiously enough,
because a plague epidemic was raging at Cambridge!

Today we use Newton’s rate equations to control the motion of earth satellites and the
spacecraft that have visited the moon and the planets. We use other rate equations to model
radioactive decay, chemical reactions, the growth and decline of populations, the flow of electricity
in a circuit, the change in air pressure with altitude—just to give a few examples. You will have
an opportunity in the following chapters to see how they arise in many different contexts, and
how they can be analyzed using the tools of calculus.

The following diagram summarizes, in a schematic way, the relation be-
tween our model and the reality it seeks to portray.

people fall ill
and eventually

recover

Reality

S ′ = −aSI
I ′ = aSI − bI

R′ = bI

Mathematics

-
�

Modelling
the reality

Interpreting
the mathematics

The diagram calls attention to several facts. First, the model is a part ofThe model is part of
mathematics; it only
approximates reality

mathematics. It is distinct from the reality being modelled. Second, the
model is based on a simplified interpretation of the epidemic. As such, it
will not match the reality exactly; it will be only an approximation. Thus,
we cannot expect the values of S, I, and R that we calculate from the rate
equations to give us the exact sizes of the susceptible, infected, and recov-
ered populations. Third, the connection between reality and mathematics
is a two-way street. We have already travelled one way by constructing
a mathematical object that reflects some aspects of the epidemic. This is
model-building. Presently we will travel the other way. First we need to
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get mathematical answers to mathematical questions; then we will see what
those answers tell us about the epidemic. This is interpretation of the model.
Before we begin the interpretation, we must do some mathematics.

Analyzing the Model

Now that we have a model we shall analyze it as a mathematical object. We
will set aside, at least for the moment, the connection between the math-
ematics and the reality. Thus, for example, you should not be concerned
when our calculations produce a value for S of 44,446.6 persons at a certain
time—a value that will never be attained in reality. In the following analysis
S is just a numerical quantity that varies with t, another numerical quantity.
Using only mathematical tools we must now extract from the rate equations
the information that will tell us just how S and I and R vary with t.

We already took the first steps in that direction when we used the rate
equation R′ = I/14 to predict the value of R two days into the future (see
page 7). We assumed that I remained fixed at 2100 during those two days, so
the rate R′ = 2100/14 = 150 was also fixed. We concluded that if R = 2500
today, it will be 2650 tomorrow and 2800 the next day.

A glance at the full S-I-R model tells us those first steps have to be
modified. The assumption we made—that I remains fixed—is not justified, Rates are continually

changing; this affects
the calculations

because I (like S and R) is continually changing. As we shall see, I actually
increases over those two days. Hence, over the same two days, R′ is not fixed
at 150, but is continually increasing also. That means that R′ becomes larger
than 150 during the first day, so R will be larger than 2650 tomorrow.

The fact that the rates are continually changing complicates the mathe-
matical work we need to do to find S, I, and R. In chapter 2 we will develop
tools and concepts that will overcome this problem. For the present we’ll
assume that the rates S ′, I ′, and R′ stay fixed for the course of an entire day.
This will still allow us to produce reasonable estimates for the values of S, I,
and R. With these estimates we will get our first glimpse of the predictive
power of the S-I-R model. We will also use the estimates as the starting
point for the work in chapter 2 that will give us precise values. Let’s look at
the details of a specific problem.

The Problem. Consider a measles epidemic in a school population of 50,000
children. The recovery coefficient is b = 1/14. For the transmission coeffi-
cient we choose a = .00001, a number within the range used in epidemic
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studies. We suppose that 2100 people are currently infected and 2500 have
already recovered. Since the total population is 50,000, there must be 45,400
susceptibles. Here is a summary of the problem in mathematical terms:

Rate equations:

S ′ = −.00001SI,

I ′ = .00001SI − I/14,

R′ = I/14.

Initial values: when t = 0,

S = 45400, I = 2100, R = 2500.

Tomorrow. From our earlier discussion, R′ = 2100/14 = 150 persons per
day, giving us an estimated value of R = 2650 persons for tomorrow. To
estimate S we use

S ′ = −.00001 SI = −.00001 × 45400 × 2100 = −953.4 persons/day.

Hence we estimate that tomorrow

S = 45400 − 953.4 = 44446.6 persons.

Since S + I + R = 50000 and we have S + R = 47096.6 tomorrow, a final
subtraction gives us I = 2903.4 persons. (Alternatively, we could have used
the rate equation for I ′ to estimate I.)

The fractional values in the estimates for S and I remind us that the
S-I-R model describes the behavior of the epidemic only approximately.

Several days hence. According to the model, we estimate that tomorrow
S = 44446.6, I = 2903.4, and R = 2650. Therefore, from the new I we get
a new approximation for the value of R′ tomorrow; it is

R′ =
1

14
I =

1

14
× 2903.4 = 207.4 persons/day.

Hence, two days from now we estimate that R will have the new value 2650+
207.4 = 2857.4. Now follow this pattern to get new approximations for S ′

and I ′, and then use those to estimate the values of S and I two days from
now.
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The pattern of steps that just carried you from the first day to the second
will work just as well to carry you from the second to the third. Pause now Stop and do

the calculationsand do all these calculations yourself. See exercises 15 and 16 on page 22. If
you round your calculated values of S, I, and R to the nearest tenth, they
should agree with those in the following table.

Estimates for the first three days

t S I R S′ I ′ R′

0
1
2
3

45 400.0
44 446.6
43 156.1
41 435.7

2100.0
2903.4
3986.5
5422.1

2500.0
2650.0
2857.4
3142.1

−953.4
−1290.5
−1720.4

803.4
1083.1
1435.7

150.0
207.4
284.7

Yesterday. We already pointed out, on page 5, that we can use our models
to go backwards in time, too. This is a valuable way to see how well the model
fits reality, because we can compare estimates that the model generates with
health records for the days in the recent past.

To find how S, I, and R change when we go one day into the future we
multiplied the rates S ′, I ′, and R′ by a time step of +1. To find how they
change when we go one day into the past we do the same thing, except that
we must now use a time step of –1. According to the table above, the rates
at time t = 0 (i.e., today) are

S ′ = −953.4, I ′ = 803.4, R′ = 150.0.

Therefore we estimate that, one day ago,

S = 45400 + (−953.4 ×−1) = 45400 + 953.4 = 46353.4,

I = 2100 + (803.4 ×−1) = 2100 − 803.4 = 1296.6,

R = 2500 + (150.0 ×−1) = 2500 − 150.0 = 2350.0.

Just as we would expect with a spreading infection, there are more suscepti-
bles yesterday than today, but fewer infected or recovered. In the exercises
for section 3 you will have an opportunity to continue this process, tracing
the epidemic many days into the past. For example, you will be able to go
back and see when the infection started—that is, find the day when the value
of I was only about 1.
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There and back again. What happens when we start with tomorrow’sGo forward a day
and then back again values and use tomorrow’s rates to go back one day—back to today? We

should get S = 45400, I = 2100, and R = 2500 once again, shouldn’t we?
Tomorrow’s values are

S = 44446.6, I = 2903.4, R = 2650.0,

S ′ = −1290.5, I ′ = 1083.1, R′ = 207.4.

To go backwards one day we must use a time step of −1. The predicted
values are thus

S = 44446.6 + (−1290.6 ×−1) = 45737.2,

I = 2903.4 + (1083.1 ×−1) = 1820.3,

R = 2650.0 + (207.4 ×−1) = 2442.6.

These are not the values that we had at the start, when t = 0. In fact, it’s
worth noting the difference between the original values and those produced
by “going there and back again.”

original there and
value back again difference

S
I
R

45400
2100
2500

45737.1
1820.3
2442.6

337.1
–279.7
–57.4

Do you see why there are differences? We went forward in time using the
rates that were current at t = 0, but when we returned we used the rates
that were current at t = 1. Because these rates were different, we didn’t get
back where we started. These differences do not point to a flaw in the model;
the problem lies with the way we are trying to extract information from the
model. As we have been making estimates, we have assumed that the ratesThe differences

measure how rough an
estimate is

don’t change over the course of a whole day. We already know that’s not
true, so the values that we have been getting are not exact. What this test
adds to our knowledge is a way to measure just how inexact those values
are—as we do in the table above.

In chapter 2 we will solve the problem of rough estimates by recalculating
all the quantities ten times a day, a hundred times a day, or even more. When
we do the computations with shorter and shorter time steps we will be able
to see how the estimates improve. We will even be able to see how to get
values that are mathematically exact!
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Delta notation. This work has given us some insights about the way our
model predicts future values of S, I, and R. The basic idea is very simple:
determine how S, I, and R change. Because these changes play such an
important role in what we do, it is worth having a simple way to refer to
them. Here is the notation that we will use:

∆x stands for a change in the quantity x

The symbol “∆” is the Greek capital letter delta; it corresponds to the Roman
letter “D” and stands for difference.

Delta notation gives us a way to refer to changes of all sorts. For example,
in the table on page 13, between day 1 and day 3 the quantities t and S change
by

∆t = 2 days,

∆S = −3010.9 persons.

We sometimes refer to a change as a step. For instance, in this example we ∆ stands for a change,
a difference, or a stepcan say there is a “t step” of 2 days, and an “S step” of −3010.9 persons. In

the calculations that produced the table on page 13 we “stepped into” the
future, a day at a time. Finally, delta notation gives us a concise and vivid
way to describe the relation between rates and changes. For example, if S
changes at the constant rate S ′, then under a t step of ∆t, the value of S
changes by

∆S = S ′ · ∆t.

Using the computer as a tool. Suppose we wanted to find out what
happens to S, I, and R after a month, or even a year. We need only repeat—
30 times, or 365 times—the three rounds of calculations we used to go three
days into the future. The computations would take time, though. The same
is true if we wanted to do ten or one hundred rounds of calculations per day—
which is the approach we’ll take in chapter 2 to get more accurate values.
To save our time and effort we will soon begin to use a computer to do the
repetitive calculations.

A computer does calculations by following a set of instructions called a
program. Of course, if we had to give a million instructions to make the
computer carry out a million steps, there would be no savings in labor. The
trick is to write a program with just a few instructions that can be repeated
over and over again to do all the calculations we want. The usual way to do
this is to arrange the instructions in a loop. To give you an idea what a loop
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is, we’ll look at the S-I-R calculations. They form a loop. We can see the
loop by making a flow chart.

The flow chart. We’ll start by writing down the three steps that take
us from one day to the next:

Step I Given the current values of S, I, and R, we get current S ′, I ′, and
R′ by using the rate equations

S ′ = −aSI,

I ′ = aSI − bI,

R′ = bI.

Step II Given the current values of S ′, I ′, and R′, we find the changes ∆S,
∆I, and ∆R over the course of a day by using the equations

∆S persons = S ′ persons

day
× 1 day,

∆I persons = I ′ persons

day
× 1 day,

∆R persons = R′ persons

day
× 1 day.

Step III Given the current values of ∆S, ∆I, and ∆R, we find the new
values of S, I, and R a day later by using the equations

new S = current S + ∆S,

new I = current I + ∆I,

new R = current R + ∆R.

Each step takes three numbers as input, and produces three new numbers
as output. Note that the output of each step is the input of the next, so the
steps flow together. The diagram below, called a flow chart, shows us how

The flow chart
forms a loop

the steps are connected.

values of
S, I, R

values of
S ′, I ′, R′

values of
∆S, ∆I, ∆R

- -

6

I II

III
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The calculations form a loop, because the output of step III is the input
for step I. If we go once around the loop, the output of step III gives us the
values of S, I, and R on the following day. The steps do indeed carry us into
the future.

Each step involves calculating three numbers. If we count each calculation
as a single instruction, then it takes nine instructions to carry the values of
S, I, and R one day into the future. To go a million days into the future, we
need add only one more instruction: “Go around the loop a million times.”
In this way, a computer program with only ten instructions can carry out a
million rounds of calculations!

Later in this chapter (section 3) you will find a real computer program
that lists these instructions (for three days instead of a million, though).
Study the program to see which instructions accomplish which steps. In A computer program

will carry out
the three steps

particular, see how it makes a loop. Then run the program to check that the
computer reproduces the values you already computed by hand. Once you
see how the program works, you can modify it to get further information—for
example, you can find out what happens to S, I, and R thirty days into the
future. You will even be able to plot the graphs of S, I, and R.

Rate equations have always been at the heart of calculus, and they have been analyzed using
mechanical and electronic computers for as long as those tools have been available. Now that
small powerful computers have begun to appear in the classroom, it is possible for beginning
calculus students to explore interesting and complex problems that are modelled by rate equations.
Computers are changing how mathematics is done and how it is learned.

Analysis without a computer. A computer is a powerful tool for exploring
the S-I-R model, but there are many things we can learn about the model
without using a computer. Here is an example.

According to the model, the rate at which the infected population grows
is given by the equation

I ′ = .00001 SI − I/14 persons/day.

In our example, I ′ = 803.4 at the outset. This is a positive number, so I
increases initially. In fact, I will continue to increase as long as I ′ is positive.
If I ′ ever becomes negative, then I decreases. So let’s ask the question: when
is I ′ positive, when is it negative, and when is it zero? By factoring out I in
the last equation we obtain

I ′ = I

(

.00001 S − 1

14

)

persons/day.
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Consequently I ′ = 0 if either

I = 0 or .00001 S − 1

14
= 0.

The first possibility I = 0 has a simple interpretation: there is no infection
within the population. The second possibility is more interesting; it says
that I ′ will be zero when

.00001 S − 1

14
= 0 or S =

100000

14
≈ 7142.9.

If S is greater than 100000/14 and I is positive, then you can check that
the formula

I ′ = I

(

.00001 S − 1

14

)

persons/day

tells us I ′ is positive—so I is increasing. If, on the other hand, S is less
than 100000/14, then I ′ is negative and I is decreasing. So S = 100000/14
represents a threshold. If S falls below the threshold, I decreases. If S
exceeds the threshold, I increases. Finally, I reaches its peak when S equals
the threshold.

The presence of a threshold value for S is purely a mathematical result.
However, it has an interesting interpretation for the epidemic. As long asThe threshold

determines whether
there will be an
epidemic

there are at least 7143 susceptibles, the infection will spread, in the sense
that there will be more people falling ill than recovering each day. As new
people fall ill, the number of susceptibles declines. Finally, when there are
fewer than 7143 susceptibles, the pattern reverses: each day more people will
recover than will fall ill.

If there were fewer than 7143 susceptibles in the population at the out-
set, then the number of infected would only decline with each passing day.
The infection would simply never catch hold. The clear implication is that
the noticeable surge in the number of cases that we associate with an “epi-
demic” disease is due to the presence of a large susceptible population. If
the susceptible population lies below a certain threshold value, a surge just
isn’t possible. This is a valuable insight—and we got it with little effort.
We didn’t need to make lengthy calculations or call on the resources of a
computer; a bit of algebra was enough.
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Exercises

Reading a Graph

The graphs on pages 3 and 4 have no scales marked along their axes, so they
provide mainly qualitative information. The graphs below do have scales, so
you can now answer quantitative questions about them. For example, on day
20 there are about 18,000 susceptible people. Read the graphs to answer the
following questions. (Note: S + I + R is not constant in this example, so
these graphs cannot be solutions to our model..)

time

S

10 20 30 40 50 days

20000

40000

people

-

6

time

I

10 20 30 40 50 days

5000

10000

15000

people

-

6

time

R

20 40 60 80 100 days

20000

40000

people

-

6

1. When does the infection hit its peak? How many people are infected at
that time?
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2. Initially, how many people are susceptible? How many days does it take
for the susceptible population to be cut in half?

3. How many days does it take for the recovered population to reach 25,000?
How many people eventually recover? Where did you look to get this infor-
mation?

4. On what day is the size of the infected population increasing most
rapidly? When is it decreasing most rapidly? How do you know?

5. How many people caught the illness at some time during the first 20
days? (Note that this is not the same as the number of people who are
infected on day 20.) Explain where you found this information.

6. Copy the graph of R as accurately as you can, and then superimpose a
sketch of S on it. Notice the time scales on the original graphs of S and R are
different. Describe what happened to the graph of S when you superimposed
it on the graph of R. Did it get compressed or stretched? Was this change
in the horizontal direction or the vertical?

A Simple Model

These questions concern the rate equation S ′ = −470 persons per day that
we used to model a susceptible population on pages 4–6.

7. Suppose the initial susceptible population was 20,000 on Wednesday. Use
the model to answer the following questions.

a) How many susceptibles will be left ten days later?

b) How many days will it take for the susceptible population to vanish en-
tirely?

c) How many susceptibles were there on the previous Sunday?

d) How many days before Wednesday were there 30,000 susceptibles?

Mark Twain’s Mississippi

The Lower Mississippi River meanders over its flat valley, forming broad
loops called ox-bows. In a flood, the river can jump its banks and cut off
one of these loops, getting shorter in the process. In his book Life on the
Mississippi (1884), Mark Twain suggests, with tongue in cheek, that some
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day the river might even vanish! Here is a passage that shows us some of the
pitfalls in using rates to predict the future and the past.

In the space of one hundred and seventy six years the Lower Missis-

sippi has shortened itself two hundred and forty-two miles. That is

an average of a trifle over a mile and a third per year. Therefore,

any calm person, who is not blind or idiotic, can see that in the Old

Oölitic Silurian Period, just a million years ago next November, the

Lower Mississippi was upwards of one million three hundred thousand

miles long, and stuck out over the Gulf of Mexico like a fishing-pole.

And by the same token any person can see that seven hundred and

forty-two years from now the Lower Mississippi will be only a mile

and three-quarters long, and Cairo [Illinois] and New Orleans will

have joined their streets together and be plodding comfortably along

under a single mayor and a mutual board of aldermen. There is some-

thing fascinating about science. One gets such wholesome returns of

conjecture out of such a trifling investment of fact.

Let L be the length of the Lower Mississippi River. Then L is a variable
quantity we shall analyze.

8. According to Twain’s data, what is the exact rate at which L is changing,
in miles per year? What approximation does he use for this rate? Is this
a reasonable approximation? Is this rate positive or negative? Explain. In
what follows, use Twain’s approximation.

9. Twain wrote his book in 1884. Suppose the Mississippi that Twain wrote
about had been 1100 miles long; how long would it have become in 1990?

10. Twain does not tell us how long the Lower Mississippi was in 1884 when
he wrote the book, but he does say that 742 years later it will be only 13

4

miles long. How long must the river have been when he wrote the book?

11. Suppose t is the number of years since 1884. Write a formula that
describes how much L has changed in t years. Your formula should complete
the equation

the change in L in t years = . . . .
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12. From your answer to question 10, you know how long the river was in
1884. From question 11, you know how much the length has changed t years
after 1884. Now write a formula that describes how long the river is t years
later.

13. Use your formula to find what L was a million years ago. Does your
answer confirm Twain’s assertion that the river was “upwards of 1,300,000
miles long” then?

14. Was the river ever 1,300,000 miles long; will it ever be 13
4

miles long?
(This is called a reality check.) What, if anything, is wrong with the “tri-
fling investment of fact” which led to such “wholesale returns of conjecture”
that Twain has given us?

The Measles Epidemic

We consider once again the specific rate equations

S ′ = −.00001 SI,

I ′ = .00001 SI − I/14,

R′ = I/14,

discussed in the text on pages 11–14. We saw that at time t = 1,

S = 44446.6, I = 2903.4, R = 2650.0.

15. Calculate the current rates of change S ′, I ′, and R′ when t = 1, and
then use these values to determine S, I, and R one day later.

16. In the previous question you found S, I, and R when t = 2. Using these
values, calculate the rates S ′, I ′, and R′ and then determine the new values
of S, I, and R when t = 3. See the table on page 13.

17. Double the time step. Go back to the starting time t = 0 and to the
initial values

S = 45400, I = 2100, R = 2500.

Recalculate the values of S, I, and R at time t = 2 by using a time step of
∆t = 2. You should perform only a single round of calculations, and use the
rates S ′, I ′, and R′ that are current at time t = 0.
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18. There and back again. In the text we went one day into the future
and then back again to the present. Here you’ll go forward two days from
t = 0 and then back again. There are two ways to do this: with a time step
of ∆t = ±2 (as in the previous question), and with a pair of time steps of
∆t = ±1 .

a) (∆t = ±2). Using the values of S, I, and R at time t = 2 that you just
got in the previous question, calculate the rates S ′, I ′, and R′. Then using
a time step of ∆t = −2, estimate new values of S, I, and R at time t = 0.
How much do these new values differ from the original values 45,400, 2100,
2500?

b) (∆t = ±1). Now make a new start, using the values

S = 43156.1, I = 3986.5, R = 2857.4,

S ′ = −1720.4, I ′ = 1435.7, R′ = 284.7.

that occur when t = 2 if we make estimates with a time step ∆t = 1. (These
values come from the table on page 13) Using two rounds of calculations with
a time step of ∆t = −1, estimate another set of new values for S, I, and R
at time t = 0. How much do these new values differ from the original values
45,400, 2100, 2500?

c) Which process leads to a smaller set of differences: a single round of
calculations with ∆t = ±2, or two rounds of calculations with ∆t = ±1?
Consequently, which process produces better estimates—in the sense in which
we used to measure estimates on page 14?

19. Quarantine. One of the ways to treat an epidemic is to keep the
infected away from the susceptible; this is called quarantine. The intention
is to reduce the chance that the illness will be transmitted to a susceptible
person. Thus, quarantine alters the transmission coefficient.

a) Suppose a quarantine is put into effect that cuts in half the chance that
a susceptible will fall ill. What is the new transmission coefficient?

b) On page 18 it was determined that whenever there were fewer than 7143
susceptibles, the number of infected would decline instead of grow. We called
7143 a threshold level for S. Changing the transmission coefficient, as in part
(a), changes the threshold level for S. What is the new threshold?

c) Suppose we start with S = 45,400. Does quarantine eliminate the epi-
demic, in the sense that the number of infected immediately goes down from
2100, without ever showing an increase in the number of cases?
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d) Since the new transmission coefficient is not small enough to guarantee
that I never goes up, can you find a smaller value that does guarantee I
never goes up? Continue to assume we start with S = 45400.

e) Suppose the initial susceptible population is 45,400. What is the largest
value that the transmission coefficient can have and still guarantee that I
never goes up? What level of quarantine does this represent? That is, do
you have to reduce the chance that a susceptible will fall ill to one-third of
what it was with no quarantine at all, to one-fourth, or what?

Other Diseases

20. Suppose the spread of an illness similar to measles is modelled by the
following rate equations:

S ′ = −.00002 SI,

I ′ = .00002 SI − .08 I,

R′ = .08 I.

Note: the initial values S = 45400, etc. that we used in the text do not apply
here.

a) Roughly how long does someone who catches this illness remain infected?
Explain your reasoning.

b) How large does the susceptible population have to be in order for the
illness to take hold—that is, for the number of cases to increase? Explain
your reasoning.

c) Suppose 100 people in the population are currently ill. According to the
model, how many (of the 100 infected) will recover during the next 24 hours?

d) Suppose 30 new cases appear during the same 24 hours. What does that
tell us about S ′?

e) Using the information in parts (c) and (d), can you determine how large
the current susceptible population is?

21. a) Construct the appropriate S-I-R model for a measles-like illness that
lasts for 4 days. It is also known that a typical susceptible person meets only
about 0.3% of infected population each day, and the infection is transmitted
in only one contact out of six.
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b) How small does the susceptible population have to be for this illness to
fade away without becoming an epidemic?

22. Consider the general S-I-R model for a measles-like illness:

S ′ = −aSI,

I ′ = aSI − bI,

R′ = bI.

a) The threshold level for S—below which the number of infected will only
decline—can be expressed in terms of the transmission coefficient a and the
recovery coefficient b. What is that expression?

b) Consider two illnesses with the same transmission coefficient a; assume
they differ only in the length of time someone stays ill. Which one has the
lower threshold level for S? Explain your reasoning.

What Goes Around Comes Around

Some relatively mild illnesses, like the common cold, return to infect you
again and again. For a while, right after you recover from a cold, you are
immune. But that doesn’t last; after some weeks or months, depending on
the illness, you become susceptible again. This means there is now a flow
from the recovered population to the susceptible. These exercises ask you
to modify the basic S-I-R model to describe an illness where immunity is
temporary.

23. Draw a compartment diagram for such an illness. Besides having all the
ingredients of the diagram on page 9, it should depict a flow from R to S.
Call this immunity loss, and use c to denote the coefficient of immunity
loss.

24. Suppose immunity is lost after about six weeks. Show that you can set
c = 1/42 per day, and explain your reasoning carefully. A suggestion: adapt
the discussion of recovery in the text.

25. Suppose this illness lasts 5 days and it has a transmission coefficient of
.00004 in the population we are considering. Suppose furthermore that the
total population is fixed in size (as was the case in the text). Write down
rate equations for S, I, and R.
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26. We saw in the text that the model for an illness that confers permanent
immunity has a threshold value for S in the sense that when S is above the
threshold, I increases, but when it is below, I decreases. Does this model
have the same feature? If so, what is the threshold value?

27. For a mild illness that confers permanent immunity, the size of the
recovered population can only grow. This question explores what happens
when immunity is only temporary.

a) Will R increase or decrease if

S = 45400, I = 2100, R = 2500?

b) Suppose we shift 20000 susceptibles to the recovered population (so that
S = 25400 and R = 22500), leaving I unchanged. Now, will R increase or
will it decrease?

c) Using a total population of 50,000, give two other sets of values for S, I,
and R that lead to a decreasing R.

d) In fact, the relative sizes of I and R determine whether R will increase
or decrease. Show that

if I > 5
42

R, then R will increase;

if I < 5
42

R, then R will decrease.

Explain your argument clearly. A suggestion: consider the rate equation
for R′.

28. The steady state. Any illness that confers only temporary immunity
can appear to linger in a population forever. You may not always have a
cold, but someone does, and eventually you catch another one. (“What goes
around comes around.”) Individuals gradually move from one compartment
to the next. When they return to where they started, they begin another
cycle.

Each compartment (in the diagram you drew in exercise 23) has an inflow
and an outflow. It is conceivable that the two exactly balance, so that the size
of the compartment doesn’t change (even though its individual occupants
do). When this happens for all three compartments simultaneously, the
illness is said to be in a steady state. In this question you explore the steady
state of the model we are considering. Recall that the total population is
50,000.
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a) What must be true if the inflow and outflow to the I compartment are
to balance?

b) What must be true if the inflow and outflow to the R compartment are
to balance?

c) If neither I nor R is changing, then the model must be at the steady
state. Why?

d) What is the value of S at the steady state?

e) What is the value of R at the steady state? A suggestion: you know
R + I = 50000 − (the steady state value of S). You also have a connection
between I and R at the steady state.

1.2 The Mathematical Ideas

A number of important mathematical ideas have already emerged in our
study of an epidemic. In this section we pause to consider them, because
they have a “universal” character. Our aim is to get a fuller understanding
of what we have done so we can use the ideas in other contexts.

We often draw out of a few particular experiences a lesson that can be put to good use in new
settings. This process is the essence of mathematics, and it has been given a name—abstraction—
which means literally “drawing from.” Of course abstraction is not unique to mathematics; it is
a basic part of the human psyche.

Functions

A function describes how one quantity depends on another. In our study of
a measles epidemic, the relation between the number of susceptibles S and Functions and

their notationthe time t is a function. We write S(t) to denote that S is a function of t.
We can also write I(t) and R(t) because I and R are functions of t, too. We
can even write S ′(t) to indicate that the rate S ′ at which S changes over time
is a function of t. In speaking, we express S(t) as “S of t” and S ′(t) as “S
prime of t.”

You can find functions everywhere. The amount of postage you pay for
a letter is a function of the weight of the letter. The time of sunrise is a
function of what day of the year it is. The crop yield from an acre of land is
a function of the amount of fertilizer used. The position of a car’s gasoline
gauge (measured in centimeters from the left edge of the gauge) is a function
of the amount of gasoline in the fuel tank. On a polygraph (“lie detector”)
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there is a pen that records breathing; its position is a function of the amount
of expansion of the lungs. The volume of a cubical box is a function of the
length of a side. The last is a rather special kind of function because it can
be described by an algebraic formula: if V is the volume of the box and s is
the length of a side, then V (s) = s3.

Most functions are not described by algebraic formulas, however. For
instance, the postage function is given by a set of verbal instructions and the
time of sunrise is given by a table in an almanac. The relation between a gas
gauge and the amount of fuel in the tank is determined simply by making
measurements. There is no algebraic formula that tells us how the number of
susceptibles, S, depends upon t, either. Instead, we find S(t) by carrying out
the steps in the flow chart on page 16 until we reach t days into the future.

In the function S(t) the variable t is called the input and the variableA function has input
and output S is called the output. In the sunrise function, the day of the year is the

input and the time of sunrise is the output. In the function S(t) we think
of S as depending on t, so t is also called the independent variable and S
the dependent variable. The set of values that the input takes is called the
domain of the function. The set of values that the output takes is called
the range.

The idea of a function is one of the central notions of mathematics. It is
worth highlighting:

A function is a rule that specifies how
the value of one variable, the input, determines

the value of a second variable, the output.

Notice that we say rule here, and not formula. This is deliberate. We want
the study of functions to be as broad as possible, to include all the ways one
quantity is likely to be related to another in a scientific question.

Some technical details. It is important not to confuse an expression like
S(t) with a product; S(t) does not mean S × t. On the contrary, the expres-
sion S(1.4), for example, stands for the output of the function S when 1.4
is the input. In the epidemic model we then interpret it as the number of
susceptibles that remain 1.4 days after today.

We have followed the standard practice in science by letting the single
letter S designate both the function—that is, the rule—and the output of
that function. Sometimes, though, we will want to make the distinction. In
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that case we will use two different symbols. For instance, we might write
S = f(t). Then we are still using S to denote the output, but the new
symbol f stands for the function rule.

The symbols we use to denote the input and the output of a function are
just names; if we change them, we don’t change the function. For example,
here are three ways to describe the same function g:

g : multiply the input by 5, then subtract 3

g(x) = 5x − 3

g(u) = 5u − 3 .

It is important to realize that the formulas we just wrote in the last two lines
are merely shorthand for the instructions stated in the first line. If you keep
this in mind, then absurd-looking combinations like g(g(2)) can be decoded
easily by remembering g of anything is just 5 times that thing, minus 3. We
could thus evaluate g(g(2)) from the inside out (which is usually easier) as

g(g(2)) = g(5 · 2 − 3) = g(7) = 5 · 7 − 3 = 32,

or we could evaluate it from the outside in as

g(g(2)) = 5g(2) − 3 = 5(5 · 2 − 3) − 3 = 5 · 7 − 3 = 32,

as before.
Suppose f is some other rule, say f(t) = t2 +4t− 1. Remember that this

is just shorthand for “Take the input (whatever it is), square it, add four
times the input, and subtract 1.” We could then evaluate

f(g(3)) = f(5 · 3 − 3) = f(12) = 122 + 4 · 12 − 1 = 144 + 48 − 1 = 191,

while
g(f(3)) = g(20) = 97.

This process of chaining functions together by using the output of one
function as the input for another turns out to be very important later in this Part of math is simply

learning the languagecourse, and will be taken up again in chapter 3. For now, though, you should
treat it simply as part of the formal language of mathematics, requiring a
knowledge of the rules but no cleverness. It is analogous to learning how to
conjugate verbs in French class—it’s not very exciting for its own sake, but
it allows us to read the interesting stuff later on!



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

30 CHAPTER 1. A CONTEXT FOR CALCULUS

A particularly important class of functions is composed of the constant
functions which give the same output for every input. If h is the constant
function that always gives back 17, then in formula form we would express
this as h(x) = 17. Constant functions are so simple you might feel you are
missing the point, but that’s all there is to it!

Graphs

A graph describes a function in a visual form. Sometimes—as with a seis-
mograph or a lie detector, for instance—this is the only description we haveA graph is a function

rule given visually of a particular function. The usual arrangement is to put the input variable
on the horizontal axis and the output on the vertical—but it is a good idea
when you are looking at a particular graph to take a moment to check; some-
times, the opposite convention is used! This is often the case in geology and
economics, for instance.

-
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Sketched above is the graph of a function S(t) that tells how many sus-
ceptibles there are after t days. Given any t0, we “read” the graph to find
S(t0), as follows: from the point t0 on the t-axis, go vertically until you reach
the graph; then go horizontally until you reach the S-axis. The value S0 at
that point is the output S(t0). Here t0 is about 13 and S0 is about 27,000;
thus, the graph says that S(13) ≈ 27000, or about 27,000 susceptibles are
left after 13 days.

Linear Functions

Changes in input and output. Suppose y is a function of x. Then thereIf y depends on x, then
∆y depends on ∆x is some rule that answers the question: What is the value of y for any given

x? Often, however, we start by knowing the value of y for a particular x,
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and the question we really want to ask is: How does y respond to changes
in x? We are still dealing with the same function—just looking at it from a
different point of view. This point of view is important; we use it to analyze
functions (like S(t), I(t), and R(t)) that are defined by rate equations.

The way ∆y depends on ∆x can be simple or it can be complex, depending
on the function involved. The simplest possibility is that ∆y and ∆x are
proportional:

∆y = m · ∆x, for some constant m.

Thus, if ∆x is doubled, so is ∆y; if ∆x is tripled, so is ∆y. A function whose

The defining property
of a linear function

input and output are related in this simple way is called a linear function,
because the graph is a straight line. Let’s take a moment to see why this is
so.

The graph of a linear function. The graph
consists of certain points (x, y) in the x, y-plane.
Our job is to see how those points are arranged.
Fix one of them, and call it (x0, y0). Let (x, y) be
any other point on the graph. Draw the line that
connects this point to (x0, y0), as we have done in
the figure at the right. Now set

∆x = x − x0, ∆y = y − y0.
-
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∆y = m · ∆x

By definition of a linear function, ∆y = m · ∆x, as the figure shows, so the
slope of this line is ∆y/∆x = m. Recall that m is a constant; thus, if we
pick a new point (x, y), the slope of the connecting line won’t change.

Since (x, y) is an arbitrary point on the graph, what we have shown is
that every point on the graph lies on a line of slope m through the
point (x0, y0). But there is only one such line—and all the points lie on it!
That line must be the graph of the linear function.

A linear function is one that satisfies ∆y = m · ∆x;
its graph is a straight line whose slope is m.

Rates, slopes, and multipliers. The interpretation of m as a slope is
just one possibility; there are two other interpretations that are equally im-
portant. To illustrate them we’ll use Mark Twain’s vivid description of the
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shortening of the Lower Mississippi River (see page 21). This will also give
us the chance to see how a linear function emerges in context.

Twain says “the Lower Mississippi has shortened itself . . . an average of
a trifle over a mile and a third per year.” Suppose we let L denote the length
of the river, in miles, and t the time, in years. Then L depends on t, and
Twain’s statement implies that L is a linear function of t—in the sense in
which we have just defined a linear function. Here is why. According to our
definition, there must be some number m which makes ∆L = m · ∆t. But
notice that Twain’s statement has exactly this form if we translate it into
mathematical language. Convince yourself that it says

Stop and do
the translation

∆L miles = −11
3

miles

year
× ∆t years.

Thus we should take m to be −11
3

miles per year.
The role of m here is to convert one quantity (∆t years) into another

(∆L miles) by multiplication. All linear functions work this way. In the
defining equation ∆y = m · ∆x, multiplication by m converts ∆x into ∆y.
Any change in x produces a change in y that is m times as large. For this
reason we give m its second interpretation as a multiplier.

It is easier to understand why the usual symbol for slope is m—instead of s—when you see that
a slope can be interpreted as a multiplier.

It is important to note that, in our example, m is not simply −11
3
; it

is −11
3

miles per year. In other words, m is the rate at which the river is
getting shorter. All linear functions work this way, too. We can rewrite the
equation ∆y = m · ∆x as a ratio

m =
∆y

∆x
= the rate of change of y with respect to x.

For these reasons we give m its third interpretation as a rate of change.

For a linear function satisfying ∆y = m · ∆x,
the coefficient m is

rate of change, slope, and multiplier.

We already use y′ to denote the rate of change of y, so we can now write
m = y′ when y is a linear function of x. In that case we can also write

∆y = y′ · ∆x.
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This expression should recall a pattern very familiar to you. (If not, change y
to S and x to t!) It is the fundamental formula we have been using to calculate
future values of S, I, and R. We can approach the relation between y and x
the same way. That is, if y0 is an “initial value” of y, when x = x0, then any
value of y can be calculated from

y = y0 + y′ · ∆x or y = y0 + m · ∆x.

Units. Suppose x and y are quantities that are measured in specific units. If x and y have units,
so does mIf y is a linear function of x, with ∆y = m ·∆x, then m must have units too.

Since m is the multiplier that “converts” x into y, the units for m must be
chosen so they will convert x’s units into y’s units. In other words,

units for y = units for m × units for x.

This implies

units for m =
units for y

units for x
.

For example, the multiplier in the Mississippi River problem converts
years to miles, so it must have units of miles per year. The rate equation
R′ = bI in the S-I-R model is a more subtle example. It says that R′ is
a linear function of I. Since R′ is measured in persons per day and I is
measured in persons, we must have

units for b =
units for R′

units for I
=

persons

days

persons

Formulas for linear functions. The expression ∆y = m ·∆x declares that
y is a linear function of x, but it doesn’t quite tell us what y itself looks like
directly in terms of x. In fact, there are several equivalent ways to write the
relation y = f(x) in a formula, depending on what information we are given
about the function.
• The initial-value form. Here is a very common
situation: we know the value of y at an “initial”
point—let’s say y0 = f(x0)—and we know the rate
of change—let’s say it is m. Then the graph is the
straight line of slope m that passes through the point
(x0, y0). The formula for f is
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y = y0 + ∆y = y0 + m · ∆x = y0 + m(x − x0) = f(x).

What you should note particularly about this formula is that it expresses
y in terms of the initial data x0, y0, and m—as well as x. Since that data
consists of a point (x0, y0) and a slope m, the initial-value formula is also
referred to as the point-slope form of the equation of a line. It may be
more familiar to you with that name.

-
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r

(x1, y1)

(x, y)
(x2, y2)

• The interpolation form. This time we are given
the value of y at two points—let’s say y1 = f(x1)
and y2 = f(x2). The graph is the line that passes
through (x1, y1) and (x2, y2), and its slope is there-
fore

m =
y2 − y1

x2 − x1
.

Now that we know the slope of the graph we can use the point-slope form
(taking (x1, y1) as the “point”, for example) to get the equation. We have

y = y1 + m(x − x1) = y1 +
y2 − y1

x2 − x1
(x − x1) = f(x).

Notice how, once again, y is expressed in terms of the initial data—which
consists of the two points (x1, y1) and (x2, y2).

The process of finding values of a quantity between two given values is
called interpolation. Since our new expression does precisely that, it is
called the interpolation formula. (Of course, it also finds values outside the
given interval.) Since the initial data is a pair of points, the interpolation
formula is also called the two-point formula for the equation of a line.
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• The slope-intercept form. This is a special
case of the initial-value form that occurs when the
initial x0 = 0. Then the point (x0, y0) lies on the
y-axis, and it is frequently written in the alternate
form (0, b). The number b is called the y-intercept.
The equation is

y = mx + b = f(x).

In the past you may have thought of this as the formula for a linear function,
but for us it is only one of several. You will find that we will use the other
forms more often.
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Functions of Several Variables

Language and notation. Many functions depend on more than one vari-
able. For example, sunrise depends on the day of the year but it also depends
on the latitude (position north or south of the equator) of the observer. Like- A function can have

several input variableswise, the crop yield from an acre of land depends on the amount of fertilizer
used, but it also depends on the amount of rainfall, on the composition of
the soil, on the amount of weeding done—to mention just a few of the other
variables that a farmer has to contend with.

The rate equations in the S-I-R model also provide examples of functions
with more than one input variable. The equation

I ′ = .00001 SI − I/14

says that we need to specify both S and I to find I ′. We can say that

F (S, I) = .00001 SI − I/14

is a function whose input is the ordered pair of variables (S, I). In this
case F is given by an algebraic formula. While many other functions of
several variables also have formulas—and they are extremely useful—not all
functions do. The sunrise function, for example, is given by a two-way table
(see page 167) that shows the time of sunrise for different days of the year
and different latitudes.

As a technical matter it is important to note that the input variables S
and I of the function F (S, I) above appear in a particular order, and that
order is part of the definition of the function. For example, F (1, 0) = 0, but
F (0, 1) = −1/14. (Do you see why? Work out the calculations yourself.)

Parameters. Suppose we rewrite the rate equation for I ′, replacing .00001
and 1/14 with the general values a and b:

I ′ = aSI − bI.

This makes it clear that I ′ depends on a and b, too. But note that a and b
are not variables in quite the same way that S and I are. For example, a and
b will vary if we switch from one disease to another or from one population to
another. However, they will stay fixed while we consider a particular disease
in a particular population. By contrast, S and I will always be treated as
variables. We call a quantity like a or b a parameter.
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To emphasize that I ′ depends on the parameters as well as S and I, we
can write I ′ as the output of a new function

I ′ = I ′(S, I, a, b) = aSI − bI

whose input is the set of four variables (S, I, a, b), in that order. The variablesSome functions
depend on parameters S, I, and R must also depend on the parameters, too, and not just on

t. Thus, we should write S(t, a, b), for example, instead of simply S(t).
We implicitly used the fact that S, I, and R depend on a and b when we
discovered there was a threshold for an epidemic (page 18). In exercise 22 of
section 1 (page 25), you made the relation explicit. In that problem you show
I will simply decrease over time (i.e., there will be no “burst” of infection) if

S <
b

a
.

There are even more parameters lurking in the S-I-R problem. To un-
cover them, recall that we needed two pieces of information to estimate S,
I, and R over time:

1) the rate equations;
2) the initial values S0, I0, and R0.

We used S0 = 45400, I0 = 2100, and R0 = 2500 in the text, but if we
had started with other values then S, I, and R would have ended up being
different functions of t. Thus, we should really write

S = S(t, a, b, S0, I0, R0)

to tell a more complete story about the inputs that determine the output
S. Most of the time, though, we do not want to draw attention to the
parameters; we usually write just S(t).

Further possibilities. Steps I, II, and III on page 16 are also functions,
because they have well-defined input and output. They are unlike the other
examples we have discussed up to this point because they have more than
one output variable. You should see, though, that there is nothing more
difficult going on here.

In our study of the S-I-R model it was natural not to separate functions
that have one input variable from those that have several. This is the pattern
we shall follow in the rest of the course. In particular, we will want to deal
with parameters, and we will want to understand how the quantities we are
studying depend on those parameters.
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The Beginnings of Calculus

While functions, graphs, and computers are part of the general fabric of
mathematics, we can also abstract from the S-I-R model some important
aspects of the calculus itself. The first of these is the idea of a rate of
change. In this chapter we just assumed the idea was intuitively clear.
However, there are some important questions not yet answered; for example,
how do you deal with a quantity whose rate of change is itself always chang-
ing? These questions, which lead to the fundamental idea of a derivative,
are taken up in chapter 3.

Rate equations—more commonly called differential equations—lie at
the very heart of calculus. We will have much more to say about them,
because many processes in the physical, biological, and social realms can be
modelled by rate equations. In our analysis of the S-I-R model, we used
rate equations to estimate future values by assuming that rates stay fixed
for a whole day at a time. The discussion called “there and back again” How the next three

chapters are connectedon page 14 points up the shortcomings of this assumption. In chapter 2 we
will develop a procedure, called Euler’s method, to address this problem. In
chapter 4 we will return to differential equations in a general way, equipped
with Euler’s method and the concept of the derivative.

Exercises

Functions and Graphs

1. Sketch the graph of each of the following functions. Label each axis, and
mark a scale of units on it. For each line that you draw, indicate

i) its slope;
ii) its y-intercept;
iii) its x-intercept (where it crosses the x-axis).

a) y = −1
2
x + 3 c) 5x + 3y = 12

b) y = (2x − 7)/3

2. Graph the following functions. Put labels and scales on the axes.

a) V = .3Z − 1; b) W = 600 − P 2.

3. Sketch the graph of each of the following functions. Put labels and scales
on the axes. For each graph that you draw, indicate
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i) its y-intercept;
ii) its x-intercept(s).

For part (d) you will need the quadratic formula

x =
−b ±

√
b2 − 4ac

2a

for the roots of the quadratic equation ax2 + bx + c = 0.

a) y = x2

b) y = x2 + 1
c) y = (x + 1)2

d) y = 3x2 + x − 1

The next four questions refer to these functions:

c(x, y) = 17 a constant function

j(z) = z the identity function

r(u) = 1/u the reciprocal function

D(p, q) = p − q the difference function

s(y) = y2 the squaring function

Q(v) =
2v + 1

3v − 6
a rational function

H(x) =







5 if x < 0

x2 + 2 if 0 ≤ x < 6

29 − x if 6 ≤ x

T (x, y) = r(x) + Q(y)

4. Determine the following values:

c(5,−3) j(17) c(a, b) j(u2 + 1)

j(c(3,−5)) s(1.1) r(1/17) Q(0)

Q(2) Q(3/7) D(5,−3) D(−3, 5)

H(1) H(7) H(4) H(H(H(−3)))

r(s(−4)) r(Q(3)) Q(r(3)) T (3, 7)

5. True or false. Give reasons for your answers: if you say true, explain
why; if you say false, give an example that shows why it is false.
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a) For every non-zero number x, r(r(x)) = j(x).

b) If a > 1, then s(a) > 1.

c) If a > b, then s(a) > s(b).

d) For all real numbers a and b, s(a + b) = s(a) + s(b).

e) For all real numbers a, b, and c, D(D(a, b), c)) = D(a, D(b, c)).

6. Find all numbers x for which Q(x) = r(Q(x)).

7. The natural domain of a function f is the largest possible set of real
numbers x for which f(x) is defined. For example, the natural domain of
r(x) = 1/x is the set of all non-zero real numbers.

a) Find the natural domains of Q and H .

b) Find the natural domains of P (z) = Q(r(z)); R(v) = r(Q(v)).

c) What is the natural domain of the function W (t) =

√

1 − t2

t2 − 4
?

Computer Graphing

The purpose of these exercises is to give you some experience using a “graph-
ing package” on a computer. This is a program that will draw the graph of a
function y = f(x) whose formula you know. You must type in the formula,
using the following symbols to represent the basic arithmetic operations:

to indicate type

addition +

subtraction -

multiplication *

division /

an exponent ^

The caret “ ^ ” appears above the “6” on a keyboard (Shift-6).
Here is an example:

to enter: type:

7x5 − 9x2

x3 + 1
(7*x^5 - 9*x^2)/(x^3 + 1)
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The parentheses you see here are important. If you do not include them, the
computer will interpret your entry as

7x5 − 9x2

x3
+ 1 = 7x5 − 9

x
+ 1 6= 7x5 − 9x2

x3 + 1
.

In some graphing packages, you do not need to use * to indicate a multiplica-
tion. If this is true for the package you use, then you can enter the fractional
expression above in the somewhat simpler form

(7x^5 - 9x^2)/(x^3 + 1).

To do the following exercises, follow the specific instructions for the graphing
package you are using.

8. Graph the function f(x) = .6x + 2 on the interval −4 ≤ x ≤ 4.

a) What is the y-intercept of this graph? What is the x-intercept?

b) Read from the graph the value of f(x) when x = −1 and when x = 2.
What is the difference between these y values? What is the difference between
the x values? According to these differences, what is the slope of the graph?
According to the formula, what is the slope?

9. Graph the function f(x) = 1 − 2x2 on the interval −1 ≤ x ≤ 1.

a) What is the y-intercept of this graph? The graph has two x-intercepts;
use algebra to find them.

You can also find an x-intercept using the computer. The idea is to
magnify the graph near the intercept until you can determine as many
decimal places in the x coordinate as you want. For a start, graph the
function on the interval 0 ≤ x ≤ 1. You should be able to see that the graph
on your computer monitor crosses the x-axis somewhere around .7. Regraph
f(x) on the interval .6 ≤ x ≤ .8. You should then be able to determine that
the x-intercept lies between .70 and .71. This means x = .7. . . ; that is, you
know the location of the x-intercept to one decimal place of accuracy.

b) Regraph f(x) on the interval .70 ≤ x ≤ .71 to get two decimal places of
accuracy in the location of the x-intercept. Continue this process until you
have at least 7 places of accuracy. What is the x-intercept?

The circular functions Graphing packages “know” the familiar functions
of trigonometry. Trigonometric functions are qualitatively different from the
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functions in the preceding problems. Those functions are defined by alge-
braic formulas, so they are called algebraic functions. The trigonometric
functions are defined by explicit “recipes,” but not by algebraic formulas;
they are called transcendental functions. For calculus, we usually use the
definition of the trigonometric functions as circular functions. This defini-
tion begins with a unit circle centered at the origin. Given the input number
t, locate a point P on the circle by tracing an arc of length t along the circle
from the point (1, 0). If t is positive, trace the arc counterclockwise; if t is
negative, trace it clockwise. Because the circle has radius 1, the arc of length
t subtends a central angle of radian measure t.

P

x

y
t

(cos t , sin t)

1
(1, 0)

The circular (or trigonometric) functions cos t and sin t are defined as the
coordinates of the point P ,

P = (cos t, sin t).

The other trigonometric functions are defined in terms of the sine and cosine:

tan t = sin t/ cos t, sec t = 1/ cos t,

cot t = cos t/ sin t, csc t = 1/ sin t.

t x

y

(cos t , sin t )

1

cos t

sin t

Notice that when t is a positive acute angle, the circle definition agrees
with the right triangle definitions of the sine and cosine:

sin t =
opposite

hypotenuse
and cos t =

adjacent

hypotenuse
.

However, the circle definitions of the sine and cosine have the important
advantage that they produce functions whose domains are the set of all real
numbers. (What are the domains of the tangent, secant, cotangent and
cosecant functions?)

In calculus, angles are also always measured in radians. To convert be-
tween radians and degrees, notice that the circumference of a unit circle is
2π, so the radian measure of a semi-circular arc is half of this, and thus we
have

π radians = 180 degrees.

As the course progresses, you will see why radians are used rather than Simplicity determines
the choice of radians
for measuring angles

degrees (or mils or any other unit for measuring angles)—it turns out that
the formulas important to calculus take their simplest form when angles are
expressed in radians.
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Graphing packages “know” the trigonometric functions in exactly this
form: circular functions with the input variable given in radians. You
might wonder, though, how a computer or calculator “knows” that sin(1) =
.017452406 . . .. It certainly isn’t drawing a very accurate circle somewhere
and measuring the y coordinate of some point. While the circular function
approach is a useful way to think about the trigonometric functions concep-How do we get

values for the
circular functions?

tually, it isn’t very helpful if we actually want values of the functions. One
of the achievements of calculus, as you will see later in this course, is that it
provides effective methods for computing values of functions like the circular
functions that aren’t given by algebraic formulas.

The following exercises let you review the trigonometric functions and
explore some of the possibilities using computer graphing.

10. Graph the function f(x) = sin(x) on the interval −2 ≤ x ≤ 10.

a) What are the x-intercepts of sin(x) on the interval −2 ≤ x ≤ 10? Deter-
mine them to two decimal places accuracy.

b) What is the largest value of f(x) on the interval −2 ≤ x ≤ 10? Which
value of x makes f(x) largest? Determine x to two decimal places accuracy.

c) Regraph f(x) on the very small interval −.001 ≤ x ≤ .001. Describe
what you see. Can you determine the slope of this graph?

11. Graph the function f(x) = cos(x) on the interval 0 ≤ x ≤ 14. On the
same screen graph the second function g(x) = cos(2x).

a) How far apart are the x-intercepts of f(x)? How far apart are the x-
intercepts of g(x)?

b) The graph of g(x) has a pattern that repeats. How wide is this pattern?
The graph of f(x) also has a repeating pattern; how wide is it?

c) Compare the graphs of f(x) and g(x) to one another. In particular, can
you say that one of them is a stretched or compressed version of the other?
Is the compression (or stretching) in the vertical or the horizontal direction?

d) Construct a new function f(x) whose graph is the same shape as the
graph of g(x) = cos(2x), but make the graph of f(x) twice as tall as the
graph of g(x). [A suggestion: either deduce what f(x) should be, or make a
guess. Then test your choice on the computer. If your choice doesn’t work,
think how you might modify it, and then test your modifications the same
way.]
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12. The aim here is to find a solution to the equation sinx = cos(3x). There
is no purely algebraic procedure to solve this equation. Because the sine and
cosine are not defined by algebraic formulas, this should not be particularly
surprising. (Even for algebraic equations, there are only a few very special
cases for which there are formulas like the quadratic formula. In chapter 5
we will look at a method for solving equations when formulas can’t help us.)

a) Graph the two functions f(x) = sin(x) and g(x) = cos(3x) on the interval
0 ≤ x ≤ 1.

b) Find a solution of the equation sin(x) = cos(3x) that is accurate to six
decimal places.

c) Find another solution of the equation sin(x) = cos(3x), accurate to four
decimal places. Explain how you found it.

13. Use a graphing program to make a sketch of the graph of each of the
following functions. In each case, make clear the domain and the range of
the function, where the graph crosses the axes, and where the function has
a maximum or a minimum.

a) F (w) = (w − 1)(w − 2)(w − 3) b) Q(a) =
1

a2 + 5

c) E(x) = x +
1

x
d) e(x) = x − 1

x

e) g(u) =

√

u − 1

u + 1
f) M(u) =

u2 − 2

u2 + 2

14. Graph on the same screen the following three functions:

f(x) = 2x, g(x) = 3x, h(x) = 10x.

Use the interval −2 ≤ x ≤ 1.2.

a) Which function has the largest value when x = −2?

b) Which is climbing most rapidly when x = 0?

c) Magnify the picture at x = 0 by resetting the size of the interval to
−.0001 ≤ x ≤ .0001. Describe what you see. Estimate the slopes of the
three graphs.
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Proportions, Linear Functions, and Models

15. Go back to the three functions given in problem 1. For each function,
choose an initial value x0 for x, find the corresponding value y0 for y, and
express the function in the form y − y0 = m · (x − x0).

16. You should be able to answer all parts of this problem without ever
finding the equations of the functions involved.

a) Suppose y = f(x) is a linear function with multiplier m = 3. If f(2) =
−5, what is f(2.1)? f(2.0013)? f(1.87)? f(922)?

b) Suppose y = G(x) is a linear function with multiplier m = −2. If
G(−1) = 6, for what value of x is G(x) = 8? G(x) = 0? G(x) = 5?
G(x) = 491?

c) Suppose y = h(x) is a linear function with h(2) = 7 and h(6) = 9. What
is h(2.046)? h(2 + a)?

17. In Massachusetts there is a sales tax of 5%. The tax T , in dollars, is
proportional to the price P of an object, also in dollars. The constant of
proportionality is k = 5% = .05. Write a formula that expresses the sales
tax as a linear function of the price, and use your formula to compute the
tax on a television set that costs $289.00 and a toaster that costs $37.50.

18. Suppose W = 213− 17 Z. How does W change when Z changes from 3
to 7; from 3 to 3.4; from 3 to 3.02? Let ∆Z denote a change in Z and ∆W
the change thereby produced in W . Is ∆W = m ∆Z for some constant m?
If so, what is m?

19. a) In the following table, q is a linear function of p. Fill in the blanks
in the table.

p –3 0 7 13 π

q 7 4 1 0

b) Find a formula to express ∆q as a function of ∆p, and another to express
q as a function of p.

20. Thermometers. There are two scales in common use to measure the
temperature, called Fahrenheit degrees and the Celsius degrees. Let
F and C, respectively, be the temperature on each of these scales. Each of
these quantities is a linear function of the other; the relation between them
in determined by the following table:
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physical measurement C F

freezing point of water 0 32
boiling point of water 100 212

a) Which represents a larger change in temperature, a Celsius degree or a
Fahrenheit degree?

b) How many Fahrenheit degrees does it take to make the temperature go
up one Celsius degree? How many Celsius degrees does it take to make it go
up one Fahrenheit degree?

c) What is the multiplier m in the equation ∆F = m · ∆C? What is the
multiplier µ in the equation ∆C = µ ·∆F ? (The symbol µ is the Greek letter
mu.) What is the relation between µ and m?

d) Express F as a linear function of C. Graph this function. Put scales and
labels on the axes. Indicate clearly the slope of the graph and its vertical
intercept.

e) Express C as a linear function of F and graph this function. How are the
graphs in parts (d) and (e) related? Give a clear and detailed explanation.

f) Is there any temperature that has the same reading on the two temper-
ature scales? What is it? Does the temperature of the air ever reach this
value? Where?

21. The Greenhouse Effect. The concentration of carbon dioxide (CO2)
in the atmosphere is increasing. The concentration is measured in parts per
million (PPM). Records kept at the South Pole show an increase of .8 PPM
per year during the 1960s.

a) At that rate, how many years does it take for the concentration to increase
by 5 PPM; by 15 PPM?

b) At the beginning of 1960 the concentration was about 316 PPM. What
would it be at the beginning of 1970; at the beginning of 1980?

c) Draw a graph that shows CO2 concentration as a function of the time
since 1960. Put scales on the axes and label everything clearly.

d) The actual CO2 concentration at the South Pole was 324 PPM at the
beginning of 1970 and 338 PPM at the beginning of 1980. Plot these values
on your graph, and compare them to your calculated values.

e) Using the actual concentrations in 1970 and 1980, calculate a new rate of
increase in concentration. Using that rate, estimate what the increase in CO2
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concentration was between 1970 and 1990. Estimate the CO2 concentration
at the beginning of 1990.

f) Using the rate of .8 PPM per year that held during the 1960s, determine
how many years before 1960 there would have been no carbon dioxide at all
in the atmosphere.

22. Thermal Expansion. Measurements show that the length of a metal
bar increases in proportion to the increase in temperature. An aluminum
bar that is exactly 100 inches long when the temperature is 40◦F becomes
100.0052 inches long when the temperature increases to 80◦F.

a) How long is the bar when the temperature is 60◦F? 100◦F?

b) What is the multiplier that connects an increase in length ∆L to an
increase in temperature ∆T ?

c) Express ∆L as a linear function of ∆T .

d) How long will the bar be when T = 0◦F?

e) Express L as a linear function of T .

f) What temperature change would make L = 100.01 inches?

g) For a steel bar that is also 100 inches long when the temperature is 40◦

F, the relation between ∆L and ∆T is ∆L = .00067 ∆T . Which expands
more when the temperature is increased; aluminum or steel?

h) How long will this steel bar be when T = 80◦F?

23. Falling Bodies. In the simplest model of the motion of a falling body,
the velocity increases in proportion to the increase in the time that the body
has been falling. If the velocity is given in feet per second, measurements
show the constant of proportionality is approximately 32.

a) A ball is falling at a velocity of 40 feet/sec after 1 second. How fast is it
falling after 3 seconds?

b) Express the change in the ball’s velocity ∆v as a linear function of the
change in time ∆t.

c) Express v as a linear function of t.

The model can be expanded to keep track of the distance that the body has
fallen. If the distance d is measured in feet, the units of d′ are feet per second;
in fact, d′ = v. So the model describing the motion of the body is given by
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the rate equations

d′ = v feet per second;

v′ = 32 feet per second per second.

d) At what rate is the distance increasing after 1 second? After 2 seconds?
After 3 seconds?

e) Is d a linear function of t? Explain your answer.

In many cases, the rate of change of a variable quantity is proportional to
the quantity itself. Consider a human population as an example. If a city of
100,000 is increasing at the rate of 1500 persons per year, we would expect a
similar city of 200,000 to be increasing at the rate of 3000 persons per year.
That is, if P is the population at time t, then the net growth rate P ′ is
proportional to P :

P ′ = k P.

In the case of the two cities, we have

P ′ = 1500 = k P = k × 100000 so k =
1500

100000
= .015.

24. In the equation P ′ = k P , above, explain why the units for k are

persons per year

person
.

The number k is called the per capita growth rate. (“Per capita” means
“per person”—“per head”, literally.)

25. Poland and Afghanistan. In 1985 the per capita growth rate in
Poland was 9 persons per year per thousand persons. (That is, k = 9/1000 =
.009.) In Afghanistan it was 21.6 persons per year per thousand.

a) Let P denote the population of Poland and A the population of Afghanistan.
Write the equations that govern the growth rates of these populations.

b) In 1985 the population of Poland was estimated to be 37.5 million persons,
that of Afghanistan 15 million. What are the net growth rates P ′ and A′

(as distinct from the per capita growth rates)? Comment on the following
assertion: When comparing two countries, the one with the larger per capita
growth rate will have the larger net growth rate.
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c) On the average, how long did it take the population to increase by one
person in Poland in 1985? What was the corresponding time interval in
Afghanistan?

26. a) Bacterial Growth. A colony of bacteria on a culture medium
grows at a rate proportional to the present size of the colony. When the
colony weighed 32 grams it was growing at the rate of 0.79 grams per hour.
Write an equation that links the growth rate to the size of the population.

b) What is ∆P if ∆t = 1 minute? Estimate how long it would take to make
∆P = .5 grams.

27. Radioactivity. In radioactive decay, radium slowly changes into lead.
If one sample of radium is twice the size of a second lump, then the larger
sample will produce twice as much lead as the second in any given time.
In other words, the rate of decay is proportional to the amount of radium
present. Measurements show that 1 gram of radium decays into lead at the
rate of 1/2337 grams per year. Write an equation that links the decay rate
to the size of the radium sample. How does your equation indicate that the
process involves decay rather than growth?

28. Cooling. Suppose a cup of hot coffee is brought into a room at 70◦F.
It will cool off, and it will cool off faster when the temperature difference
between the coffee and the room is greater. The simplest assumption we can
make is that the rate of cooling is proportional to this temperature difference
(this is called Newton’s law of cooling). Let C denote the temperature of the
coffee, in ◦F, and C ′ the rate at which it is cooling, in ◦F per minute. The
new element here is that C ′ is proportional, not to C, but to the difference
between C and the room temperature of 70◦F.

a) Write an equation that relates C ′ and C. It will contain a proportionality
constant k. How did you indicate that the coffee is cooling and not heating
up?

b) When the coffee is at 180◦F it is cooling at the rate of 9◦F per minute.
What is k?

c) At what rate is the coffee cooling when its temperature is 120◦F?

d) Estimate how long it takes the temperature to fall from 180◦F to 120◦F.
Then make a better estimate, and explain why it is better.
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1.3 Using a Program

Computers

A computer changes the way we can use calculus as a tool, and it vastly
enlarges the range of questions that we can tackle. No longer need we back
away from a problem that involves a lot of computations. There are two
aspects to the power of a computer. First, it is fast. It can do a million
additions in the time it takes us to do one. Second, it can be programmed.
By arranging computations into a loop—as we did on page 15—we can con-
struct a program with only a few instructions that will carry out millions of
repetitive calculations.

The purpose of this section is to give you practice using a computer
program that estimates values of S, I, and R in the epidemic model. As you
will see, it carries out the three rounds of calculations you have already done
by hand. It also contains a loop that will allow you to do a hundred, or a
million, rounds of calculations with no extra effort.

The Program SIR

The program on the following page calculates values of S, I, and R. It is a set
of instructions—sometimes called code—that is designed to be read by you
and by a computer. These instructions mirror the operations we performed
by hand to generate the table on page 13. The code here is similar to what Read a program line by

line from the topit would be in most programming languages. The line numbers, however,
are not part of the program; they are there to help us refer to the lines. A
computer reads the code one line at a time, starting at the top. Each line
is a complete instruction which causes the computer to do something. The
purpose of nearly every instruction in this program is to assign a numerical
value to a symbol. Watch for this as we go down the lines of code.

The first line, t = 0, is the instruction “Give t the value 0.” The next Lines 1–5

four lines are similar. Notice, in the fifth line, how ∆t is typed out as deltat.
It is a common practice for the name of a variable to be several letters long.
A few lines later S ′ is typed out as Sprime, for instance. The instruction on
the sixth line is the first that does not assign a value to a symbol. Instead, it Line 6

causes the computer to print the following on the computer monitor screen:

0 45400 2100 2500
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Program: SIR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

t = 0

S = 45400

I = 2100

R = 2500

deltat = 1

PRINT t, S, I, R

FOR k = 1 TO 3

Sprime = -.00001 * S * I

Iprime = .00001 * S * I - I / 14

Rprime = I / 14

deltaS = Sprime * deltat

deltaI = Iprime * deltat

deltaR = Rprime * deltat

t = t + deltat

S = S + deltaS

I = I + deltaI

R = R + deltaR

PRINT t, S, I, R

NEXT k

}

Step I

Skip over the line that says FOR k = 1 TO 3. It will be easier to under-Line 7

stand after we’ve read the rest of the program.
Look at the first three indented lines. You should recognize them as codedLines 8–10

versions of the rate equations

S ′ = −.00001 SI,

I ′ = .00001 SI − I/14,

R′ = I/14,

for the measles epidemic. (The program uses * to denote multiplication.)
They are instructions to assign numerical values to the symbols S ′, I ′, and
R′. For instance, Sprime = -.00001 * S * I (line 8) says

Give S ′ the value −.00001 SI;
use the current values of S and I to get −.00001 SI.

Now the computer knows that the current values of S and I are 45400
and 2100, respectively. (Can you see why?) So it calculates the product
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−.00001×45400×2100 = −953.4 and then gives S ′ the value −953.4. There
is an extra step to calculate the product.

Notice that the first three indented lines are bracketed together and la-
belled “Step I,” because they carry out Step I in the flow chart. The next Lines 11–13

three indented lines carry out Step II in the flow chart. They assign values
to three more symbols—namely ∆S, ∆I, and ∆R—using the current values
of S ′, I ′, R′ and ∆t.

The next four indented lines present a puzzle. They don’t make sense if Lines 14–17

we read them as ordinary mathematics. For example, in an expression like
t = t + deltat, we would cancel the t’s and conclude deltat = 0. The
lines do make sense when we read them as computer instructions, however.
As a computer instruction, t = t + deltat says

Make the new value of t equal to the current value of t + ∆t.

(To make this clear, some computer languages express this instruction in the
form let t = t + deltat.) Once again we have an instruction that assigns
a numerical value to a symbol, but this time the symbol (t, in this case)
already has a value before the instruction is carried out. The instruction
gives it a new value. (Here the value of t is changed from 0 to 1.) Likewise,
the instruction S = S + deltaS gives S a new value. What was the old
value, and what is the new?

Compare the three lines of code that produce new values of S, I, and R How a program
computes new valueswith the original equations that we used to define Step III back on page 16:

S = S + deltaS new S = current S + ∆S,

I = I + deltaI new I = current I + ∆I,

R = R + deltaR new R = current R + ∆R.

The words “new” and “current” aren’t needed in the computer code because
they are automatically understood to be there. Why? First of all, a symbol
(like S) always has a current value, but an instruction can give it a new value.
Second, a computer instruction of the form A = B is always understood to
mean “new A = current B.”

Notice that the instructions A = B and B = A mean different things. The second says “new B

= current A.” Thus, in A = B, A is altered to equal B, while in B = A, B is altered to equal A. To
emphasize that the symbol on the left is always the one affected, some programming languages
use a modified equal sign, as in A := B. We sometimes read this as “A gets B”.
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The next line is another PRINT statement, exactly like the one on line 6.Line 18

It causes the current values of t, S, I, and R to be printed on the computer
monitor screen. But this time what appears is

1 44446.6 2903.4 2650

The values were changed by the previous four instructions. It is important
to remember that the computer carries out instructions in the order they are
written. Had the second PRINT statement appeared right after line 13, say,
the old values of t, S, I, and R would have appeared on the monitor screen
a second time.

We will take the last line and line 7 together. They are the instructions forLines 7 and 19:
the loop the loop. Consider the situation when we reach the last line. The variables

t, S, I, and R now have their “day 1” values. To continue, we need an
instruction that will get us back to line 8, because the instructions on lines
8–17 will convert the current (day 1) values of t, S, I, and R into their “day
2” values. That’s what lines 7 and 19 do.

Here is the meaning of the instruction FOR k = 1 TO 3 on line 7:

Give k the value 1, and be prepared later toFOR k = 1 TO 3

give it the value 2 and then the value 3.

The variable k plays the role of a counter, telling us how many times we have
gone around the loop. Notice that k did not appear in our hand calculations.
However, when we said we had done three rounds of calculations, for example,
we were really saying k = 3.

After the computer reads and executes line 7, it carries out all the in-
structions from lines 8 to 18, arriving finally at the last line. The computer
then interprets the instruction NEXT k on the last line as follows:

Give k the next value that the FOR command allows, andNEXT k

move back to the line immediately after the FOR command.

After the computer carries out this instruction, k has the value 2 and the
computer is set to carry out the instruction on line 8. It then executes that
instruction, and continues down the program, line by line, until it reaches
line 19 once again. This sets the value of k to 3 and moves the computer
back to line 8. Once again it continues down the program to line 19. ThisHow the program stops

time there is no allowable value that k can be given, so the program stops.
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The NEXT k command is different from all the others in the program.
It is the only one that directs the computer to go to a different line. That
action causes the program to loop. Because the loop involves all the indented
instructions between the FOR statement and the NEXT statement, it is called
a FOR–NEXT loop. This is just one kind of loop. Computer programs
can contain other sorts that carry out different tasks. In the next chapter we
will see how a DO–WHILE loop is used.

Exercises

The program SIR

The object of these exercises is to verify that the program SIR works the way
the text says it does. Follow the instructions for running a program on the
computer you are using.

1. Run the program to confirm that it reproduces what you have already
calculated by hand (table, page 13).

2. On a copy of the program, mark the instructions that carry out the
following tasks:

a) give the input values of S, I, and R;

b) say that the calculations take us 1 day into the future;

c) carry out step II (see page 16);

d) carry out step III;

e) give us the output values of S, I, and R;

f) take us once around the whole loop;

g) say how many times we go around the loop.

3. Delete all the lines of the program from line 7 onward (or else type in
the first 6 lines). Will this program run? What will it do? Run it and report
what you see. Is this what you expected?

4. Starting with the original SIR program on page 50, delete lines 7 and
19. These are the ones that declare the FOR–NEXT loop. Will this program
run? What will it do? Run it and report what you see. Is this what you
expected?
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5. Using the 17-line program you constructed in the previous question, re-
move the PRINT statement from the last line and insert it between what
appear as lines 13 and 14 on page 50. Will this program run? What will it
do? Run it and report what you see. Is this what you expected?

6. Starting with the original SIR program on page 50, change line 7 so it
reads FOR k = 26 TO 28. Thus, the counter k takes the values 26, 27, and
28. Will this program run? What will it do? Run it and report what you
see. Is this what you expected?

Programs to practice on

In this section there are a number of short programs for you to analyze and
run.

Program 1

A = 2

B = 3

A = B

PRINT A, B

Program 2

A = 2

B = 3

B = A

PRINT A, B

Program 3

A = 2

B = 3

A = A + B

B = A + B

PRINT A, B

7. When Program 1 runs it will print the values of A and B that are current
when the program stops. What values will it print? Type in this program
and run it to verify your answers.

8. What will Program 2 do when it runs? Type in this program and run it
to verify your answers.

9. After each line in Program 3 write the values that A and B have after
that line has been carried out. What values of A and B will it print? Type
in this program and run it to verify your answers.

The next three programs have an element not found in the program SIR.
In each of them, there is a FOR–NEXT loop, and the counter k actually
appears in the statements within the loop.
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Program 4

FOR k = 1 TO 5

A = k ^ 3

PRINT A

NEXT k

Program 5

FOR k = 1 TO 5

A = k ^ 3

NEXT k

PRINT A

Program 6

x = 0

FOR k = 1 TO 5

x = x + k

PRINT k, x

NEXT k

10. What output does Program 4 produce? Type in the code and run the
program to confirm your answer.

11. What is the difference between the code in Program 5 and the code in
Program 4? What is the output of Program 5? Does it differ from the output
of Program 4? If so, why?

12. What output does Program 6 produce? Type in the code and run the
program to confirm your answer.

Program 7

A = 0

B = 0

FOR k = 1 TO 5

A = A + 1

B = A + B

PRINT A, B

NEXT k

Program 8

A = 0

B = 1

FOR k = 1 TO 5

A = A + B

B = A + B

PRINT A, B

NEXT k

Program 9

A = 0

B = 1

FOR k = 1 TO 5

A = A + B

B = A + B

NEXT k

PRINT A, B

13. Program 7 prints five lines of output. What are they? Type in the
program and run it to confirm your answers.

14. What is the output of Program 8? Type in the program and run it to
confirm your answers.

15. Describe exactly how the codes for Programs 8 and 9 differ. How do
the outputs differ?
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Analyzing the measles epidemic

16. Alter the program SIR to have it calculate estimates for S, I, and R
over the first six days. Construct a table that shows those values.

17. Alter the program to have it estimate the values of S, I, and R for the
first thirty days.

a) What are the values of S, I, and R when t = 30?

b) According to these figures, on what day does the infection peak? What
values do you get for S, I, and R?

c) How can you reconcile the value you just got for S with the value we
obtained algebraically on page 18?

18. By adding an appropriate PRINT statement after line 10 you can also
get the program to print values for S ′, I ′, and R′. Do this, and check that
you get the values shown in the table on page 13.

19. According to these estimates, on what day do the largest number new
infections occur? How many are there? Explain where you got your infor-
mation.

20. On what day do you estimate that the largest number of recoveries
occurs? Do you see a connection between this question and 17 (b)?

21. On what day do you estimate the infected population grows most rapidly?
Declines most rapidly? What value does I ′ have on those days?

22. a) Alter the original SIR program so that it will go backward in time,
with time steps of 1 day. Specify the changes you made in the program.
Use this altered program to obtain estimates for the values of S, I, and R
yesterday. Compare your estimates with those in the text (page 13).

b) Estimate the values of S, I, and R three days before today.

23. According to the S-I-R model, when did the infection begin? That is,
how many days before today was the estimated value of I approximately 1?

24. There and back again. Use the SIR program, modified as necessary,
to carry out the calculations described in exercise 18 on page 23. Do your
computer results agree with those you obtained earlier?
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25. In exercises 22–26 at the end of section 2 (pages 46–48) you set up
rate equations to model some other systems. Choose a couple of these and
think of some interesting questions that could be answered using a suitably
modified SIR program. Make the modifications and report your results.

1.4 Chapter Summary

The Main Ideas

• Natural processes like the spread of disease can often be described by
mathematical models. Initially, this involves identifying numerical
quantities and relations between them.

• A relation between quantities often takes the form of a function. A
function can be described in many different ways; graphs, tables, and
formulas are among the most common.

• Linear functions make up a special but important class. If y is a
linear function of x, then ∆y = m · ∆x, for some constant m. The
constant m is a multiplier, slope, and rate of change.

• If y = f(x), then we can consider the rate of change y′ of y with
respect to x. A mathematical model whose variables are connected by
rate equations can be analyzed to predict how those variables will
change.

• Predicted changes are estimates of the form ∆y = y′ · ∆x.

• The computations that produce estimates from rate equations can be
put into a loop, and they are readily carried out on a computer.

• A computer increases the scope and complexity of the problems we
can consider.

Expectations

• You should be able to work with functions given in various forms, to
find the output for any given input.
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• You should be able to read a graph. You should also be able to con-
struct the graph of a linear function directly, and the graph of a more
complicated function using a computer graphing package.

• You should be able to determine the natural domain of a function given
by a formula.

• You should be able to express proportional quantities by a linear func-
tion, and interpret the constant of proportionality as a multiplier.

• Given any two of these quantities for a linear function—multiplier,
change in input, change in output—you should be able to determine
the third.

• You should be able to model a situation in which one variable is pro-
portional to its rate of change.

• Given the value of a quantity that depends on time and given its rate of
change, you should be able to estimate values of the quantity at other
times.

• For a set of quantities determined by rate equations and initial condi-
tions, you should be able to estimate how the quantities change.

• Given a set of rate equations, you should be able to determine what
happens when one of the quantities reaches a maximum or minimum,
or remains unchanged over time.

• You should be able to understand how a computer program with a
FOR–NEXT loop works.

Chapter Exercises

A Model of an Orchard

If an apple orchard occupies one acre of land, how many trees should it
contain so as to produce the largest apple crop? This is an example of
an optimization problem. The word optimum means “best possible”—
especially, the best under a given set of conditions. These exercises seek an
optimum by analyzing a simple mathematical model of the orchard. The
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model is the function that describes how the total yield depends on the
number of trees.

An immediate impulse is just to plant a lot of trees, on the principle:
more trees, more apples. But there is a catch: if there are too many trees
in a single acre, they crowd together. Each tree then gets less sunlight and
nutrients, so it produces fewer apples. For example, the relation between the
yield per tree, Y , and the number of trees, N , may be like that shown in the
graph drawn on the left, below.
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When there are only a few trees, they don’t get in each other’s way,
and they produce at the maximum level—say, 750 pounds per tree. Hence
the graph starts off level. At some point, the trees become too crowded to
produce anything ! In between, the yield per tree drops off as shown by the
curved middle part of the graph.

We want to choose N so that the total yield, T , will be as large as possible.
We have T (N) = Y (N)·N , but since we don’t know Y (N) very precisely, it is
difficult to analyze T (N). To help, let’s replace Y (N) by the approximation
shown in the graph on the right. Now carry out an analysis using this graph
to represent Y (N).

1. Find a formula for the straight segment of the new graph of Y (N) on the
interval 40 ≤ N ≤ 180. What is the formula for T (N) on the same interval?

2. What are the formulas for T (N) when 0 ≤ N ≤ 40 and when 180 ≤ N?
Graph T as a function of N . Describe the graph in words.

3. What is the maximum possible total yield T ? For which N is this max-
imum attained?

4. Suppose the endpoints of the sloping segment were P and Q, instead of
40 and 180, respectively. Now what is the formula for T (N)? (Note that P
and Q are parameters here. Different values of P and Q will give different
models for the behavior of the total output.) How many trees would then
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produce the maximum total output? Expect the maximum to depend on the
parameters P and Q.

Rate Equations

Do the following exercises by hand. You may wish to check your answers by
using suitable modifications of the program SIR.

5. Radioactivity. From exercise 25 of section 2 we know a sample of R
grams of radium decays into lead at the rate

R′ =
−1

2337
R grams per year.

Using a step size of 10 years, estimate how much radium remains in a 0.072
gram sample after 40 years.

6. Poland and Afghanistan. If P and A denote the populations of Poland
and Afghanistan, respectively, then their net per capita growth rates imply
the following equations:

P ′ = .009 P persons per year;

A′ = .0216 A persons per year.

(See exercise 23 of section 2.) In 1985, P = 37.5 million, A = 15 million.
Using a step size of 1 year, estimate P and A in 1990.

7. Falling bodies. If d and v denote the distance fallen (in feet) and
the velocity (in feet per second) of a falling body, then the motion can be
described by the following equations:

d′ = v feet per second;

v′ = 32 feet per second per second.

(See exercise 21 of section 2.) Assume that when t = 0, d = 0 feet and v = 10
feet/sec. Using a step size of 1 second, estimate d and v after 3 seconds have
passed.
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Successive Approximations

In this chapter we continue exploring the mathematical implications of the
S-I-R model. In the last chapter we calculated future values of S, I, and R
by assuming that the rates S ′, I ′, and R′ stayed fixed for a whole day. Since
the rates are not fixed—they change with S, I, and R—the values of S, I,
and R we obtained have to be considered as estimates only. In this chapter
we will see how to build a succession of better and better estimates that get
us as close as we wish to the true values implied by the model.

This method of successive approximation is a basic tool of calculus. It
is the one fundamentally new process you will encounter, the ingredient that
sets calculus apart from the mathematics you have already studied. With it
you will be able to solve a vast array of problems that other methods can’t
handle.

2.1 Making Approximations

In chapter 1 we looked at the specific S-I-R model:

S ′ = −.00001 SI,

I ′ = .00001 SI − I/14,

R′ = I/14,

with initial values at time t = 0:

S = 45400, I = 2100, R = 2500.

61
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We originally developed this model as a description of the relations among
the different components of an epidemic. Almost immediately, though, we
began using the rate equations in the model as a recipe for predicting what
happens over the course of the epidemic: If we know at some time t the values
of S(t), I(t), and R(t)), then the equations tell us how to estimate values ofRate equations tell us

where to go next the functions at other times. We used this approach in the last chapter to
move backwards and forwards in time, calculating the values of S, I, and R
as we went.

While we got numbers, there were some questions about how accurate
these numbers were—that is, how exactly they represented the values implied
by the model. In the process we called “there and back again” we used current
values of S, I, and R to find the rates, used these rates to go forward one
day, recalculate the rates, and come back to the present—and we got different
values from the ones we started with! Resolving this discrepancy will be an
important feature of the technique developed in this section.

The Longest March Begins with a Single Step

So far, in generating numbers from the S-I-R rate equations, we have as-
sumed that the rates remained constant over an entire day, or longer. Since
the rates aren’t constant—they depend on the values of S, I, and R, which
are always changing—the values we calculated for the variables at times other
than the given initial time are, at best, estimates. These estimates, while
incorrect, are not useless. Let’s see how they behave in the “there and back
again” process of chapter 1 as we recalculate the rates more and more fre-
quently, producing a sequence of approximations to the values we are looking
for.

There and Back Again Again

On page 14 in chapter 1 we used the rate equations to go forward a day and
come back again. We started with the initial values

S(0) = 45400, I(0) = 2100, R(0) = 2500,

calculated the rates, went forward a day to t = 1, recalculated the rates, and
came back a day to t = 0. We ended up with the estimates

S(0) = 45737.1, I(0) = 1820.3, R(0) = 2442.6
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—which are rather far from the values of S(0), I(0), and R(0) we started
with.

A clue to the resolution of this discrepancy appeared in problem 18,
page 23. There you were asked to go forward two days and come back
again in two different ways, using ∆t = 2 (a total of 2 steps) in the first case
and ∆t = 1 (a total of 4 steps) in the second. Here are the resulting values
calculated for S(0) in each case and the discrepancy between this value and
the original value S(0) = 45400:

step size new S(0) discrepancy

∆t = 2 46717.6 1317.6
∆t = 1 46021.3 621.3

While the discrepancy is fairly large in either case, ∆t = 1 clearly does
better than ∆t = 2. But if smaller is better, why stop at ∆t = 1? What Smaller steps generate

a smaller discrepancyhappens if we take even smaller time steps, get the corresponding new values
of S, I, and R, and use these values to recalculate the rates each time?

Recall that the rate S ′ (or I ′ or R′) is simply the multiplier which gives
∆S—the (estimated) change in S—for a given change ∆t in t

∆S = S ′ · ∆t .

This relation holds for any value of ∆t, integer or not. Once we have this
value for ∆S, we can then calculate

new (estimated) S = current (estimated) S + ∆S

in the usual way. Note that we have written “(estimated)” throughout to
emphasize the fact that if S ′ is not constant over the entire time ∆t, then
the value we get for ∆S will typically be only an approximation to the real
change in S.

Let’s try going forward one day and coming back, using different values
for ∆t. As we reduce ∆t the number of calculations will increase. The pro-
gram SIR we used in the last chapter can still be used to do the tedious
calculations. Thus if we decide to use 10 steps of size ∆t = .1, we would just
change two lines in that program:

deltat = .1

FOR k = 1 TO 10

If we now run SIR with these modifications we can verify the following se-
quence of values (The values have been rounded off, and the PRINT statement
has been modified to show the new values of the rates at each step as well):



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

64 CHAPTER 2. SUCCESSIVE APPROXIMATIONS

Estimated values of S, I, and R
for step sizes ∆t = .1

t S(t) I(t) R(t) S′(t) I ′(t) R′(t)

0.0
0.1
0.2
0.3

...
1.0

45 400.0
45 304.7
45 205.9
45 103.6

...
44 278.7

2100.0
2180.3
2263.6
2349.7

...
3042.9

2500.0
2515.0
2530.6
2546.7

...
2678.4

–953.4
–987.8

–1023.3
–1059.8

...
–1347.7

803.4
832.1
861.6
892.0

...
1130.0

150.0
155.7
161.7
167.8

...
217.4

Having arrived at t = 1, we can now use SIR to turn around and go back
to t = 0. Here’s how:

• Change the initial line of the program to t = 1 to reflect our new
starting time.

• Change the next three lines to use the values we just calculated for
S(1), I(1), and R(1) as our starting values in SIR.The sign of deltat

determines whether we
move forward or
backward in time

• Change the value of deltat to be -.1 (so each time the program exe-
cutes the command t = t + deltat it reduces the value of t by .1).

With these changes SIR will yield the desired estimates for S(0), I(0), and
R(0), and we get

S(0) = 45433.5, I(0) = 2072.3, R(0) = 2494.3.

This is clearly a considerable improvement over the values obtained with
∆t = 1.

With this promising result, the obvious thing to do is to try even smaller
values of ∆t, perhaps ∆t = .01. We could continue using SIR, making the
needed modifications each time. Instead, though, let’s rewrite SIR slightly to
make it better suited to our current needs. Look at the program SIRVALUE
below and compare it with SIR.
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Program: SIRVALUE

tinitial = 0

tfinal = 1

t = tinitial

S = 45400

I = 2100

R = 2500

numberofsteps = 10

deltat = (tfinal - tinitial)/numberofsteps

FOR k = 1 TO numberofsteps

Sprime = -.00001 * S * I

Iprime = .00001 * S * I - I / 14

Rprime = I / 14

deltaS = Sprime * deltat

deltaI = Iprime * deltat

deltaR = Rprime * deltat

t = t + deltat

S = S + deltaS

I = I + deltaI

R = R + deltaR

NEXT k

PRINT t, S, I, R

Program: SIR

t = 0

S = 45400

I = 2100

R = 2500

deltat = .1

FOR k = 1 TO 10

Sprime = -.00001 * S * I

Iprime = .00001 * S * I - I / 14

Rprime = I / 14

deltaS = Sprime * deltat

deltaI = Iprime * deltat

deltaR = Rprime * deltat

t = t + deltat

S = S + deltaS

I = I + deltaI

R = R + deltaR

PRINT t, S, I, R

NEXT k

You will see that the major change is to place the PRINT statement outside
the loop, so only the final values of S, I, and R get printed. This speeds up the
work, since otherwise, with ∆t = .001, for instance, we would be asking the
computer to print out 1000 lines—about 30 screens of text! Another change is
that the value of deltat no longer needs to be specified—it is automatically
determined by the values of tinitial, tfinal, and numberofsteps.

As written above, SIR and SIRVALUE both run for 10 steps of size 0.1 .
By changing the value of numberofsteps in the program we can quickly
get estimates for S(1), I(1), and R(1) for a wide range of values for ∆t . With a computer we

can generate lots of
data and look for

patterns

Moreover, once we have these estimates we can use SIRVALUE again to go
backwards in time to t = 0, by making changes similar to those we made in
SIR earlier. First, we need to change the value of tinitial to 1 and the
value of tfinal to 0. Notice that this automatically will make deltat a
negative quantity, so that each time we run through the loop we step back in
time. Second, we need to set the starting values of S, I, and R to the values
we just obtained for S(1), I(1), and R(1). With these changes, SIRVALUE
will give us the corresponding estimated values for S(0), I(0), and R(0).
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If we use SIRVALUE with ∆t ranging from 1 to .00001 (which means
letting numberofsteps range from 1 to 100,000) we get the table below. This
table lists the computed values of S(1), I(1), and R(1) for each ∆t, followed
by the estimated value of S(0) obtained by running SIRVALUE backward
in time from these new values, and, finally, the discrepancy between this
estimated value of S(0) and the original value S(0) = 45400.

Estimated values of S, I, and R when t = 1,

for step sizes ∆t = 10−N , N = 0, . . . 5,
together with the corresponding backwards estimate for S(0).

∆t S(1) I(1) R(1) new S(0) discrepancy

1.0
0.1
0.01
0.001
0.000 1
0.000 01

44 446.6
44 278.6648
44 257.8301
44 255.6960
44 255.4821
44 255.4607

2903.4
3042.9241
3060.1948
3061.9633
3062.1406
3062.1584

2650.0
2678.4111
2681.9751
2682.3406
2682.3773
2682.3809

45 737.0626
45 433.4741
45 403.3615
45 400.3363
45 400.0336
45 400.0034

337.0626
33.4741
3.3615
.3363
.0336
.0034

There are several striking features of this table. The first is that if we go
forward one day and come back again, we can get back as close as we want toSmaller steps generate

a discrepancy which
can be made as small
as we like

our initial value of S(0) provided we recalculate the rates frequently enough.
After 200,000 rounds of calculations (∆t = .00001) we ended up only .0034
away from our starting value. In fact, there is a clear pattern to the values
of the errors as we decrease the step size. In the exercises it is left for you to
explore this pattern and show that similar results hold for I and for R.

A second feature is that as we read down the column under S(1), we
find each digit stabilizes—that is, after changing for a while, it eventually
becomes fixed at a particular value. The initial digits 44 are the first to
stabilize, and that happens by the time ∆t = 0.1. Then the third digit 2
stabilizes, when ∆t = 0.01. Roughly speaking, one more digit stabilizes at
each successive level. The table is revealing to us, digit by digit, the true
value of S(1). By the fifth stage we learn that the integer part of S(1) is
44255. By the sixth stage we can say that the true value of S(1) is 44255.4 . . .
.

When we write S(1) = 44255.4 . . . we are expressing S(1) to one decimalApproximations lead to
exact values place accuracy. This says, first, that the decimal expansion of S(1) begins

with exactly the six digits shown and, second, that there are further digits
after the 4 (represented by the three dots “. . . ”). In this case, we can identify
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further digits simply by continuing the table. Since our step sizes have the
form ∆t = 10−N , we just need to increase N . For example, to express S(1)
accurately to six decimal places, we need to stabilize the first eleven digits in
our estimates of S(1). The table suggests that ∆t should probably be about
10−10—i.e., N = 10.

The true value of S(1) emerges through a process that generates a se-
quence of successive approximations. We say S(1) = 44255.4. . . is the limit
of this sequence as ∆t is made smaller and smaller or, equivalently, as N is
made larger and larger. We also say that the sequence of successive approxi-
mations converges to the limit S(1). Here is a mathematical notation that
expresses these statements more compactly:

S(1) = lim
∆t→0

{the estimate of S(1)} or, equivalently,

= lim
N→∞

{the estimate of S(1) with ∆t = 10−N}.

The symbol ∞ stands for “infinity,” and the expression N → ∞ is often
pronounced “as N goes to infinity.” However, it is often more instructive to
say “as N gets larger and larger, without bound.”

You should check that similar patterns are occurring in the I(1) and R(1)
columns as well.

The limit concept lies at the heart of calculus. Later on we’ll give a precise definition, but you
should first see limits at work in a number of contexts and begin to develop some intuitions about
what they are. This approach mirrors the historical development of calculus—mathematicians
freely used limits for well over a century before a careful, rigorous definition was developed.

One Picture Is Worth a Hundred Tables

As we noted, the program SIRVALUE prints out only the final values of
S, I, and R because it would typically take too much space to print out the
intermediate values. However, if instead of printing these values we plot them
graphically, we can convey all this intermediate information in a compact and
comprehensible form.

Suppose, for instance, that we wanted to record the calculations leading
up to S(3) by plotting all the points. The graphs below plot all the pairs
of values (t, S) that are calculated along the way for the cases ∆t = 1 (4
points), ∆t = .1 (31 points), and ∆t = .01 (301 points).
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42000

44000

46000

0 1 2 3

∆ t = 1

S

t

42000

44000

46000

0 1 2 3

∆ t = .1

S

t

42000

44000

46000

0 1 2 3

∆ t = .01

S

t

By the time we get to steps of size .01, the resulting graph begins to
look like a continuous curve. This suggests that instead of simply plotting
the points we might want to draw lines connecting the points as they’re
calculated.

We can easily modify SIRVALUE to do this—the only changes will be to
replace the PRINT command with a command to draw a line and to move
this command inside the loop (so that it is executed every time new values
are computed). We will also need to add a line or two at the beginning to
tell the computer to set up the screen to plot points. This usually involves
opening a window—i.e., specifying the horizontal and vertical ranges the
screen should depict. Since programming languages vary slightly in the way
this is done, we use italicized text “Set up GRAPHICS” to make clear that
this statement is not part of the program—you will have to express this in
the form your programming language specifies. Similarly, the command

Plot the line from (t, S) to (t + deltat, S + deltaS)

will have to be stated in the correct format for your language. The computa-
tional core of SIRVALUE is unchanged. Here is what the new program looks
like if we want to use ∆t = .1 and connect the points with straight lines:
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Program: SIRPLOT

Set up GRAPHICS

tinitial = 0

tfinal = 3

t = tinitial

S = 45400

I = 2100

R = 2500

numberofsteps = 30

deltat = (tfinal - tinitial)/numberofsteps

FOR k = 1 TO numberofsteps

Sprime = -.00001 * S * I

Iprime = .00001 * S * I - I / 14

Rprime = I / 14

deltaS = Sprime * deltat

deltaI = Iprime * deltat

deltaR = Rprime * deltat

Plot the line from (t, S) to (t + deltat, S + deltaS)

t = t + deltat

S = S + deltaS

I = I + deltaI

R = R + deltaR

NEXT k

If we had wanted just to plot the points, we could have used a command
of the form Plot the point (t, S) in place of the command to plot the line,
moving this command down two lines so it came after we had computed the
new values of t and S. We would also need to place that command before
the loop so that the initial point corresponding to t = 0 gets plotted.

When we “connect the dots” like this we emphasize graphically the under-
lying assumption we have been making in all our estimates: that the function
S(t) is linear (i.e., it is changing at a constant rate) over each interval ∆t.
Let’s see what the graphs look like when we do this for the three values of
∆t we used above. To compare the results more readily we’ll plot the graphs
on the same set of axes. (We will look at a program for doing this in the
next section.) We get the following picture:
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42000
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46000
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3 steps

30 steps

300 steps

The graphs become indistinguishable from each other and increasingly
look like smooth curves as the number of segments increases. If we plottedGraphs made up of

line segments look like
smooth curves if
the segments are
short enough

the 3000-step graph as well, it would be indistinguishable from the 300-step
graph at this scale. If we now shift our focus from the end value S(3) and
look at all the intermediate values as well, we find that each graph gives an
approximate value for S(t) for every value of t between 0 and 3. We are
seeing the entire function S(t) over this interval.

Just as we wrote

S(3) = lim
N→∞

{the estimate of S(3) with ∆t = 10−N}.

We can also write

graph of S(t) = lim
N→∞

{line-segment approximations with ∆t = 10−N}.

The way we see the graph of S(t) emerging from successive approximations
is our first example of a fundamental result. It has wide-ranging implications
which will occupy much of our attention for the rest of the course.
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Piecewise Linear Functions

Let’s examine the implications of this approach more closely by considering
the “one-step” (∆t = 3) approximation to S(t) and the “three-step” (∆t = 1)
approximation over the time interval 0 ≤ t ≤ 3. In the first case we are
making the simplifying assumption that S decreases at the rate S ′ = −953.4
persons per day for the entire three days. In the second case we use three
shorter steps of length ∆t = 1, with the slopes of the corresponding segments
given by the table on page 13 in Chapter 1, summarized below (note that
since ∆t = 1 day we have that the magnitude of ∆S = S ′ ·∆t is the same as
the magnitude of S ′):

t S S ′

0
1
2
3

45 400.0
44 446.6
43 156.1
41 435.7

−953.4
−1 290.5
−1 720.4

Here are the corresponding graphs we get:
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-−953.4

−1290.5

−1720.4

3 days

−953.4 × 3

42539.8

41435.7

one large step

three small steps

Two approximations to S during the first three days

The “one-step” estimate. Assuming that S decreases at the rate
S ′ = −953.4 persons per day for the entire three days is equivalent to as-
suming that S follows the upper graph—a straight line with slope –953.4
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persons/day. In other words, the one-step approach approximates S by a
linear function of t. If we use the notation S1(t) to denote this (one-step)
linear approximation we have

One-step estimate: S(t) ≈ S1(t) = 45400 − 953.4 t .

Because the one-step estimate is actually a function we can find the value
of S1(t) for all t in the interval 0 ≤ t ≤ 3, not just t = 3, and thereby get
corresponding estimates for S(t) as well. For example,

S1(2) = 45400 − 953.4 × 2 = 43493.2

S1(1.7) = 45400 − 953.4 × 1.7 = 43779.22 .

The “three-step” estimate. With three smaller steps of size ∆t = 1,
we get a function whose graph is composed of three line segments, each
starting at the (t, S) point at the beginning of each day and with a slopeA single function

may not be specified
by a single equation

equal to the corresponding rate of new infections at the beginning of the day.
Let’s call this function S3(t). The three-step estimate S3(t) is hence not a
linear function, strictly speaking. However, since its graph is made up of
several straight pieces, it is called a piecewise linear function. Recalling
that the equation of a line through the point (x0, y0) with slope m can be
written in the form y = m(x − x0) + y0, we can use the values for S (which
correspond to the y-values) and S ′ (which give us the slopes of the segments)
at times t = 0, t = 1, and t = 2 calculated above to get an explicit formula
for S3(t):

S3(t) =







y = −953.4(t − 0) + 45400 if 0 ≤ t ≤ 1
y = −1290.5(t − 1) + 44446.6 if 1 ≤ t ≤ 2
y = −1720.4(t − 2) + 43156.1 if 2 ≤ t ≤ 3

Note that we have used ≤ in the defining formulas since at the values
t = 1 and t = 2 it doesn’t matter which equation we use. This is equivalent
to saying that the straight line segments are connected to each other. Since
the slopes of the three segments of S3(t) are progressively more negative,
the piecewise linear graph gets progressively steeper as t increases. This
explains why the value S3(3) is lower than the value of S1(3). While it
is rare that we would actually need to write down an explicit formula like
this for the piecewise-linear approximation—it is easier, and usually more
informative, just to define S3(t) by its graph—it is nevertheless important to
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realize that there really is an approximating function defined for all values
of t in the interval [0, 3], not just at the finite set of t values where we make
the recalculations.

By the time we are dealing with the 300-step function S300(t) we can’t
even tell by its graph that it is piecewise linear unless we zoom in very close.
In principle, though, we could still write down a simple linear formula for
each of its segments (see the exercises).

An appraisal. The graph of S1(t) gives us a rough idea of what is
happening to the true function S(t) during the first three days. It starts off
at the same rate as S ′, but subsequently the rates move apart. The value
of S ′

1 never changes, while S ′ changes with the (ever-changing) values of S
and I.

The graph of S3(t) is a distinct improvement because it changes its di-
rection twice, modifying its slope at the beginning of each day to come back
into agreement with the rate equation. But since the three-step graph is still
piecewise linear, it continues to suffer from the same shortcoming as the one-
step: once we restrict our attention to a single straight segment (for example,
where 1 ≤ t ≤ 2), then the three-step graph also has a constant slope, while
S ′ is always changing. Nevertheless, S3(t) does satisfy the rate equation in
our original model three times—at the beginning of each segment—and isn’t
too far off at other times. When we get to S300(t) we have a function which
satisfies the rate equation at 300 times and is very close in between.

Each of these graphs gives us an idea of the behavior of the true function
S(t) during the time interval 0 ≤ t ≤ 3. None is strictly correct, but none is
hopelessly wrong, either. All are approximations to the truth. Moreover,
S3(t) is a better approximation than S1(t)—because it reflects at least some
of the variability in S ′—and S300(t) is better still. Thus, even before we have
a clear picture of the shape of the true function S(t), we would expect it to
be closer to S300(t) than to S3(t). As we saw above, when we take piecewise
linear approximations with smaller and smaller step sizes, it is reasonable to
think that they will approach the true function S in the limit. Expressing
this in the notation we have used before,

the function S(t) = lim
N→∞

{the chain of linear functions with ∆t = 10−N}.
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Approximate versus Exact

You may find it unsettling that our efforts give us only a sequence of approx-
imations to S(3), and not the exact value, or only a sequence of piecewise-
linear approximations to S(t), not the “real” function itself. In what sense
can we say we “know” the number S(3) or the function S(t)? The answer
is: in the same sense that we “know” a number like

√
2 or π. There are twoWhat does it mean

to ”know” a number
like π?

distinct aspects to the way we know a number. On the one hand, we can
characterize a number precisely and completely:

π: the ratio of the circumference of a circle to its diameter;√
2: the positive number whose square is 2;

On the other hand, when we try to construct the decimal expansion of
a number, we usually get only approximate and incomplete results. For
example, when we do calculations by hand we might use the rough estimates√

2 ≈ 1.414 and π ≈ 3.1416. With a desk-top computer we might have√
2 ≈ 1.414 213 562 373 095 and π ≈ 3.141 592 653 589 793, but these are still

approximations, and we are really saying

√
2 = 1.414 213 562 373 09 . . .
π = 3.141 592 653 589 79 . . . .

The complete decimal expansions for
√

2 and π are unknown! The exact val-
ues exist as limits of approximations that involve successively longer strings
of digits, but we never see the limits—only approximations. In the final sec-
tion of this chapter we will see ways of generating these approximations for√

2 and for π.
What we say about π and

√
2 is true for S(3) in exactly the same way.

We can characterize it quite precisely, and we can construct approximations
to its numerical value to any desired degree of accuracy. Here, for example,
is a characterization of S(3):

The S-I-R problem for which a = .00001 and b = 1/14 and for
which S = 45400, I = 2100, R = 2500 when t = 0 determines
three functions S(t), I(t), and R(t). The number S(3) is the
value that the function S(t) has when t = 3.

You should try to extend this argument to describe the sense in which
we “know” the function S(t) by knowing its piecewise-linear approximations.
Try to convince yourself that this is operationally no different from the way
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we “know” functions like f(x) =
√

x. In each instance we can characterize
the function completely, but we can only construct an approximation to
most values of the function or to its graph.

All this discussion of approximations may strike you as an unfortunate
departure from the accuracy and precision you may have been led to expect
in mathematics up until now. In fact, it is precisely this ability to make quick Being able to

approximate a number
to 12 decimal places is

usually as good as
knowing its value

precisely

and accurate approximations to problems that is one of the most powerful
features of mathematics. This is what goes on every time you use your
calculator to evaluate log 3 or sin 37. Your calculator doesn’t really know
what these numbers are—but it does know how to approximate them quickly
to 12 decimal places. Similar kinds of approximations are also at the heart
of how bridges are built and spaceships are sent to the moon.

A Caution: The fact that computers and calculators are really only
dealing with approximations when we think they are being exact occasionally However . . .

leads to problems, the most common of which involves roundoff errors.
You can probably generate a relatively harmless manifestation of this on
your computer with the SIRVALUE program. Modify the PRINT line so it
prints out the final value of t to 10 or 12 digits, and try running it with
a high value for numberofsteps, say 1 million or 10 million. You would
expect the final value of t to be exactly 1 in every case, since you are adding
deltat = 1/numberofsteps to itself numberofsteps times. The catch is
that the computer doesn’t store the exact value 1/numberofsteps unless
numberofsteps is a power of 2. In all other cases it will only be using an
approximation, and if you add up enough quantities that are slightly off,
their cumulative error will begin to show. We will encounter a somewhat less
benign manifestation of roundoff error in the next chapter.

Exercises

There and back again

1. a) Look at the table on page 66. What is your best guess of the exact
value of I(1)? (Use the “. . . ” notation introduced on page 66.)

b) What is the exact value of R(1)?

2. We noted that the discrepancy (the difference between the new estimate
for S(0) and the original value) seemed to decrease as ∆t decreased.

a) What is your best estimate (using only the information in the table) for
the value of ∆t needed to produce a discrepancy of .001 ?
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b) More generally, express as precisely as you can the apparent relation
between the size of the discrepancy and the size of ∆t.

3. a) Suppose you wanted to try going three days forward and then coming
back, using ∆t = .01. What changes would you have to make in SIRVALUE
to do this?

b) Make a table similar to the one on page 66 for going three days forward
and coming back for ∆t = 1, .1, .01, and.001.

c) In this new table how does the size of the discrepancy for a given value
of ∆t compare with the value in the original table?

d) What value of ∆t do you think you would need to determine the integer
parts of S(3) and R(3) exactly?

Piecewise linear functions

4. Using this three-step approximation, what is S3(1.7)? What is S3(2.5)?

5. How would you modify SIRVALUE to get S3000(3) ? Do it; what do you
get?

6. What additional changes would you make to get the values of t, S, and
S ′ at the beginning of the 193rd segment of S300(t) ? [HINT: You only need
to alter the FOR k = 1 TO numberofsteps line (since you don’t want to go
all the way to the end) and the PRINT line. (Note that after running the loop
for, say, 20 times, the values of t and S are the values for the beginning of
the 21st segment, while the value of Sprime will still be the slope of the 20th
segment.)]

7. Suppose we wanted to determine the value of S300(2.84135).

a) In which of the 300 segments of the graph of S300(t) would we look to
find this information?

b) What are the values of t, S, and S ′ at the beginning of this segment?

c) What is the equation of this segment?

d) What is S300(2.84135) ?

8. How would you modify SIRVALUE to calculate estimates for S, I, and
R when t = −6, using ∆t = .05 ? Do it; what do you get?
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9. We want to use SIRPLOT to look at the graph of S(t) over the first 20
days, using ∆t = .01.

a) What changes would we have to make in the program?

b) Sketch the graph you get when you make these changes.

c) If you wanted to plot the graph of I(t) over this same time interval, what
additional modifications to SIRPLOT would be needed? Make them, and
sketch the result. When does the infection appear to hit its peak?

d) Modify SIRPLOT to sketch on the same graph all three functions over
the first 70 days. Sketch the result.

The DO–WHILE loop
A difficulty in giving a precise answer to the last question was that we

had to get all the values for 20 days, then go back to estimate by eye when
the peak occurred. It would be helpful if we could write a program that ran
until it reached the point we were looking for, and then stopped. To do this,
we need a different kind of loop—a conditional loop that keeps looping only
while some specified condition is true. A DO–WHILE loop is one useful way
to do this. Here’s how the modified SIRPLOT program would look:

Set up GRAPHICS

tinitial = 0

t = tinitial

S = 45400

I = 2100

R = 2500

Iprime = .00001 * S * I - I / 14

deltat = .01

DO WHILE Iprime > 0

Sprime = -.00001 * S * I

Iprime = .00001 * S * I - I / 14

Rprime = I / 14

deltaS = Sprime * deltat

deltaI = Iprime * deltat

deltaR = Rprime * deltat

Plot the line from (t, S) to (t + deltat, S + deltaS)
t = t + deltat

S = S + deltaS

I = I + deltaI

R = R + deltaR

LOOP

PRINT t - deltat
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The changes we have made are:

• Since we don’t know what the final time will be, eliminate the tfinal

= 20 and the numberofsteps = 2000 commands.

• Since the condition in our loop is keyed to the value of I ′, we have to
calculate the initial value of I ′ before the loop starts.

• Instead of deltat = (tfinal - tinitial)/numberofsteps use the
statement deltat = .01.

• The key change is to replace the FOR k = 1 TO numberofsteps line
by the line DO WHILE Iprime > 0.

• To denote the end of the loop we replace the NEXT k command with
the command LOOP.

• After the LOOP command add the line PRINT t - deltat. (The reason
we had to back up one step at the end is because due to the way the
program was written, the computer takes one final step with a negative
value for Iprime before it stops.)

The net effect of all this is that the program will continue working as
before, calculating values and plotting points (t, S), but only as long as
the condition in the DO WHILE statement is true. The condition we used here
was that I ′ had to be positive—this is the condition that ensures that values
of I are still getting bigger. While this condition is true, we can always get
a larger value for I by going forward another increment ∆t. As soon as the
condition is false—i.e., as soon as I ′ is negative—the values for I will be
decreasing, which means we have passed the peak and so want to stop.

10. Make these modifications; what value for t do you get?

11. You could modify the PRINT t command to also print out other quan-
tities.

a) What is the value of I at its peak?

b) What is the value of S when I is at its peak? Does this agree with the
threshold value we predicted in chapter 1?

12. Suppose you change the initial value of S to be 5400 and run the pre-
vious program. Now what happens? Why?
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13. Suppose we wanted to know how long the epidemic lasts. We could use
DO–WHILE and keep stepping forward using, say ∆t = .1, so long as I ≥ 1.
As soon as I was less than 1 we would want to stop and see what the value
of t was.

a) What modifications would you make in SIRVALUE to get this informa-
tion?

b) Run your modified program. What value do you get for t?

c) Run the program using ∆t = .01. Now what is your estimate for the
duration of the epidemic? What can you say about the actual time required
for I to drop below 1?

14. a) If we think the epidemic started with a single individual, we can
go backwards in time until I is no longer greater than 1, and see what the
corresponding time is. Do this for ∆t = −1,−.1, and − .01. What is your
best estimate for the time that the infection arrived?

b) How many Recovereds were there at the start of the epidemic? This would
be the people who had presumably been infected in a previous epidemic and
now had immunity.

2.2 The Mathematical Implications—

Euler’s Method

Approximate Solutions

In the last section we approximated the function S(t) by piecewise-linear
approximations using steps of size ∆t = 1, .1, and .01. This process can
clearly be extended to produce approximations with an arbitrary number of
steps. For any given step size ∆t, the result is a piecewise linear graph whose
segments are ∆t days wide. This graph then provides us with an estimate
for S(t) for every value of t in the interval 0 ≤ t ≤ 3. We call this process
of obtaining a function by constructing a sequence of increasingly better
approximations Euler’s method, after the Swiss mathematician Leonhard
Euler (1707–1783). Euler was interested in the general problem of finding
the functions determined by a set of rate equations, and in 1768 he proposed
this method to approximate them. The method is conceptually simple and
can indeed be used to get solutions for an enormous range of rate equations.
For this reason we will make it a basic tool.
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To begin to get a sense of the general utility of Euler’s method, let’s use it
in a new setting. Here is a simple problem that involves just a single variable
y that depends on t.

rate equation: y′ = .1 y
(

1 − y

1000

)

,

initial condition: y = 100 when t = 0.

To solve the problem we must find the function y(t) determined by this rate
equation and initial condition. We’ll work without a context, in order to
emphasize the purely mathematical nature of Euler’s method. However, this
rate equation is one member of a family called logistic equations frequently
used in population models. We will explore this context in the exercises.

Let’s now construct the function that approximates y(t) on the interval
0 ≤ t ≤ 75, using ∆t = .5 . We can make the suitable modifications in
SIRPLOT or SIRVALUE to get this approximation. Suppose we want to
view the approximation graphically. Here’s what the modified SIRPLOT
would look like:

Program: modified SIRPLOT

Set up GRAPHICS

tinitial = 0

tfinal = 75

t = tinitial

y = 100

numberofsteps = 150

deltat = (tfinal - tinitial)/numberofsteps

FOR k = 1 TO numberofsteps

yprime = .1 * y * (1 - y / 1000)

deltay = yprime * deltat

Plot the line from (t, y) to (t + deltat, y + deltay)

t = t + deltat

y = y + deltay

NEXT k

As before, words in italics, like “Plot the line from. . . to” need to be translated
into the specific formulation required by the computer language you are using.
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When we run this program, we get the following graph (axes and scales
have been added):

t

y

10 20 30 40 50 60 70

200

400

600

800

1000

As before, what we see here is only an approximation to the true solution
y(t). How can we get some idea of how good this approximation is?

Exact Solutions

For any chosen step size, we can produce an approximate solution to a rate
equation problem. We will call such an approximation an Euler approxi-
mation. In the last section we saw that we can improve the accuracy of the
approximation by making the steps smaller and using more of them.

For example, we have already found an approximate solution to the prob-
lem

y′ = .1y
(

1 − y

1000

)

; y(0) = 100

on the interval 0 ≤ t ≤ 75, using 150 steps of size ∆t = 1/2. Consider
a sequence of Euler approximations to this problem that are obtained by
increasing the number of steps from one stage to the next. To be system-
atic, let the first approximation have 1 step, the next 2, the next 4, and so
on. (The important feature is that the number of steps increases from one
approximation to the next, not necessarily that they double—going up by
powers of 10 would be just as good. A slight advantage in using powers of 2
is to maximize computer accuracy.) The number of steps thus has the form
2j−1, where j = 1, 2, 3, . . . . If we use yj(t) to denote the approximating
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function with 2j−1 steps, then we have an unending list:

y1(t) : Euler’s approximation with 1 step
y2(t) : Euler’s approximation with 2 steps
y3(t) : Euler’s approximation with 4 steps

...
...

yj(t) : Euler’s approximation with 2j−1 steps
...

...

Here are the graphs of yj(t) for j = 1, 2, . . . , 7 plus the graph of y11(t):

t

y

j = 1

j = 2

j = 3

j = 11

10 20 30 40 50 60 70

250

500

750

1000

1250

These functions form a sequence of successive approximations to the
true solution y(t), which is obtained by taking the limit, as we did in the
last section:

y(t) = lim
j→∞

yj(t).

Earlier we noticed how the digits in the estimates for S(3) stabilized. If we
plot the approximations yj(t) together we’ll find that they stabilize, too. EachFunctions and graphs

can be limits, too graph in the sequence is different from the preceding one, but the differences
diminish the larger j becomes. Eventually, when j is large enough, the graph
of yj+1 does not differ noticeably from the graph of yj. That is, the position
of the graph stabilizes in the coordinate plane. In this example, at the scale
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in the graph above, this happens around j = 11. If we had drawn the graph
of y15 or y20, it would not have been distinguishable from the graph of y11. It Euler’s method is the

process of finding
solutions through a

sequence of successive
approximations

is this entire process of calculating a sequence of successive approximations
using increasingly many steps as far as is needed to get the desired level of
stabilization that is meant when we talk about Euler’s method.

The program SEQUENCE shown below plots 14 Euler approximations
to y(t), increasing the number of steps by a factor of 2 each time. It demon-
strates how the graphs of yj(t) stabilize to define y(t) as their limit.

Program: SEQUENCE

A sequence of graphs for y′ = .1y(1 − y/1000); y(0) = 100

Set up GRAPHICS

FOR j = 1 TO 14
tinitial = 0

tfinal = 75

t = tinitial

y = 100

numberofsteps = 2 ^ (j - 1)

deltat = (tfinal - tinitial) / numberofsteps

FOR k = 1 TO numberofsteps

yprime = .1 * y * (1 - y / 1000)

deltay = yprime * deltat

Plot the line from (t, y)
to (t + deltat, y + deltay)

Color the line with color j
t = t + deltat

y = y + deltay

NEXT k







Program:
modified SIRPLOT

NEXT j

Notice that SEQUENCE contains the program SIRPLOT embedded in
a loop that executes SIRPLOT 14 times. In this way SEQUENCE plots 14
different graphs. The only new element that has been added to SIRPLOT is
“Color the line with color j”. When you express this in your programming
language it instructs the computer to draw the j-th graph using color number
j in the computer’s “palette.” In the exercises you are asked to use the
program SEQUENCE to explore the solutions to a number of rate equation
problems.
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Approximate solutions versus exact

By constructing successive approximations to the solution of a rate equation
problem, using a sequence of step sizes deltat = ∆t that shrink to 0, we
obtain the exact solution in the limit.

In practice, though, all we can ever get are particular approximations.
However, we can control the level of precision in our approximations by
adjusting the step size. If we are dealing with a model of some real process,
then this is typically all we need. For example, when it comes to interpreting
the S-I-R model, we might be satisfied to predict that there will be about
40500 susceptibles remaining in the population after three days. The table
on page 66 indicates we would get that level of precision using a step size of
about ∆t = 10−2. Greater precision than this may be pointless, because the
modelling process—which converts reality to mathematics—is itself only an
approximation.

The question we asked in the last section—In what sense do we know a
number?—applies equally to the functions we obtain using Euler’s method.
That is, even if we can characterize a function quite precisely as the solution of
a particular rate equation, we may be able to evaluate it only approximately.

A Caution

We have now seen how to take a set of rate equations and find approximations
to the solution of these equations to any degree of accuracy desired. It
is important to remember that all these mathematical manipulations are
only drawing inferences about the model. We are essentially saying that if
the original equations capture the internal dynamics of the situation being
modelled, then here is what we would expect to see. It is still essential at some
point to go back to the reality being modeled and check these predictions to
see whether our original assumptions were in fact reasonable, or need to be
modified. As Alfred North Whitehead has said:

There is no more common error than to assume that, because pro-
longed and accurate mathematical calculations have been made,
the application of the result to some fact of nature is absolutely
certain.
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Exercises

Approximate solutions

1. Modify SIRVALUE and SIRPLOT to analyze the population of Poland
(see exercise 25 of chapter 1, page 47). We assume the population P (t)
satisfies the conditions

P ′ = .009 P and P (0) = 37,500,000,

where t is years since 1985. We want to know P 100 years into the future;
you can assume that P does not exceed 100,000,000.

a) Estimate the population in 2085.

b) Sketch the graph that describes this population growth.

The Logistic Equation

Suppose we were studying a population of rabbits. If we turn 100 rabbits
loose in a field and let y(t) be the number of rabbits at time t measured in
months, we would like to know how this function behaves. The next several
exercises are designed to explore the behavior of the rate equation

y′ = .1y
(

1 − y

1000

)

; y(0) = 100

and see why it might be a reasonable model for this system.

2. By modifying SIRVALUE in the way we modified SIRPLOT to get SE-
QUENCE, obtain a sequence of estimates for y(37) that allows you to specify
the exact value of y(37) to two decimal places accuracy.

3. a) Referring to the graph of y(t) obtained in the text on page 82, what
can you say about the behavior of y as t gets large?

b) Suppose we had started with y(0) = 1000. How would the population
have changed over time? Why?

c) Suppose we had started with y(0) = 1500. How would the population
have changed over time? Why?

d) Suppose we had started with y(0) = 0. How would the population have
changed over time? Why?
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e) The number 1000 in the denominator of the rate equation is called the
carrying capacity of the system. Can you give a physical interpretation
for this number?

4. Obtain graphical solutions for the rate equation for different values of
the carrying capacity. What seems to be happening as the carrying capacity
is increased? (Don’t restrict yourself to t = 37 here.) In this problem and
the next you should sketch the different solutions on the same set of axes.

5. Keep everything in the original problem unchanged except for the con-
stant .1 out front. Obtain graphical solutions with the value of this constant
= .05, .2, .3, and .6. How does the behavior of the solution change as this
constant changes?

6. Returning to the original logistic equation, modify SIRVALUE or DO–
WHILE to find the value for t such that y(t) = 900.

7. Suppose we wanted to fit a logistic rate equation to a population, starting
with y(0) = 100. Suppose further that we were comfortable with the 1000 in
the denominator of the equation, but weren’t sure about the .1 out front. If
we knew that y(20) = 900, what should the value for this constant be?

Using SEQUENCE

8. Each Euler approximation is made up of a certain number of straight
line segments. What instruction in the program SEQUENCE determines the
number of segments in a particular approximation? The first graph drawn
has only a single segment. How many does the fifth have? How many does
the fourteenth have?

9. What is the slope of the first graph? What are the slopes of the two
parts of the second graph? [You should be able to answer these questions
without resorting to a computer.]

10. Modify the line in the program SEQUENCE which determines the num-
ber of steps by having it read numberofsteps = j, and run the modified pro-
gram. Again, we are getting a sequence of approximations, with the number
of steps increasing each time, but the approximations don’t seem to be get-
ting all that close to anything. Explain why this modified program isn’t as
effective for our purposes as the original.
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11. Modify SEQUENCE to produce a sequence of Euler approximations to
the function y(t) that satisfies the conditions

y′ = .2 y(5− y) and y(0) = 1.

on the interval 0 ≤ t ≤ 10. [You need to change the final t value in the
program, and you also need to ensure that the graphs will fit on your screen.]

a) What is y(10)? [If you add the line PRINT j, y just before the line NEXT

j, a sequence of 14 estimates for y(10) will appear on the screen with the
graphs.]

b) Make a rough sketch of the graph that is the limit of these approxima-
tions. The right half of the limit graph has a distinctive feature; what is
it?

c) Without doing any calculations, can you estimate the value of y(50)?
How did you arrive at this value?

d) Change the initial condition from y(0) = 1 to y(0) = 9. Construct the
sequence of Euler approximations beginning with numberofsteps being 1,
and make a rough sketch of the limit graph. What is y(10) now? Explain
why the first several approximations look so strange.

12. Modify SEQUENCE to construct a sequence of Euler approximations
for population of Poland (from exercise 1, above). Sketch the limit graph
P (t), and mark the values of P (0) and P (100) at the two ends.

13. Construct a sequence of Euler approximations to the function y(t) that
satisfies the conditions

y′ = 2 t and y(0) = 0

over the interval 0 ≤ t ≤ 2. Note that this time the rate y′ is given in
terms of t, not y. Euler’s method works equally well. Using your sequence
of approximations, estimate y(2). How accurate is your estimate?

14. Construct a sequence of Euler approximations to the function y(t) that
satisfies the conditions

y′ =
4

1 + t2
and y(0) = 0

over the interval 0 ≤ t ≤ 1. Estimate y(1). How accurate is your estimate?
[Note: the exact value of y(1) is π, which your estimates may have led you to
expect. By using special methods we shall develop much later we can prove
that y(1) = π.]
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2.3 Approximate Solutions

Our efforts to find the functions that were determined by the rate equations
for the S-I-R model have brought to light several important issues:

• We often have to deal with a question that does not have a simple,
straightforward answer; perhaps we are trying to determine a quantity
(like the square root of 2, or S(3) in the S-I-R model), to find some
function (like S(t)), or to understand a process (like an epidemic, or
buying and selling in a market). An approximation can get us started.

• In many instances, we can make repeated improvements in the approx-
imation. If these successive approximations get arbitrarily close to
the unknown, and they do it quickly enough, that may answer the ques-
tion for all practical purposes. In many cases, there is no alternative.

• The information that successive approximations give us is conveyed in
the form of a limit.

• The method of successive approximations can be used to evaluate many
kinds of mathematical objects, including numbers, graphs, and func-
tions.

• Limit processes give us a valuable tool to probe difficult questions.
They lie at the heart of calculus.

Even the process of building a mathematical model for a physical system can be seen as an
instance of successive approximations. We typically start with a simple model (such as the S-I-
R model) and then add more and more features to it (e.g., in the case of the S-I-R model we
might divide the population into different subgroups, have the parameters in the model depend
on the season of the year, make immunity of limited duration, etc.). Is it always possible, at
least in theory, to get a sequence of approximating mathematical models that approaches reality
in the limit?

In the following chapters we will apply the process of successive approx-
imation to many different kinds of problems. For example, in chapter 3 the
problem will be to get a better understanding of the notion of a rate of change
of one quantity with respect to another. Then, in chapter 4, we will return to
the task of solving rate equations using Euler’s method. Chapter 6 introduces
the integral, defining it through a sequence of successive approximations. As
you study each chapter, pause to identify the places where the method of
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successive approximations is being used. This can give you insight into the
special role that calculus plays within the broader subject of mathematics.

To illustrate the general utility of the method, we end this chapter by
returning to the problem raised in section 1 of constructing the values of

√
2

and π to an arbitrary number of decimal places.

Calculating π—The Length of a Curve

Humans were grappling with the problem of calculating π at least 3000 years
ago. In his work Measurement of the Circle, Archimedes (287–212 b.c.) used
the method of successive approximations to calculate π = 3.14 . . . . He did
this by starting with a circle of diameter 1, constructing an inscribed and
a circumscribed hexagon, and calculating the lengths of their perimeters.
The perimeter of the circumscribed hexagon was clearly an overestimate
for π, while the perimeter of the inscribed hexagon was an underestimate.
He then improved these estimates by going from hexagons to inscribed and
circumscribed 12-sided polygons and again calculating the perimeters. He
repeated this process of doubling the number of sides until he had inscribed
and circumscribed polygons with 96 sides. These left him with his final
estimate

3.1409 . . . = 3
2841

4

20171
4

< π < 3
6671

2

46731
2

= 3.1428 . . .

In grade school we learned a nice simple formula for the length of a circle,
but that was about it. We were never taught formulas for the lengths of
other simple curves like elliptic or parabolic arcs, for a very good reason—
there are no such formulas. There are various physical approaches we might
take. For example, we could get a rough approximation by laying a piece of
string along the curve, then picking up the string and measuring it with a
ruler. Instead of a physical solution, we can use the essence of Archimedes’
insight of approximating a circle by an inscribed “polygon”—what we have
earlier called a piecewise linear graph—to determine the length of any curve.
The basic idea is reminiscent of the way we made successive approximations
to the functions S(t), I(t), and R(t) in the first section of this chapter. Here
is how we will approach the problem:

• approximate the curve by a chain of straight line segments;

• measure the lengths of the segments;
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• use the sum of the lengths as an approximation to the true length of
the curve.

Repeat this process over and over, each time using a chain that has shorter
segments (and therefore more of them) than the last one. The length of the
curve emerges as the limit of the sums of the lengths of the successive chains.

Distance Formula If we are given two points P1(x1, y1) and
P2(x2, y2) in the plane, then the distance between them is just

d =

√

∆x2 + ∆y2

=
√

(x2 − x1)2 + (y2 − y1)2

That this follows directly from the Pythagorean theorem can be
seen from the picture below:

-
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∆x = x2 − x1

∆y = y2 − y1

We’ll demonstrate how this pro-
cess works on a parabola. Specifi-
cally, consider the graph of y = x2

on the interval 0 ≤ x ≤ 1. At the
right we have sketched the graph and
our initial approximation. It is a
piecewise linear approximation with
two segments whose end points have
equally spaced x-coordinates. -
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y = x2

r

r

r

We can use the distance formula to find the lengths of the two segments.

first segment :
√

(.5 − 0)2 + (.25 − 0)2 = .559016994

second segment :
√

(1 − .5)2 + (1 − .25)2 = .901387819
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Their total length is the sum

.559016994 + .901387819 = 1.460404813.

The following program prints out the lengths of the two segments and
their total length.

Program: LENGTH
Estimating the length of y = x2 over 0 ≤ x ≤ 1

DEF fnf (x) = x ^ 2

xinitial = 0

xfinal = 1

numberofsteps = 2

deltax = (xfinal - xinitial) / numberofsteps

total = 0

FOR k = 1 TO numberofsteps

xl = xinitial + (k - 1) * deltax

xr = xinitial + k * deltax

yl = fnf(xl)

yr = fnf(xr)

segment = SQR((xr - xl) ^ 2 + (yr - yl) ^ 2)

total = total + segment

PRINT k, segment

NEXT k

PRINT numberofsteps, total

Finding Roots with a Computer

When we casually turn to our calculator and ask it for the value of
√

2, what Calculators and
computers really work

by making
approximations

does it really do? Like us, the calculator can only add, subtract, multiply,
and divide. Anything else we ask it to do must be reducible to these oper-
ations. In particular, the calculator doesn’t really “know” the value of

√
2.

What it does know is how to approximate
√

2 to, say, 12 significant figures
using only elementary arithmetic. In this section we will look at two ways we
might do this. Apart from the fact that both approaches use successive ap-
proximations, they are remarkably different in flavor. One works graphically,
using a computer graphing package, and the other is a numerical algorithm
that is about 4000 years old.
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A geometric approach

Exercise 9 on page 40 considered the problem of finding the roots of f(x) =
1 − 2x2. A bit of algebra confirms that

√
2/2 is a root—i.e., f(

√
2/2) = 0.

The question is: what is the numerical value of
√

2/2?
We’ll answer this question by constructing a sequence of approximations

that add digits, one at a time, to an estimate for
√

2/2. Since the root lies at
the point where the graph of f crosses the x-axis, we just magnify the graph
at this point over and over again, “trapping” the point between x values that
can be made arbitrarily close together.

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
pp
p

x-1 1

y
p
p
p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p

first digit
determined

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

x.60 .80

B
B
B
B
B
B
B
BB

.70 .71

p
p
p
p
p
p
p

p
p
p
p
p
p
p

q q q

q q q
first six digits
determined

p
p
p
p
p

p
p
p
p
p

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

x.707100 .707110

B
B
B
B
B
B
B
BB

.707106 .707107

p
p
p
p
p
p
p

p
p
p
p
p
p
p

q q q

q q q

The graph of y = 1 − 2x2 under successive magnifications

If we make each stage a ten-fold magnification over the previous one, then,
as we zoom in on the next smaller interval that contains the root, one more
digit in our estimate will be stabilized. The first six stages are described
in the table below. They tell us

√
2/2 = .707106 . . . to six decimal places

accuracy.
Since this method of finding roots requires only that we be able to plot

successive magnifications of the graph of f on a computer screen, the method
can be applied to any function that can be entered into a computer.

The positive root of 1 − 2x2

when the root lies between: the decimal expansion
lower value upper value

.70

.700

.7070

.70710

.707100

.7071060
...

.80

.710

.7080

.70720

.707110

.7071070
...

of the root begins with

.7

.70

.707

.7071

.70710

.707106
...
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An algebraic approach – the Babylonian algorithm

About 4000 years ago Babylonian builders had a method for constructing
the square root of a number from a sequence of successive approximations.
To demonstrate the method, we’ll construct

√
5. We want to find x so that

x2 = 5 or x =
5

x
.

The second expression may seem a peculiar way to characterize x, but it is
at least equivalent to the first. The advantage of the second expression is
that it gives us two numbers to consider: x and 5/x.

For example, suppose we guess that x = 2. Of course this is incorrect,
because 22 = 4, not 5. The two numbers we get from the second expression
are 2 and 5/2 = 2.5. One is smaller than

√
5, the other is larger (because

2.52 = 6.25). Perhaps their average is a better estimate. The average is 2.25,
and 2.252 = 5.0625.

Although 2.25 is not
√

5, it is a better estimate than either 2.5 or 2. If
we change x to 2.25, then

x = 2.25 ,
5

x
= 2.222 , and their average is 2.236 .

Is 2.236 a better estimate than 2.5 or 2.222? Indeed it is: 2.2362 = 4.999696.
If we now change x to 2.236, a remarkable thing happens:

x = 2.236 ,
5

x
= 2.236 , and their average is 2.236 !

In other words, if we want accuracy to three decimal places, we have already
found

√
5. All the digits have stabilized.

Suppose we want greater accuracy? Our routine readily obliges. If we set
x = 2.236000, then

x = 2.236000 ,
5

x
= 2.236136 , and their average is 2.236068 .

In fact,
√

5 = 2.236068 . . . is accurate to six decimal places.

Here is a summary of the argument we have just developed, expressed in
terms of

√
a for an arbitrary positive number a.
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If x is an estimate for
√

a,
then the average of x and a/x

is a better estimate.

Once we choose an initial estimate, this argument constructs a sequence of
successive approximations to

√
a. The process of constructing the sequence

is called the Babylonian algorithm for square roots.

A procedure that tells us how to carry out a sequence of steps, one at
a time, to reach a specific goal is called an algorithm. Many algebraic
processes are algorithms. The word is a Latinization of the name of the
Persian astronomer Muhammad al-Khwarizmı (c.780a.d.–c.850a.d.), who
lived and worked in Baghdad. The title of his seminal book Hisab al-jabr
wal-muqa bala (830a.d.)—usually referred to simply as al-Jabr—has a Latin
form that is even more familiar to mathematics students.

The Babylonian algorithm takes the current estimate x for
√

a that we
have at each stage and says “replace x by the average of x and a/x.” This kind
of instruction is ideally suited to a computer, because A = B in a computer
program means “replace the current value of A by the current value of B.” In
the program BABYLON printed below, the algorithm is realized by a FOR -

NEXT loop with a single line that reads “x = (x + a / x) / 2”.

The three-step procedure that we used in chapter 1 to obtain values of
S, I, and R in the epidemic problem is also an algorithm, and for that
reason it was a straightforward matter to express it as the computer program
SIRVALUE.

Program: BABYLON
An algorithm to find

√
a

a = 5

x = 2

n = 6

FOR k = 1 TO n

x = (x + a / x) / 2

PRINT x

NEXT k

Output:

2.25

2.236111

2.236068

2.236068

2.236068

2.236068
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Exercises

In many of the questions below you are asked to do things like divide an arc
into 2,000,000 segments or find a certain number to 8 decimal places. This
assumes you have fast computers available. If you are using slower machines Use common sense in

deciding how close an
approximation to make

or programmable calculators, you should certainly feel free to scale back
what is called for—perhaps to 200,000 segments or 6 decimal places. Use
your own common sense; there’s no value in sitting in front of a screen for an
hour waiting for an answer to emerge. To approximate a length by 200,000
segments will take 10 times as long as to approximate it by 20,000 segments,
which in turn will take 10 times as long as the 2,000 segment approximation.
If you start with the cruder approximations, you should be able to get a good
sense of what is reasonable to attempt with the facilities you have available,
and modify what the problems call for accordingly.

1. By using a computer to graph y = x2 − 2x, find the solutions of the
equation x2 = 2x to four decimal place accuracy.

The program LENGTH

2. Run the program LENGTH to verify that it gives the lengths of the
individual segments and their total length.

3. What line in the program gives the instruction to work with the function
f(x) = x2? What line indicates the number of segments to be measured?

4. Each segment has a left and a right endpoint. What lines in the program
designate the x- and y-coordinates of the left endpoint; the right endpoint?

5. Where in the program is the length of the k-th segment calculated? The
segment is treated as the hypotenuse of a triangle whose length is measured
by the Pythagorean theorem. How is the base of that triangle denoted in the
program? How is the altitude of that triangle denoted?

6. Modify the program so that it uses 20 segments to estimate the length
of the parabola. What is the estimated value?

7. Modify the program so that it estimates the length of the parabola us-
ing 200, 2, 000, 20, 000, 200, 000, and 2, 000, 000 segments. Compare your
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results with those tabulated below. [To speed the process up, you will cer-
tainly want to delete the PRINT k, segment statement that appears inside
the loop. Do you see why?]

Number Sum
of line segments of their lengths

2
20

200
2 000

20 000
200 000

2 000 000

1.460 404 813
1.478 756 512
1.478 940 994
1.478 942 839
1.478 942 857
1.478 942 857
1.478 942 857

8. What is the length of the parabola y = x2 over the interval 0 ≤ x ≤ 1,
correct to 8 decimal places? What is the length, correct to 12 decimal places?

9. Starting at the origin, and moving along the parabola y = x2, where are
you when you’ve gone a total distance of 10?

10. Modify the program to find the length of the curve y = x3 over the
interval 0 ≤ x ≤ 1. Find a value that is correct to 8 decimal places.

11. Back to the circle. Consider the unit circle centered at the origin.
Pythagoras’ Theorem shows that a point (x, y) is on the circle if and only if
x2 + y2 = 1. If we solve this for y in terms of x, we get y = ±

√
1 − x2, where

the plus sign gives us the upper half of the circle and the minus sign gives
the lower half. This suggests that we look at the function g(x) =

√
1 − x2.

The arclength of g(x) over the interval −1 ≤ x ≤ 1 should then be exactly
π.

a) Divide the interval into 100 pieces—what is the corresponding length?

b) How many pieces do you have to divide the interval into to get an accuracy
equal to that of Archimedes?

c) Find the length of the curve y = g(x) over the interval −1 ≤ x ≤ 1,
correct to eight decimal places accuracy.

12. This question concerns the function h(x) =
4

1 + x2
.
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a) Sketch the graph of y = h(x) over the interval −2 ≤ x ≤ 2.

b) Find the length of the curve y = h(x) over the interval −2 ≤ x ≤ 2.

13. Find the length of the curve y = sin x over the interval 0 ≤ x ≤ π.

The program BABYLON

14. Run the program BABYLON on a computer to verify the tabulated
estimates for

√
5.

15. In whatever computer language you are using, it should be possible to
tell the computer to print out more decimals. Your teacher can tell you
how this is handled on your computers. Modify BABYLON to run with at
least 14-digit precision in this and the following problems. Also modify the
program so it prints out the square of the estimate each time as well. What
is the estimated value of

√
5 in this circumstance? How many steps were

needed to get this value? Use the square of this estimate as a measure of its
accuracy. What is the square?

16. Use the Babylonian algorithm to find
√

80.

a) First use 2 as your initial estimate. How many steps are needed for the
calculations to stabilize—that is, to reach a value that doesn’t change from
one step to the next?

b) Since 92 = 81, a good first estimate for
√

80 is 9. How many steps are
needed this time for the calculations to stabilize? Are the final values in (a)
and (b) the same?

17. Use the Babylonian algorithm to find
√

250 and
√

1990. If you use
2 as the initial estimate in each case, how many steps are needed for the
calculations to stabilize? If you use the integer nearest to the final answer as
your initial estimate, then how many steps are needed? Square your answers
to measure their accuracy.

18. The Babylonian algorithm is considered to be very fast, in the sense
that each stage roughly doubles the number of digits that stabilize. Does your
work on the preceding exercises confirm this observation? By comparison,
is the routine that got the estimates for S(3) (computed with the program
SIRVALUE) faster or slower than the Babylonian algorithm?
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2.4 Chapter Summary

The Main Ideas

• The exact numerical value of a quantity may not be known; the value
is often given by an approximation.

• A numerical quantity is often given as the limit of a sequence of suc-
cessive approximations.

• When a particular digit in a sequence of successive approximations
stabilizes, that digit is assumed to appear in the limit.

• Euler’s method is a procedure to construct a sequence of increas-
ingly better approximations of a function defined by a set of rate
equations and initial conditions. Each approximation is a piecewise
linear function.

• The exact function defined by a set of rate equations and initial condi-
tions can be expressed as the limit of a sequence of successive Euler
approximations with smaller and smaller step sizes.

Expectations

• You should be able to use a program to construct a sequence of
estimates for S, I, and R, given a specific S-I-R model with initial
conditions.

• You should be able to modify the SIRVALUE and SIRPLOT programs
to construct a sequence of estimates for the values of functions defined
by other rate equations and initial conditions.

• You should be able to use programs that construct a sequence of Eu-
ler approximations for the function defined by a rate equation with
an initial condition. The programs should provide both tabular and
graphical output.

• You should be able to estimate the values of the roots of an equation
f(x) = 0 using a computer graphing package.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

2.4. CHAPTER SUMMARY 99

• You should be able to find a square root using the Babylonian algo-
rithm.

• You should be able to find the length of any piece of any curve.

Chapter Exercises

1. a) We have considered the logistic equation

y′ = .1y
(

1 − y

1000

)

On page 81 we looked at the resulting graph of y vs. t, using the starting
value y(0) = 100. There is another graphical interpretation, though, that is
also instructive. Note that the logistic equation specifies y′ as a function of y.
Sketch the graph of this function. That is, plot y values on the horizontal
axis and y′ values on the vertical axis; points on the graph will thus be of
the form (y, y′), where the y′-coordinate is the value given by the logistic
equation for the given y value. What shape does the graph have?

b) For what value of y does this graph take on its largest value? Where does
this y value appear in the graph of y(t) versus t?

c) For what values of y does the graph of y′ versus y cross the y-axis? Where
do these y values appear in the graph of y(t) versus t?

Grids on Graphs

When writing a graphing program it is often useful to have the computer draw
a grid on the screen. This makes it easier to estimate numerical values, for
instance. We can use a simple FOR–NEXT loop inside a program to do this.
For instance, suppose we had written a program (SIRPLOT or SEQUENCE,
for instance) with the graphics already in place. Suppose the screen window
covered values from 0 to 100 horizontally, and 0 to 50,000 vertically. If we
wanted to draw 21 vertical lines (including both ends) spaced 5 units apart
and 11 horizontal lines spaced 5,000 units apart, the following two loops
inserted in the program would work:
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FOR k = 0 TO 20

Plot the line from (5 * k, 0) to (5 * k, 50000)

NEXT k

FOR k = 0 TO 10
Plot the line from (0, 5000 * k) to (100, 5000 * k)

NEXT k

You should make sure you see how these loops work and that you can modify
them as needed.

2. If the screen window runs from −20 to 120 horizontally, and 250 to 750
vertically, how would you modify the loops above to create a vertical grid
spaced 10 units apart and a horizontal grid spaced 25 units apart?

3. Go back to our basic S-I-R model. Modify SIRPLOT to calculate and
plot on the same graph the values of S(t), I(t), and R(t) for t going from 0
to 120, using a stepsize of ∆t = .1. Include a grid with a horizontal spacing
of 5 days, and a vertical spacing of 2000 people. You should get something
that looks like this:
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Chapter 3

The Derivative

In developing the S-I-R model in chapter 1 we took the idea of the rate of
change of a population as intuitively clear. The rate at which one quantity
changes with respect to another is a central concept of calculus and leads to a
broad range of insights. The chief purpose of this chapter is to develop a fuller
understanding—both analytic and geometric—of the connection between a
function and its rate of change. To do this we will introduce the concept of
the derivative of a function.

3.1 Rates of Change

The Changing Time of Sunrise

The sun rises at different times, depending on the date and location. At 40◦ The time of sunrise
is a functionN latitude (New York, Beijing, and Madrid are about at this latitude) in the

year 1990, for instance, the sun rose at

7:16 on January 23,
5:58 on March 24,
4:52 on July 25.

Clearly the time of sunrise is a function of the date. If we represent the time
of sunrise by T (in hours and minutes) and the date by d (the day of the
year), we can express this functional relation in the form T = T (d). For
example, from the table above we find T (23) = 7:16. It is not obvious from
the table, but it is also true that the the rate at which the time of sunrise
is changing is different at different times of the year—T ′ varies as d varies.

101
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We can see how the rate varies by looking at some further data for sunrise
at the same latitude, taken from The Nautical Almanac for the Year 1990 :

date time date time date time

January 20
23
26

7:18
7:16
7:14

March 21
24
27

6:02
5:58
5:53

July 22
25
28

4:49
4:52
4:54

Let’s use this table to estimate the rate at which the time of sunrise is
changing on January 23. We’ll use the times three days earlier and threeCalculate the rate

using earlier and
later dates

days later, and compare them. On January 26 the sun rose 4 minutes earlier
than on January 20. This is a change of −4 minutes in 6 days, so the rate of
change is

−4
minutes

6 days
≈ −.67 minutes per day.

We say this is the rate at which sunrise is changing on January 23, and we
write

T ′(23) ≈ −.67
minutes

day
.

The rate is negative because the time of sunrise is decreasing—the sun is
rising earlier each day.

Similarly, we find that around March 24 the time of sunrise is changing
approximately −9/6 = −1.5 minutes per day, and around July 25 the rate
is 5/6 ≈ +.8 minutes per day. The last value is positive, since the time of
sunrise is increasing—the sun is rising later each day in July. Since March
24 is the 83rd day of the year and July 25 is the 206th, using our notation
for rate of change we can write

T ′(83) ≈ −1.5
minutes

day
; T ′(206) ≈ .8

minutes

day
.

Notice that, in each case, we have calculated the rate on a given day by using times shortly

before and shortly after that day. We will continue this pattern wherever possible. In particular,
you should follow it when you do the exercises about a falling object, at the end of the section.

Once we have the rates, we can estimate the time of sunrise for dates not
given in the table. For instance, January 28 is five days after January 23, so
the total change in the time of sunrise from January 23 to January 28 should
be approximately

∆T ≈ −.67
minutes

day
× 5 days = −3.35 minutes.
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In whole numbers, then, the sun rose 3 minutes earlier on January 28 than
on January 23. Since sunrise was at 7:16 on the 23rd, it was at 7:13 on the
28th.

By letting the change in the number of days be negative, we can use this
same reasoning to tell us the time of sunrise on days shortly before the given
dates. For example, March 18 is −6 days away from March 24, so the change
in the time of sunrise should be

∆T ≈ −1.5
minutes

day
×−6 days = +9 minutes.

Therefore, we can estimate that sunrise occurred at 5:58 + 0:09 = 6:07 on
March 18.

Changing Rates

Suppose instead of using the tabulated values for March we tried to use our
January data to predict the time of sunrise in March. Now March 24 is
60 days after January 23, so the change in the time of sunrise should be
approximately

∆T ≈ −.67
minutes

day
× 60 days = −40.2 minutes,

and we would conclude that sunrise on March 24 should be at about 7:16
− 0:40 = 6:37, which is more than half an hour later than the actual time!
This is a problem we met often in estimating future values in the S-I-R
model. implicitly assume that the time of sunrise changes at the fixed rate Predictions over

long time spans
are less reliable

of −.67 minutes per day over the entire 60-day time-span. But this turns out
not to be true: the rate actually varies, and the variation is too great for us
to get a useful estimate. Only with a much smaller time-span does the rate
not vary too much.

Here is the same lesson in another context. Suppose you are travelling in
a car along a busy road at rush hour and notice that you are going 50 miles
per hour. You would be fairly confident that in the next 30 seconds (1/120
of an hour) you will travel about

∆ position ≈ 50
miles

hour
× 1

120
hour =

5

12
mile = 2200 feet.

The actual value ought to be within 50 feet of this, making the estimate
accurate to within about 2% or 3%. On the other hand, if you wanted to
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estimate how far you would go in the next 30 minutes, your speed would
probably fluctuate too much for the calculation

∆ position ≈ 50
miles

hour
× 1

2
hours = 25 miles

to have the same level of reliability.

Other Rates, Other Units

In the S-I-R model the rates we analyzed were population growth rates.
They told us how the three populations changed over time, in units of persons
per day. If we were studying the growth of a colony of mold, measuring its
size by its weight (in grams), we could describe its population growth rate
in units of grams per hour. In discussing the motion of an automobile, the
rate we consider is the velocity (in miles per hour), which tells us how the
distance from some starting point changes over time. We also pay attention
to the rate at which velocity changes over time. This is called acceleration,
and can be measured in miles per hour per hour.

While many rates do involve changes with respect to time, other rates
do not. Two examples are the survival rate for a disease (survivors per
thousand infected persons) and the dose rate for a medicine (milligrams per
pound of body weight). Other common rates are the annual birth rate andExamples of rates

the annual death rate, which might have values like 19.3 live births per 1,000
population and 12.4 deaths per 1,000 population. Any quantity expressed
as a percentage, such as an interest rate or an unemployment rate, is a
rate of a similar sort. An unemployment rate of 5%, for instance, means
5 unemployed workers per 100 workers. There are many other examples of
rates in the economic world that make use of a variety of units—exchange
rates (e.g., francs per dollar), marginal return (e.g., dollars of profit per dollar
of change in price).

Sometimes we even want to know the rate of change of one rate with
respect to another rate. For example, automobile fuel economy (in miles perThe rate of change

of a rate gallon—the first rate) changes with speed (in miles per hour—the second
rate), and we can measure the rate of change of fuel economy with speed.
Take a car that goes 22 miles per gallon of fuel at 50 miles per hour, but only
19 miles per gallon at 60 miles per hour. Then its fuel economy is changing
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approximately at the rate

∆ fuel economy

∆ speed
=

19 − 22 miles per gallon

60 − 50 miles per hour

= −.3 miles per gallon per mile per hour.

Exercises

A falling object. These questions deal with an object that is held motion-
less 10,000 feet above the surface of the ocean and then dropped. Start a
clock ticking the moment it is dropped, and let D be the number of feet it
has fallen after the clock has run t seconds. The following table shows some
of the values of t and D.

time distance
(seconds) (feet)

0
1
2
3
4
5
6
7

0.00
15.07
56.90

121.03
203.76
302.00
413.16
535.10

1. What units do you use to measure velocity—that is, the rate of change
of distance with respect to time—in this problem?

2. a) Make a careful graph that shows these eight data points. Put time
on the horizontal axis. Label the axes and indicate the units you are using
on each.

b) The slope of any line drawn on this time–distance graph has the units of
a velocity. Explain why.

3. Make three estimates of the velocity of the falling object at the 2 second
mark using the distances fallen between these times:

i) from 1 second to 2 seconds;
ii) from 2 seconds to 3 seconds;
iii) from 1 second to 3 seconds.
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4. a) Each of the estimates in the previous question corresponds to the
slope of a particular line you can draw in your graph. Draw those lines and
label each with the corresponding velocity.

b) Which of the three estimates in the previous question do you think is
best? Explain your choice.

5. Using your best method, estimate the velocity of the falling object after
4 seconds have passed.

6. Is the object speeding up or slowing down as it falls? How can you tell?

7. Approximate the velocity of the falling object after 7 seconds have passed.
Use your answer to estimate the number of feet the object has fallen after
8 seconds have passed. Do you think your estimate is too high or too low?
Why?

8. For those of you attending a school at which you pay tuition, find out
what the tuition has been for each of the last four years at your school.

a) At what rate has the tuition changed in each of the last three years?
What are the units? In which year was the rate the greatest?

b) A more informative rate is often the inflation rate which doesn’t look at
the dollar change per year, but at the percentage change per year—the dollar
change in tuition in a year’s time expressed as a percentage of the tuition at
the beginning of the year. What is the tuition inflation rate at your school
for each of the last three years? How do these rates compare with the rates
you found in part (a)?

c) If you were interested in seeing how the inflation rate was changing over
time, you would be looking at the rate of change of the inflation rate. What
would the units of this rate be? What is the rate of change of the inflation
rate at your school for the last two years?

d) Using all this information, what would be your estimate for next year’s
tuition?

9. Your library should have several reference books giving annual statistics
of various sorts. A good one is the Statistical Yearbook put out by the United
Nations with detailed data from all over the world on manufacturing, trans-
portation, energy, agriculture, tourism, and culture. Another is Historical
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Statistics of the United States, Colonial Times – 1970. Select an interest-
ing quantity and compare its growth rate at different times or for different
countries. Calculate this growth rate over a stretch of four or five years and
report whether there are any apparent patterns. Calculate the rate of change
of this growth rate and interpret its values.

10. Oceanographers are very interested in the temperature profile of the
part of the ocean they are studying. That is, how does the temperature T
(in degrees Celsius) vary with the depth d (measured in meters). A typical
temperature profile might look something like the following:

temperature
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(Note that since water is densest at 4◦ C, water at that temperature settles
to the bottom.)

a) What are the units for the rate of change of temperature with depth?

b) In this graph will the rate be positive or negative? Justify your answer.

c) At what rate is the temperature changing at a depth of 0 meters? 500
meters? 1000 meters?

d) Sketch a possible temperature profile for this location if the surface is
iced over.

e) This graph is not oriented the way our graphs have been up til now. Why
do you suppose oceanographers (and geologists and atmospheric scientists)
often draw graphs with axes positioned like this?
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3.2 Microscopes and Local Linearity

The Graph of Data

jan mar may july sept nov4:00

5:00

6:00

7:00

8:00This section is about seeing
rates geometrically. We
know from chapter 1 that
we can visualize the rate of
change of a linear function
as the slope of its graph.
Can we say the same thing
about the sunrise function?
The graph of this function
appears at the right; it plots
the time of sunrise (over the

course of a year at 40◦ N latitude), as a function of the date. The graph
is curved, so the sunrise function is not linear. There is no immediately
obvious connection between rate and slope. In fact, it isn’t even clear what
we might mean by the slope of this graph! We can make it clear by using a
microscope.

Imagine we have a microscope that allows us to “zoom in” on the graphZoom in on the graph
with a microscope near each of the the three dates we considered in section 1. If we put each

magnified image in a window, then we get the following:

jan mar may july sept nov
4:00

5:00

6:00

7:00

8:00
c

b

a
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Notice how different the graph looks under the microscope. First of all, it
now shows up clearly as a collection of separate points—one for each day
of the year. Second, the points in a particular window lie on a line that The graph looks

straight under a
microscope

is essentially straight. The straight lines in the three windows have very
different slopes, but that is only to be expected.

What is the connection between these slopes and the rates of change we
calculated in the last section? To decide, we should calculate the slope in
each window. This involves choosing a pair of points (d1, T1) and (d2, T2) on
the graph and calculating the ratio

∆T

∆d
=

T2 − T1

d2 − d1
.

In window a we’ll take the two points that lie three days on either side of
the central date, January 23. These points have coordinates (20, 7:18) and
(26, 7:14) (table, page 102). The slope is thus

∆T

∆d
=

7:14 − 7:18

26 − 20
=

−4 minutes

6 days
= −.67

minutes

day
.

If we use the same approach in the other two windows we find that the line
in window b has slope −1.5 min/day, while the line in window c has slope Slope and

rate calculations
are the same

+.8 min/day. These are exactly the same calculations we did in section 1
to determine the rate of change of the time of sunrise around January 23,
March 24, and July 25, and they produce the same values we obtained there:

T ′(23) ≈ −.67
min

day
, T ′(83) ≈ −1.5

min

day
, T ′(206) ≈ .8

min

day
.

This is a crucial observation which we use repeatedly in other contexts; let’s
pause and state it in general terms:

The rate of change of a function at a point is equal to
the slope of its graph at that point, if the graph

looks straight when we view it under a microscope.

The Graph of a Formula

Rates and slopes are really the same thing—that’s what we learn by using a
microscope to view the graph of the sunrise function. But the sunrise graph
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consists of a finite number of disconnected points—a very common situation
when we deal with data. In such cases it doesn’t make sense to magnify the
graph too much. For instance, we would get no useful information from a
window that was narrower than the space between the data points. There isHigh-power

magnification is
possible with a formula

no such limitation if we use a microscope to look at the graph of a function
given by a formula, though. We can zoom in as close as we wish and still see
a continuous curve or line. By using a high-power microscope, we can learn
even more about rates and slopes.

Consider this rather complicated-looking function:

f(x) =
2 + x3 cos x + 1.5x

2 + x2
.

Let’s find f ′(27), the rate of change of f when x = 27. We need to zoom in
on the graph of f at the point (27, f(27)) = (27, 69.859043). We do this in
stages, producing a succession of windows that run clockwise from the upper
left. Notice how the graph gets straighter with each magnification.
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We will need a way to describe the part of the graph that we see in a window.
Let’s call it the field of view. The field of view of each window is only one- The field of view

of a windowtenth as wide as the previous one, and the field of view of the last window is
only one-millionth of the first! The last window shows what we would see if
we looked at the original graph with a million-power microscope.

The microscope used to study functions is real, but it is different from the one a biologist uses to
study micro-organisms. Our microscope is a computer graphing program that can “zoom in” on
any point on a graph. The computer screen is the window you look through, and you determine
the field of view when you set the size of the interval over which the graph is plotted.

Here is our point of departure: the rate f ′(27) is the slope of the
graph of f when we magnify the graph enough to make it look
straight. But how much is enough? Which window should we use? The
following table gives the slope ∆y/∆x of the line that appears in each of the
last four windows in the sequence. For ∆x we take the difference between
the x-coordinates of the points at the ends of the line, and for ∆y we take
the difference between the y-coordinates. In particular, the width of the field
of view in each case is ∆x.

∆x ∆y ∆y/∆x

.04

.004

.0004

.00004

−1.081 508 24× 10−2

−1.089 338 27× 10−3

−1.089 416 49× 10−4

−1.089 417 28× 10−5

−.270 377 066
−.272 334 556
−.272 354 131
−.272 354 327

As you can see, it does matter how much we magnify. The slopes ∆y/∆x
in the table are not quite the same, so we don’t yet have a definite value
for f ′(27). The table gives us an idea how we can get a definite value,
though. Notice that the slopes get more and more alike, the more we magnify.
In fact, under successive magnifications the first five digits of ∆y/∆x have
stabilized. We saw in chapter 2 how to think about a sequence of numbers
whose digits stabilize one by one. We should treat the values of ∆y/∆x as
successive approximations to the slope of the graph. The exact value of The slope is a limit

the slope is then the limit of these approximations as the width of the field
of view shrinks to zero:

f ′(27) = the slope of the graph = lim
∆x→0

∆y

∆x
.
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In the limit process we take ∆x → 0 because ∆x is the width of the field of
view. Since five digits of ∆y/∆x have stabilized, we can write

f ′(27) = −.27235 . . . .

To find f ′(x) at some other point x, proceed the same way. Magnify the
graph at that point repeatedly, until the value of the slope stabilizes. The
method is very powerful. In the exercises you will have an opportunity to
use it with other functions.

By using a microscope of arbitrarily high power, we have obtained further
insights about rates and slopes. In fact, with these insights we can now state
definitively what we mean by the slope of a curved graph and the rate of
change of a function.

Definition. The slope of a graph at a point is the limit of the
slopes seen in a microscope at that point, as the field of view
shrinks to zero.

Definition. The rate of change of a function at a point is the
slope of its graph at that point. Thus the rate of change is also
a limit.

To calculate the value of the slope of the graph of f(x) when x = a, we
have to carry out a limit process. We can break down the process into these
four steps:

1. Magnify the graph at the point (a, f(a)) until it appears straight.

2. Calculate the slope of the magnified segment.

3. Repeat steps 1 and 2 with successively higher magnifications.

4. Take the limit of the succession of slopes produced in step 3.

Local Linearity

The crucial property of a microscope is that it allows us to look at a graphA microscope gives
a local view locally, that is, in a small neighborhood of a particular point. The two

functions we have been studying in this section have curved graphs—like
most functions. But locally, their graphs are straight—or nearly so. This is
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a remarkable property, and we give it a name. We say these functions are
locally linear. In other words, a locally linear function looks like a linear
function, locally.

The graph of a linear function has a definite slope at every point, and
so does a locally linear function. For a linear function, the slope is easy
to calculate, and it has the same value at every point. For a locally linear
function, the slope is harder to calculate; it involves a limit process. The
slope also varies from point to point.

How common is local linearity? All the standard functions you already All the standard
functions are

locally linear at
almost all points

deal with are locally linear almost everywhere. To see why we use the quali-
fying phrase “almost everywhere,” look at what happens when we view the
graph of y = f(x) = x2/3 with a microscope. At any point other than the
origin, the graph is locally linear. For instance, if we view this graph over the
interval from 0 to 2 and then zoom in on the point (1, 1) by two successive
powers of 10, here’s what we see:

(1, 1)

(0, 0)

(2, 1.58740)

10x

(1, 1)

(.9, .932170)

(1.1, 1.06560)

10x

(1, 1)

(.99, .993322)

(1.01, 1.00666)

As the field of view shrinks, the graph looks more and more like a straight
line. Using the highest magnification given, we estimate the slope of the
graph—and hence the rate of change of the function—to be

f ′(1) ≈ ∆y

∆x
=

1.006656 − .993322

1.01 − .99
=

.013334

.02
= .6667.

Similarly, if we zoom in on the point (.001, .01) we get:

(-.2333, .379) (.2333, .379)

(.001, .01)

(-.00738, .0379) (.00738, .0379)

(.001, .01)

(.00072, .00803)

(.00128, .01179)

(.001, .01)
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In the last window the graph looks like a line of slope

f ′(.001) ≈ .0118 − .0082

.00128181 − .00074254
=

.0036

.00053937
= 6.674.

At the origin, though, something quite different happens:

(-.465, .6) (.465, .6)

(0, 0)

(-.0147, .06) (.0147, .06)

(0, 0)

(-.00046, .006) (.00046, .006)

(0, 0)

The graph simply looks more and more sharply pointed the closer we zoom
in to the origin—it never looks like a straight line. However, the origin turns
out to be the only point where the graph does not eventually look like a
straight line.

In spite of these examples, it is important to realize that local linearity is a
very special property. There are some functions that fail to be locally linear
anywhere! Such functions are called fractals. No matter how much youFractals are locally

non-linear objects magnify the graph of a fractal at any point, it continues to look non-linear—
bent and “pointy” in various ways. In recent years fractals have been used in
problems where the more common (locally linear) functions are inadequate.
For instance, they describe irregular shapes like coastlines and clouds, and
they model the way molecules are knocked about in a fluid (this is called
Brownian motion). However, calculus does not deal with such functions. On
the contrary,

Calculus studies functions that are
locally linear almost everywhere.
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Exercises

Using a microscope

1. Use a computer microscope to do the following. (A suggestion: first look
at each graph over a fairly large interval.)

a) With a window of size ∆x = .002, estimate the rate f ′(1) where f(x) =
x4 − 8x.

b) With a window of size ∆x = .0002, estimate the rate g′(0) where g(x) =
10x.

c) With a window of size ∆t = .05, estimate the slope of the graph of
y = t + 2−t at t = 7.

d) With a window of size ∆z = .0004, estimate the slope of the graph of
w = sin z at z = 0.

2. Use a computer microscope to determine the following values, correct to 1
decimal place. Obtain estimates using a sequence of windows, and shrink the
field of view until the first 2 decimal places stabilize. Show all the estimates
you constructed in each sequence.

a) f ′(1) where f(x) = x4 − 8x.

b) h′(0) where h(s) = 3s.

c) The slope of the graph of w = sin z at z = π/4.

d) The slope of the graph of y = t + 2−t at t = 7.

e) The slope of the graph of y = x2/3 at x = −5.

3. For each of the following functions, magnify its graph at the indicated
point until the graph appears straight. Determine the equation of that
straight line. Then verify that your equation is correct by plotting it as
a second function in the same window you are viewing the given function.
(The two graphs should “share phosphor”!)

a) f(x) = sin x at x = 0;

b) ϕ(t) = t + 2−t at t = 7;

c) H(x) = x2/3 at x = −5.

4. Consider the function that we investigated in the text:

f(x) =
2 + x3 cos x + 1.5x

2 + x2
.
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a) Determine f(0).

b) Make a sketch of the graph of f on the interval −1 ≤ x ≤ 1. Use the
same scale on the horizontal and vertical axes so your graph shows slopes
accurately.

c) Sketch what happens when you magnify the previous graph so the field
of view is only −.001 ≤ x ≤ .001.

d) Estimate the slope of the line you drew in the part (c).

e) Estimate f ′(0). How many decimal places of accuracy does your estimate
have?

f) What is the equation of the line in part (c)?

5. A function that occurs in several different contexts in physical problems
is

g(x) =
sin x

x
.

Use a graphing program to answer the following questions.

a) Estimate the rate of change of g at the following points to two decimal
place accuracy:

g′(1), g′(2.79), g′(π), g′(3.1).

b) Find three values of x where g′(x) = 0.

c) In the interval from 0 to 2π, where is g decreasing the most rapidly? At
what rate is it decreasing there?

d) Find a value of x for which g′(x) = – 0.25.

e) Although g(0) is not defined, the function g(x) seems to behave nicely in
a neighborhood of 0. What seems to be true about g(x) and g′(x) when x is
near 0?

f) According to your graphs, what value does g(x) approach as x → 0?
What value does g′(x) approach as x → 0?

Rates from graphs; graphs from rates

6. a) Sketch the graph of a function f that has f(1) = 1 and f ′(1) = 2.

b) Sketch the graph of a function f that has f(1) = 1, f ′(1) = 2, and
f(1.1) = −5.
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7. A and B start off at the same time, run to a point 50 feet away, and
return, all in 10 seconds. A graph of distance from the starting point as a
function of time for each runner appears below. It tells where each runner is
during this time interval.

a) Who is in the lead during the race?

b) At what time(s) is A farthest ahead of B? At what time(s) is B farthest
ahead of A?

c) Estimate how fast A and B are going after one second.

d) Estimate the velocities of A and B during each of the ten seconds. Be
sure to assign negative velocities to times when the distance to the starting
point is shrinking. Use these estimates to sketch graphs of the velocities of
A and B versus time. (Although the velocity of B changes rapidly around
t = 5, assume that the graph of B’s distance is locally linear at t = 5.)

e) Use your graphs in (d) to answer the following questions. When is A
going faster than B? When is B going faster than A? Around what time is
A running at −5 feet/second (i.e., running 5 feet/second toward the starting
point)?
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8. For each of the following functions draw a graph that reflects the given
information. Restate the given information in the language and notation of
rate of change, paying particular attention to the units in which any rate of
change is expressed.

a) A woman’s height h (in inches) depends on her age t (in years). Babies
grow very rapidly for the first two years, then more slowly until the adolescent
growth spurt; much later, many women actually become shorter because of
loss of cartilage and bone mass in the spinal column.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

118 CHAPTER 3. THE DERIVATIVE

b) The number R of rabbits in a meadow varies with time t (in years). In
the early years food is abundant and the rabbit population grows rapidly.
However, as the population of rabbits approaches the “carrying capacity” of
the meadow environment, the growth rate slows, and the population never
exceeds the carrying capacity. Each year, during the harsh conditions of
winter, the population dies back slightly, although it never gets quite as low
as its value the previous year.

c) In a fixed population of couples who use a contraceptive, the average
number N of children per couple depends on the effectiveness E (in percent)
of the contraceptive. If the couples are using a contraceptive of low effec-
tiveness, a small increase in effectiveness has a small effect on the value of
N . As we look at contraceptives of greater and greater effectiveness, small
additional increases in effectiveness have larger and larger effects on N .

9. If we graph the distance travelled by a parachutist in freefall as a function
of the length of time spent falling, we would get a picture something like the
following:
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a) Use this graph to make estimates of the parachutist’s velocity at the end
of each second.

b) Describe what happens to the velocity as time passes.

c) How far do you think the parachutist would have fallen by the end of 15
seconds?

10. True or false. If you think a statement is true, give your reason; if
you think a statement is false, give a counterexample—i.e., an example that
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shows why it must be false.

a) If g′(t) is positive for all t, we can conclude that g(214) is positive.

b) If g′(t) is positive for all t, we can conclude that g(214) > g(17).

c) Bill and Samantha are driving separate cars in the same direction along
the same road. At the start Samantha is 1 mile in front of Bill. If their
speeds are the same at every moment thereafter, at the end of 20 minutes
Samantha will be 1 mile in front of Bill.

d) Bill and Samantha are driving separate cars in the same direction along
the same road. They start from the same point at 10 am and arrive at the
same destination at 2 pm the same afternoon. At some time during the four
hours their speeds must have been exactly the same.

When local linearity fails

11. The absolute value function f(x) = |x| is not locally linear at x = 0.
Explore this fact by zooming in on the graph at (0, 0). Describe what you
see in successively smaller windows. Is there any change?

12. Find three points where the function f(x) = | cos x| fails to be locally
linear. Sketch the graph of f to demonstrate what is happening.

13. Zoom in on the graph of y = x4/5 at (0, 0). In order to get an accurate
picture, be sure that you use the same scales on the horizontal and vertical
axes. Sketch what you see happening in successive windows. Is the function
x4/5 locally linear at x = 0?

14. Is the function x4/5 locally linear at x = 1? Explain your answer.

15. This question concerns the function K(x) = x10/9.

a) Sketch the graph of K on the interval −1 ≤ x ≤ 1. Compare K to the
absolute value function |x|. Are they similar or dissimilar? In what ways?
Would you say K is locally linear at the origin, or not?

b) Magnify the graph of K at the origin repeatedly, until the field of view
is no bigger than ∆x ≤ 10−10. As you magnify, be sure the scales on the
horizontal and vertical axes remain the same, so you get a true picture of the
slopes. Sketch what you see in the final window.

c) After using the microscope do you change your opinion about the local
linearity of K at the origin? Explain your response.
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3.3 The Derivative

Definition

One of our main goals in this chapter is to make precise the notion of the
rate of change of a function. In fact, we have already done that in the last
section. We defined the rate of change of a function at a point to be the
slope of its graph at that point; we defined the slope, in turn, by a four-step
limit process. Thus, the precise definition of a rate of change involves a limit,
and it involves geometric visualization—we think of a rate as a slope. We
introduce a new word—derivative—to embrace both of these concepts as we
now understand them.

Definition. The derivative of the function f(x) at x = a is its
rate of change at x = a, which is the same as the slope of its
graph at (a, f(a)). The derivative of f at a is denoted f ′(a).

Later in this section we will extend our interpretation of the derivative
to include the idea of a multiplier, as well as a rate and a slope. Besides
providing us with a single word to describe rates, slopes, and multipliers,
the term “derivative” also reminds us that the quantity f ′(a) is derived from
information about the function f in a particular way. It is worth repeating
here the four steps by which we derive f ′(a):

1. Magnify the graph at the point (a, f(a)) until it appears straight.

2. Calculate the slope of the magnified segment.

3. Repeat steps 1 and 2 with successively higher magnifications.

4. Take the limit of the succession of slopes produced in step 3.

We can express this limit in analytic form in the following way:

f ′(a) = lim
∆x→0

∆y

∆x
= lim

h→0

f(a + h) − f(a − h)

2h
.

The difference quotient

∆y

∆x
=

f(a + h) − f(a − h)

2h

is the usual way we estimate the slope of the magnified graph of f at the
point (a, f(a)). As the following figure shows, the calculation involves two
points equally spaced on either side of (a, f(a)).
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Estimating the value of the derivative f ′(a)

Choosing points in a window. To estimate the
slope in the window above, we chose two particular
points, (a−h, f(a−h)) and (a+h, f(a+h)). However,
any two points in the window would give us a valid
estimate. Our choice depends on the situation. For
example, if we are working with formulas, we want
simple expressions. In that case we would probably
replace (a − h, f(a − h)) by (a, f(a)). We do that in
the window on the left. The resulting slope is
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f(a + h)

∆x

∆y

∆y = f(a + h) − f(a)

∆y

∆x
=

f(a + h) − f(a)

h
.

While the limiting value of ∆y/∆x doesn’t depend on the choices you make,
the estimates you produce with a fixed ∆x can be closer to or farther from
the true value. The exercises will explore this.

Data versus formulas. The derivative is a limit. To find that limit we
have to be able to zoom in arbitrarily close, to make ∆x arbitrarily small.
For functions given by data, that is usually impossible; we can’t use any ∆x
smaller than the spacing between the data points. Thus, a data function of A data function might

not have a derivativethis sort does not have a derivative, strictly speaking. However, by zooming
in as much as the data allow, we get the most precise description possible
for the rate of change of the function. In these circumstances it makes a
difference which points we choose in a window to calculate ∆y/∆x. In the
exercises you will have a chance to see how the precision of your estimate
depends on which points you choose to calculate the slope.
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For a function given by a formula, it is possible to find the value of the
derivative exactly. In fact, the derivative of a function given by a formula is
itself given by a formula. Later in this chapter we will describe some generalThere are rules for

finding derivatives rules which will allow us to produce the formula for the derivative without
going through the successive approximation process each time. In chapter 5
we will discuss these rules more fully.

Practical considerations. The derivative is a limit, and there are always
practical considerations to raise when we discuss limits. As we saw in chapter
2, we cannot expect to construct the entire decimal expansion of a limit. In
most cases all we can get are a specified number of digits. For example, in
section 2 we found that

if f(x) =
2 + x3 cos x + 1.5x

2 + x2
, then f ′(27) = −.27235 . . . .

The same digits without the “. . . ” give us approximations. Thus we
can write f ′(27) ≈ −.27235; we also have f ′(27) ≈ −.2723 and f ′(27) ≈
−.272. Which approximation is the right one to use depends on the context.
For example, if f appears in a problem in which all the other quantities are
known only to one or two decimal places, we probably don’t need a very
precise value for f ′(27). In that case we don’t have to carry the sequence
of slopes ∆y/∆x very far. For instance, if we want to know f ′(27) to three
decimal places, and so justify writing f ′(27) ≈ −.272, we only need to con-
tinue the zooming process until the slopes ∆y/∆x all have values that begin
−.2723 . . . . By the table on page 111, ∆x = .0004 is sufficient.

Language and Notation

• If f has a derivative at a, we also say f is differentiable at a. If f is
differentiable at every point a in its domain, we say f is differentiable.
• Do locally linear and differentiable mean the same thing? The awkward
case is a function whose graph is vertical at a point (for example, y = 3

√
x

at the origin). On the one hand, it makes sense to say that the function
is locally linear at such a point, because the graph looks straight under a
microscope. On the other hand, the derivative itself is undefined, because
the line is vertical. So the function is locally linear, but not differentiable, at
that point.

There is another way to view the matter. We can say, instead, that a
vertical line does have a slope, and its value is infinity (∞). From this point
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of view, if the graph of f is vertical at x = a, then f ′(a) = ∞. In other
words, f does have a derivative at x = a; its value just happens to be ∞.

Which view is “right”? Neither; we can choose either. Our choice is a
matter of convention. (In some countries cars travel on the left; in others, Convention: if the

graph of f is vertical
at a, write f ′(a) = ∞

on the right. That’s a convention, too.) However, we will follow the second
alternative. One advantage is that we will be able to use the derivative to
indicate where the graph of a function is vertical. Another is that locally
linear and differentiable then mean exactly the same thing.
• Suppose y = f(x) and the quantities x and y appear in a context in which
they have units. Then the derivative of f ′(x) also has units, because it is the
rate of change of y with respect to x. The units for the derivative must be

units for f ′ =
units for output y

units for input x
.

We have already seen several examples—persons per day, miles per hour,
milligrams per pound, dollars of profit per dollar change in price—and we
will see many more.
• There are several notations for the derivative. You should be aware of them
because they are all in common use and because they reflect different ways
of viewing the derivative. We have been writing the derivative of y = f(x)
as f ′(x). Leibniz wrote it as dy/dx. This notation has several advantages. Leibniz’s notation

It resembles the quotient ∆y/∆x that we use to approximate the derivative.
Also, because dy/dx looks like a rate, it helps remind us that a derivative is
a rate. Later on, when we consider the chain rule to find derivatives, you’ll
see that it can be stated very vividly using Leibniz’s notation.

The German philosopher Gottfried Wilhelm Leibniz (1646-1716) developed calculus about the
same time Newton did. While Newton dealt with derivatives in more or less the way we do,
Leibniz introduced a related idea which he called a differential—‘infinitesimally small’ numbers
which he would write as dx and dy.

The other notation still encountered is due to Newton. It occurs primarily Newton’s notation

in physics and is used to denote rates with respect to time. If a quantity y
is changing over time, then the Newton notation expresses the derivative of
y as ẏ (that’s the variable y with a dot over it).
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The Microscope Equation

A Context: Driving Time

If you make a 400 mile trip at an average speed of 50 miles per hour, then
the trip takes 8 hours. Suppose you increase the average speed by 2 miles
per hour. How much time does that cut off the trip?

One way to approach this question is to start with the basic formula

speed × time = distance.

The distance is known to be 400 miles, and we really want to understandTravel time
depends on speed how time T depends on speed s. We get T as a function of s by rewriting

the last equation:

T hours =
400 miles

s miles per hour
.

To answer the question, just set s = 52 miles per hour in this equation.
Then T = 7.6923 hours, or about 7 hours, 42 minutes. Thus, compared to
the original 8 hours, the higher speed cuts 18 minutes off your driving time.

What happens to the driving time if you increase your speed by 4 miles
per hour, or 5, instead of 2? What happens if you go slower, say 2 or 3 miles
per hour slower? We could make a fresh start with each of these questions
and answer them, one by one, the same way we did the first. But taking the
questions one at a time misses the point. What we really want to know is
the general pattern:

If I’m travelling at 50 miles per hour, how much does any
How does travel time
respond to
changes in speed? given increase in speed decrease my travel time?

We already know how T and s are related: T = 400/s hours. This
question, however, is about the connection between a change in speed of

∆s = s − 50 miles per hour

and a change in arrival time of

∆T = T − 8 hours.

To answer it we should change our point of view slightly. It is not the relation
between s and T , but between ∆s and ∆T , that we want to understand.
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Since we are considering speeds s that are only slightly above or below
50 miles per hour, ∆s will be small. Consequently, the arrival time T will be
only slightly different from 8 hours, so ∆T will also be small. Thus we want
to study small changes in the function T = 400/s near (s, T ) = (50, 8). The
natural tool to use is a microscope.

47 50 53 mph
s

6

8

10

hrs

T

hhhhhhhhhhhhhhhhhhhhh

t
∆s

∆T

How travel time changes with speed around 50 miles per hour

In the microscope window above we see the graph of T = 400/s, magnified
at the point (s, T ) = (50, 8). The field of view was chosen so that s can take
values about 6 mph above or below 50 mph. The graph looks straight, and The slope of the graph

in the microscope
window

its slope is T ′(50). In the exercises you are asked to determine the value of
T ′(50); you should find T ′(50) ≈ −.16. (Later on, when we have rules for
finding the derivative of a formula, you will see that T ′(50) = −.16 exactly.)
Since the quotient ∆T/∆s is also an estimate for the slope of the line in the
window, we can write

∆T

∆s
≈ −.16 hours per mile per hour.

If we multiply both sides of this approximate equation by ∆s miles per hours,
we get

∆T ≈ −.16 ∆s hours.

This equation answers our question about the general pattern relating How travel time
changes with speedchanges in travel time to changes in speed. It says that the changes are

proportional. For every mile per hour increase in speed, travel time decreases
by about .16 hours, or about 91

2
minutes. Thus, if the speed is 1 mph over
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50 mph, travel time is cut by about 91
2

minutes. If we double the increase in
speed, that doubles the savings in time: if the speed is 2 mph over 50 mph,
travel time is cut by about 19 minutes. Compare this with a value of about
18 minutes that we got with the exact equation T = 400/s.

Notice that we are using ∆s and ∆T in a slightly more restricted way∆s and ∆T now have
a special meaning than we have previously. Up to now, ∆s measured the horizontal distance

between any two points on a graph. Now, however, ∆s just measures the
horizontal distance from the fixed point (s, T ) = (50, 8) (marked with a large
dot) that sits at the center of the window. Likewise, ∆T just measures the
vertical distance from this point. The central point therefore plays the role
of an origin, and ∆s and ∆T are the coordinates of a point measured from
that origin. To underscore the fact that ∆s and ∆T are really coordinates,
we have added a ∆s-axis and a ∆T -axis in the window below. Notice that
these coordinate axes have their own labels and scales.

Every point in the window can therefore be described in two different∆s and ∆T are
coordinates in the
window

coordinate systems. The two different sets of coordinates of the point labelled
P , for instance, are (s, T ) = (53, 7.52) and (∆s, ∆T ) = (3,−.48). The first
pair says “When your speed is 53 mph, the trip will take 7.52 hrs.” The
second pair says “When you increase your speed by 3 mph, you will decrease
travel time by .48 hrs.” Each statement can be translated into the other, but
each statement has its own point of reference.

47 50 53 mph
s

6

8

10

hrs

T

hhhhhhhhhhhhhhhhhhhhh

t

r
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3 ∆s

−2

2

∆T

The microscope equation: ∆T ≈ −.16 ∆s hours

We call ∆T ≈ −.16 ∆s the microscope equation because it tells us how
the microscope coordinates ∆s and ∆T are related.
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In fact, we now have two different ways to describe how travel time is
related to speed. They can be compared in the following table.

global local

coordinates: s, T ∆s, ∆T

equation: T = 400/s ∆T ≈ −.16 ∆s

properties:
exact

non-linear
approximate

linear

We say the microscope equation is local because it is intended to deal only Global vs. local
descriptionswith speeds near 50 miles per hour. There is a different microscope equation

for speeds near 40 miles per hour, for instance. By contrast, the original
equation is global, because it works for all speeds. While the global equation
is exact it is also non-linear; this can make it more difficult to compute. The
microscope equation is approximate but linear; it is easy to compute. It is
also easy to put into words:

At 50 miles per hour, the travel time of a 400 mile journey
decreases 91

2
minutes for each mile per hour increase in speed.

The connection between the global equation and the microscope equation is
shown in the following illustration.

-
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Local Linearity and Multipliers

The reasoning that led us to a microscope equation for travel time can be
applied to any locally linear function. If y = f(x) is locally linear, then at
x = a we can write

The microscope equation: ∆y ≈ f ′(a) · ∆x

We know an equation of the form ∆y = m · ∆x tells us that y is a linear
function of x, in which m plays the role of slope, rate, and multiplier. The
microscope equation therefore tells us that y is a linear function of x
when x is near a—at least approximately. In this almost-linear relation,
the derivative f ′(a) plays the role of slope, rate, and multiplier.

The microscope equation is just the idea of local linearity expressed an-The microscope
equation is the analytic
form of local linearity

alytically rather than geometrically—that is, by a formula rather than by a
picture. Here is a chart that shows how the two descriptions of local linearity
fit together.

y = f(x) is locally linear at x = a:

geometrically analytically

When magnified at (a, f(a)), When x is near a,

the graph of f is almost straight, y is almost a linear function of x,

and the slope of the line is f ′(a). and the multiplier is f ′(a).
microscope window

-

6

∆x

∆y

��
��
��
��
�

∆y ≈ f ′(a) · ∆x

microscope equation

Of course, the graph in a microscope window is not quite straight. The
analytic counterpart of this statement is that the microscope equation is not
quite exact—the two sides of the equation are only approximately equal.
We write “≈” instead of “=”. However, we can make the graph look even
straighter by increasing the magnification—or, what is the same thing, by
decreasing the field of view. Analytically, this increases the exactness of the
microscope equation. Like a laboratory microscope, our microscope is most
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accurate at the center of the field of view, with increasing aberration toward
the periphery!

In the microscope equation ∆y ≈ f ′(a) · ∆x, the derivative is the
multiplier that tells how y responds to changes in x. In particular,
a small increase in x produces a change in y that depends on the sign and
magnitude of f ′(a) in the following way:

• f ′(a) is large and positive ⇒ large increase in y,

• f ′(a) is small and positive ⇒ small increase in y,

• f ′(a) is large and negative ⇒ large decrease in y,

• f ′(a) is small and negative ⇒ small decrease in y.

x

y

∆x

∆y

∆x

∆y

∆x

∆y

∆x

∆y

For example, suppose we are told the value of the derivative is 2. Then
any small change in x induces a change in y approximately twice as large. If,
instead, the derivative is −1/5, then a small change in x produces a change in
y only one fifth as large, and in the opposite direction. That is, if x increases,
then y decreases, and vice-versa.

The microscope equation should look familiar to you. It has been with us The microscope
equation is the recipe
for building solutions

to rate equations

from the beginning of the course. Our “recipe” ∆S = S ′ · ∆t for predicting
future values of S in the S-I-R model is just the microscope equation for the
function S(t). (Although we wrote it with an “=” instead of an “≈” in the
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first chapter, we noted that ∆S would provide us only an estimate for the
new value of S.) The success of Euler’s method in producing solutions to
rate equations depends fundamentally on the fact that the functions we are
trying to find are locally linear.

The derivative is one of the fundamental concepts of the calculus, and
one of its most important roles is in the microscope equation. Besides giving
us a tool for building solutions to rate equations, the microscope equation
helps us do estimation and error analysis, the subject of the next section.

We conclude with a summary that compares linear and locally linear
functions. Note there are two differences, but only two: 1) the equation for
local linearity is only an approximation; 2) it holds only locally—i.e., near a
given point.

If y = f(x) is linear, If y = f(x) is locally linear,
then ∆y = m · ∆x; then ∆y ≈ f ′(a) · ∆x;
the constant m is the derivative f ′(a) is

rate, slope, and multiplier rate, slope, and multiplier
for all x. for x near a.

Exercises

Computing Derivatives

1. Sketch graphs of the following functions and use these graphs to deter-
mine which function has a derivative that is always positive (except at x = 0,
where neither the function nor its derivative is defined).

y =
1

x
y =

−1

x
y =

1

x2
y =

−1

x2

What feature of the graph told you whether the derivative was positive?

2. For each of the functions f below, approximate its derivative at the given
value x = a in two different ways. First, use a computer microscope (i.e.,
a graphing program) to view the graph of f near x = a. Zoom in until the
graph looks straight and find its slope. Second, use a calculator to find the
value of the quotient

f(a + h) − f(a − h)

2h
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for h = .1, .01, .001, . . . , .000001. Based on these values of the quotients, give
your best estimate for f ′(a), and say how many decimal places of accuracy
it has.

a) f(x) = 1/x at x = 2.

b) f(x) = sin(7x) at x = 3.

c) f(x) = x3 at x = 200.

d) f(x) = 2x at x = 5.

3. In a later section we will establish that the derivative of f(x) = x3 at
x = 1 is exactly 3: f ′(1) = 3. This question concerns the freedom we have
to choose points in a window to estimate f ′(1) (see page 121). Its purpose is
to compare two quotients, to see which gets closer to the exact value of f ′(1)
for a fixed “field of view” ∆x. The two quotients are

Q1 =
∆y

∆x
=

f(a + h) − f(a − h)

2h
and Q2 =

∆y

∆x
=

f(a + h) − f(a)

h
.

In this problem a = 1.

a) Construct a table that shows the values of Q1 and Q2 for each h = 1/2k,
where k = 0, 1, 2, . . . , 8. If you wish, you can use this program to compute
the values:

a = 1

FOR k = 0 TO 8

h = 1 / 2 ^ k

q1 = ((a + h) ^ 3 - (a - h) ^ 3) / (2 * h)

q2 = ((a + h) ^ 3 - a ^ 3) / h

PRINT h, q1, q2

NEXT k

b) How many digits of Q1 stabilize in this table? How many digits of Q2?

c) Which is a better estimator—Q1 or Q2? To indicate how much better,
give the value of h for which the better estimator provides an estimate that
is as close as the best estimate provided by the poorer estimator.

4. Repeat all the steps of the last question for the function f(x) =
√

x at
x = 9. The exact value of f ′(9) is 1/6.

Comment: Note that, in section 1, we estimated the rate of change of the
sunrise function using an expression like Q1 rather than one like Q2. The
previous exercises should persuade you this was deliberate. We were trying
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to get the most representative estimates, given the fact that we could not
reduce the size of ∆x arbitrarily.

5. At this point you will find it convenient to write a more general derivative-
finding program. You can modify the program in problem 3. to do this by
having a DEF command at the beginning of the program to specify the func-
tion you are currently interested in. For instance, if you insert the command
DEF fnf (x) = x ^ 3 at the beginning of the program, how could you sim-
plify the lines specifying q1 and q2? If you then wanted to calculate the
derivative of another function at a different x-value, you would only need to
change the DEF specification and, depending on the point you were interested
in, the a = 1 line.

6. Use one of the methods of problem 2 to estimate the value of the deriva-
tive of each of the following functions at x = 0:

y = 2x, y = 3x, y = 10x, and y = (1/2)x.

These are called exponential functions, because the input variable x appears
in the exponent. How many decimal places accuracy do your approximations
to the derivatives have?

7. In this problem we look again at the exponential function f(x) = 2x from
the previous problem.

a) Use the rules for exponents to put the quotient

f(a + h) − f(a)

h

in the simplest form you can.

b) We know that

f ′(0) = lim
h→0

f(h) − f(0)

h
.

Use this fact, along with the algebraic result of part (a), to explain why
f ′(a) = f ′(0) · 2a.

8. Apply all the steps of the previous question to the exponential function
f(x) = bx with an arbitrary base b. Show that f ′(x) = f ′(0) · bx.
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9. a) For which values of x is the absolute value function y = |x| differen-
tiable?

b) At each point where y = |x| is differentiable, find the value of the deriva-
tive.

The microscope equation

10. Write the microscope equation for each of the following functions at the
indicated point. (To find the necessary derivative, consult problem 2.)

a) f(x) = 1/x at x = 2.

b) f(x) = sin(7x) at x = 3.

c) f(x) = x3 at x = 200.

d) f(x) = 2x at x = 5.

11. This question uses the microscope equation for f(x) = 1/x at x = 2
that you constructed in the previous question.

a) Draw the graph of what you would see in the microscope if the field of
view is .2 units wide.

b) If we take x = 2.05, what is ∆x in the microscope equation? What
estimate does the microscope equation give for ∆y? What estimate does the
microscope equation then give for f(2.05) = 1/2.05? Calculate the true value
of 1/2.05 and compare the two values; how far is the microscope estimate
from the true value?

c) What estimate does the microscope equation give for 1/2.02? How far is
this from the true value?

d) What estimate does the microscope equation give for 1/1.995? How far
is this from the true value?

12. This question concerns the travel time function T = 400/s hours, dis-
cussed in the text.

a) How many hours does a 400-mile trip take at an average speed of 40 miles
per hour?

b) Find the microscope equation for T when s = 40 miles per hour.

c) At what rate does the travel time decrease as speed increases around 40
mph—in hours per mile per hour?

d) According to the microscope equation, how much travel time is saved by
increasing the speed from 40 to 45 mph?
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e) According to the microscope equation based at 50 mph (as done in the
text), how much time is lost by decreasing the speed from 50 to 45 mph?

f) The last two parts both predict the travel time when the speed is 45 mph.
Do they give the same result?

13. a) Suppose y = f(x) is a function for which f(5) = 12 and f ′(5) = .4.
Write the microscope equation for f at x = 5.

b) Draw the graph of what you would see in the microscope. Do you need
a formula for f itself, in order to do this?

c) If x = 5.3, what is ∆x in the microscope equation? What estimate does
the microscope equation give for ∆y? What estimate does the microscope
equation then give for f(5.3)?

d) What estimates does the microscope equation give for the following:
f(5.23), f(4.9), f(4.82), f(9)? Do you consider these estimates to be equally
reliable?

14. a) Suppose z = g(t) is a function for which g(−4) = 7 and g′(−4) = 3.5.
Write the microscope equation for g at t = −4.

b) Draw the graph of what you see in the microscope.

c) Estimate g(−4.2) and g(−3.75).

d) For what value of t near −4 would you estimate that g(t) = 6? For what
value of t would you estimate g(t) = 8.5?

15. If f(a) = b, f ′(a) = −3 and if k is small, which of the following is the
best estimate for f(a + k)?

a + 3k, b + 3k, a + 3b, b − 3k, a − 3k, 3a − b, a2 − 3b, f ′(a + k)

16. If f is differentiable at a, which of the following, for small values of h,
are reasonable estimates of f ′(a)?

f(a + h) − f(a − h)

h

f(a + h) − f(a − h)

2h
f(a + h) − f(h)

h

f(a + 2h) − f(a − h)

3h

17. Suppose a person has travelled D feet in t seconds. Then D′(t) is the
person’s velocity at time t; D′(t) has units of feet per second.
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a) Suppose D(5) = 30 feet and D′(5) = 5 feet/second. Estimate the follow-
ing:

D(5.1) D(5.8) D(4.7)

b) If D(2.8) = 22 feet, while D(3.1) = 26 feet, what would you estimate
D′(3) to be?

18. Fill in the blanks.

a) If f(3) = 2 and f ′(3) = 4, a reasonable estimate of f(3.2) is .

b) If g(7) = 6 and g′(7) = .3, a reasonable estimate of g(6.6) is .

c) If h(1.6) = 1, h′(1.6) = −5, a reasonable estimate of h( ) is 0.

d) If F (2) = 0, F ′(2) = .4, a reasonable estimate of F ( ) is .15.

e) If G(0) = 2 and G′(0) = , a reasonable estimate of G(.4) is 1.6.

f) If H(3) = −3 and H ′(3) = , a reasonable estimate of H(2.9) is −1.

19. In manufacturing processes the profit is usually a function of the num-
ber of units being produced, among other things. Suppose we are studying
some small industrial company that produces n units in a week and makes a
corresponding weekly profit of P . Assume P = P (n).

a) If P (1000) = $500 and P ′(1000) = $2/unit, then

P (1002) ≈ P (995) ≈ P ( ) ≈ $512

b) If P (2000) = $3000 and P ′(2000) = −$5/unit, then

P (2010) ≈ P (1992) ≈ P ( ) ≈ $3100

c) If P (1234) = $625 and P (1238) = $634, then what is an estimate for
P ′(1236)?
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3.4 Estimation and Error Analysis

Making Estimates

The Expanding House

In the book The Secret House – 24 hours in the strange and unexpected world
in which we spend our nights and days (Simon and Schuster, 1986), David
Bodanis describes many remarkable events that occur at the microscopic level
in an ordinary house. At one point he explains how sunlight heats up the
structure, stretching it imperceptibly in every direction through the day until
it has become several cubic inches larger than it was the night before. Is itHow much does a

house expand in the
heat?

plausible that a house can become several cubic inches larger as it expands
in the heat of the day? In particular, how much longer, wider, and taller
would it have to become if it were to grow in volume by, let us say, 3 cubic
inches?

For simplicity, assume the house is a cube 200 inches on a side. (This is
about 17 feet, so the house is the size of a small, two-story cottage.) If s is
the length of a side of any cube, in inches, then its volume is

V = s3 cubic inches.

Our question is about how V changes with s when s is about 200 inches. In
particular, we want to know which ∆s would yield a ∆V of 3 cubic inches.
This is a natural question for the microscope equation

∆V ≈ V ′(200) · ∆s.

According to exercise 2c in the previous section, we can estimate the value
of V ′(200) to be about 120,000, and the appropriate units for V ′ are cubic
inches per inch. Thus

∆V ≈ 120000 ∆s

3 cubic inches ≈ 120000
cubic inches

inches
× ∆s inches,

so ∆s ≈ 3/120000 = .000025 inches—many times thinner than a human
hair!

This value is much too small. To get a more realistic value, let’s suppose
the house is made of wood and the temperature increases about 30◦F from
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night to day. Then measurements show that a 200-inch length of wood will
actually become about ∆s = .01 inches longer. Consequently the volume
will actually expand by about

∆V ≈ 120000
cubic inches

inches
× .01 inches = 1200 cubic inches.

This increase is 400 times as much as Bodanis claimed; it is about the size
of a small computer monitor. So even as he opens our eyes to the effects of
thermal expansion, Bodanis dramatically understates his point.

Estimates versus Exact Values

Don’t lose sight of the fact that the values we derived for the expanding
house are estimates. In some cases we can get the exact values. Why don’t
we, whenever we can?

For example, we can calculate exactly how much the volume increases
when we add ∆s = .01 inches to s = 200 inches. The increase is from
V = 2003 = 8,000,000 cubic inches to

V = (200.01)3 = 8001200.060001 cubic inches.

Thus, the exact value of ∆V is 1200.060001 cubic inches. The estimate is
off by only about .06 cubic inches. This isn’t very much, and it is even less
significant when you think of it as a percentage of the volume (namely 1200
cubic inches) being calculated. The percentage is

.06 cubic inches

1200 cubic inches
= .00005 = .005%.

That is, the difference is only 1/200 of 1% of the calculated volume.
To get the exact value we had to cube two numbers and take their differ-

ence. To get the estimate we only had to do a single multiplication. Estimates Exact values can be
harder to calculate

than estimates.
made with the microscope equation are always easy to calculate—they in-
volve only linear functions. Exact values are usually harder to calculate. As
you can see in the example, the extra effort may not gain us extra informa-
tion. That’s one reason why we don’t always calculate exact values when we
can.

Here’s another reason. Go back to the question: How large must ∆s be
if ∆V = 3 cubic inches? To get the exact answer, we must solve for ∆s in
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the equation

3 = ∆V = (200 + ∆s)3 − 2003

= 2003 + 3(200)2∆s + 3(200)(∆s)2 + (∆s)3 − 2003.

Simplifying, we get

3 = 120000 ∆s + 600(∆s)2 + (∆s)3.

This is a cubic equation for ∆s; it can be solved, but the steps are compli-
cated. Compare this with solving the microscope equation:

3 = 120000 ∆s.

Thus, another reason we don’t calculate exact values at every opportunity is
that the calculations can be daunting. The microscope estimates are always
straightforward.

Perhaps the most important reason, though, is the insight that calculating
V ′ gave us. Let’s translate into English what we have really been talking
about:

In dealing with a cube 200 inches on a side, any small change
(measured in inches) in the length of the sides produces a change
(measured in cubic inches) in the volume approximately 120,000
times as great.

This is, of course, simply another instance of the point we have made before,
that small changes in the input and the output are related in an (almost)
linear way, even when the underlying function is complex. Let’s continue
this useful perspective by looking at error analysis.

Propagation of Error

From Measurements to Calculations

We can view all the estimates we made for the expanding house from another
perspective—the lack of precision in measurement. To begin with, just think
of the house as a cubical box that measures 200 inches on a side. Then
the volume must be 8,000,000 cubic inches. But measurements are never
exact, and any uncertainty in measuring the length of the side will lead to an
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uncertainty in calculating the volume. Let’s say your measurement of length
is accurate to within .5 inch. In other words, you believe the true length lies
between 199.5 inches and 200.5 inches, but you are uncertain precisely where
it lies within that interval. How uncertain does that make your calculation
of the volume?

There is a direct approach to this question: we can simply say that the How uncertain is
the calculated value

of the volume?
volume must lie between 199.53 = 7,940,149.875 cubic inches and 200.53

= 8,060,150.125 cubic inches. In a sense, these values are almost too pre-
cise. They don’t reveal a general pattern. We would like to know how an
uncertainty—or error—in measuring the length of the side of a cube propa-
gates to an error in calculating its volume.

Let’s take another approach. If we measure s as 200 inches, and the true
value differs from this by ∆s inches, then ∆s is the error in measurement.
That produces an error ∆V in the calculated value of V . The microscope
equation for the expanding house (page 136) tells us how ∆V depends on
∆s when s = 200:

∆V ≈ 120000 ∆s.

Since we now interpret ∆s and ∆V as errors, the microscope equation be-
comes the error propagation equation:

error in V (cu. in.) ≈ 120000

(
cu. in.

inch

)

× error in s (inches).

Thus, for example, an error of 1/2 inch in measuring s propagates to an The microscope
equation describes how

errors propagate
error of about 60,000 cubic inches in calculating V . This is about 35 cubic
feet, the size of a large refrigerator! Putting it another way:

if s = 200 ± 0.5 inches, then V ≈ 8, 000, 000± 60, 000 cubic inches.

If we keep in mind the error propagation equation ∆V ≈ 120000 ∆s, we
can quickly answer other questions about measuring the same cube. For
instance, suppose we wanted to determine the volume of the cube to within
5,000 cubic inches. How accurately would we have to measure the side? Thus
we are given ∆V = 5000, and we conclude ∆s ≈ 5000/120000 ≈ .04 inches.
This is just a little more than 1/32 inch.

Relative Error

Suppose we have a second cube whose side is twice as large (s = 400 inches),
and once again we measure its length with an error of 1/2 inch. Then the
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error in the calculated value of the volume is

∆V ≈ V ′(400) · ∆s = 480000 × .5 = 240,000 cubic inches.

(In the exercises you will be asked to show V ′(400) = 480,000.) The error in
our calculation for the bigger cube is four times what it was for the smaller
cube, even though the length was measured to the same accuracy in both
cases! There is no mistake here. In fact, the volume of the second cube isBigger numbers have

bigger errors eight times the volume of the first, so the numbers we are dealing with in
the second case are roughly eight times as large. We should not be surprised
if the error is larger, too.

In general, we must expect that the size of an error will depend on the
size of the numbers we are working with. We expect big numbers to have big
errors and small numbers to have small errors. In a sense, though, an error
of 1 inch in a measurement of 50 inches is no worse than an error of 1/10-th
of an inch in a measurement of 5 inches: both errors are 1/50-th the size of
the quantity being measured.

A watchmaker who measures the tiny objects that go into a watch only as accurately as a
carpenter measures lumber would never make a watch that worked; likewise, a carpenter who
takes the pains to measure things as accurately as a watchmaker does would take forever to build
a house. The scale of allowable errors is dictated by the scale of the objects they work on.

The errors ∆x we have been considering are called absolute errors;
their values depend on the size of the quantities x we are working with. ToAbsolute and

relative error reduce the effect of differences due to the size of x, we can look instead at
the error as a fraction of the number being measured or calculated. This
fraction ∆x/x is called relative error. Consider two measurements: one is
50 inches with an error of ±1 inch; the other is 2 inches with an error of ±.1
inch. The absolute error in the second measurement is much smaller than in
the first, but the relative error is 21

2
times larger. (The first relative error

is .02 inch per inch, the second is .05 inch per inch.) To judge how good or
bad a measurement really is, we usually take the relative error instead of the
absolute error.

Let’s compare the propagation of relative and absolute errors. For ex-
ample, the absolute error in calculating the volume of a cube whose side
measures s is

∆V ≈ V ′(s) · ∆s.

The absolute errors are proportional, but the multiplier V ′(s) depends on
the size of s. (We saw above that the multiplier is 120,000 cubic inches per
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inch when s = 200 inches, but it grows to 480,000 cubic inches per inch when
s = 400 inches.)

In section 5, which deals with formulas for derivatives, we will see that
V ′(s) = 3 s2. If we substitute 3s2 for V ′(s) in the propagation equation for
absolute error, we get

∆V ≈ 3s2 · ∆s.

To see how relative error propagates, let us divide this equation by V = s3:

∆V

V
≈ 3s2 · ∆s

s3
= 3

∆s

s

The relative errors are proportional, but the multiplier is always 3; it doesn’t
depend on the size of the cube, as it did for absolute errors.

Return to the case where ∆s = .5 inch and s = 200 inches. Since ∆s
and s have the same units, the relative error ∆s/s is “dimensionless”—it
has no units. We can, however, describe ∆s/s as a percentage: ∆s/s =
.5/200 = .25%, or 1/4 of 1%. For this reason, relative error is sometimes Percentage error

is relative errorcalled percentage error. It tells us the error in measuring a quantity as a
percentage of the value of that quantity. Since the percentage error in volume
is

∆V

V
=

60,000 cu. in.

8,000,000 cu. in.
= .0075 = .75%

we see that the percentage error in volume is 3 times the percentage error in
length—and this is independent of the length and volumes involved. This is
what the propagation equation for relative error says: A 1% error in measur-
ing s, whether s = .0002 inches or s = 2000 inches, will produce a 3% error
in the calculated value of the volume.

Exercises

Estimation

1. a) Suppose you are going on a 110 mile trip. Then the time T it takes
to make the trip is a function of how fast you drive:

T (v) =
110 miles

v miles per hour
= 110 v−1 hours .

If you drive at v = 55 miles per hour, T will be 2 hours. Use a computer
microscope to calculate T ′(55) and write an English sentence interpreting
this number.
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b) More generally, if you and a friend are driving separate cars on a 110 mile
trip, and you are travelling at some velocity v, while her speed is 1% greater
than yours, then her travel time is less. How much less, as a percentage of
yours? Use the formula T ′(v) = −110v−2, which can be obtained using rules
given in the next section.

2. a) Suppose you have 600 square feet of plywood which you are going to
use to construct a cubical box. Assuming there is no waste, what will its
volume be?

b) Find a general formula which expresses the volume V of the box as a
function of the area A of plywood available.

c) Use a microscope to determine V ′(600), and express its significance in an
English sentence.

d) Use this multiplier to estimate the additional amount of plywood you
would need to increase the volume of the box by 10 cubic feet.

e) In the original problem, if you had to allow for wasting 10 square feet of
plywood in the construction process, by how much would this decrease the
volume of the box?

f) In the original problem, if you had to allow for wasting 2% of the ply-
wood in the construction process, by what percentage would this decrease
the volume of the box?

3. Let R(s) = 1/s. You can use the fact that R′(s) = −1/s2, to be
established in section 5. Since R(100) = and R′(100) =

, we can make the following approximations:

1/97 ≈ 1/104 ≈ R( ) ≈ .0106 .

4. Using the fact that the derivative of f(x) =
√

x is f ′(x) = 1/(2
√

x), you
can estimate the square roots of numbers that are close to perfect squares.

a) For instance f(4) = and f ′(4) = , so
√

4.3 ≈ .

b) Use the values of f(4) and f ′(4) to approximate
√

5 and
√

3.6.

c) Use the values of f(100) and f ′(100)to approximate
√

101 and
√

99.73.
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Error analysis

5. a) If you measure the side of a square to be 12.3 inches, with an uncer-
tainty of ±.05 inch, what is your relative error?

b) What is the area of the square? Write an error propagation equation that
will tell you how uncertain you should be about this value.

c) What is the relative error in your calculation of the area?

d) If you wanted to calculate the area with an error of less than 1 square
inch, how accurately would you have to measure the length of the side? If
you wanted the error to be less than .1 square inch, how accurately would
you have to measure the side?

6. a) Suppose the side of a square measures x meters, with a possible error
of ∆x meters. Write the equation that describes how the error in length
propagates to an error in the area. (The derivative of f(x) = x2 is f ′(x) = 2x;
see section 5.)

b) Write an equation that describes how the relative error in length propa-
gates to a relative error in area.

7. You are trying to measure the height of a building by dropping a stone
off the top and seeing how long it takes to hit the ground, knowing that the
distance d (in feet) an object falls is related to the time of fall, t (in seconds),
by the formula d = 16t2. You find that the time of fall is 2.5 seconds, and
you estimate that you are accurate to within a quarter of a second. What
do you calculate the height of the building to be, and how much uncertainty
do you consider your calculation to have?

8. You see a flash of lightning in the distance and note that the sound of
thunder arrives 5 seconds later. You know that at 20◦C sound travels at
343.4 m/sec. This gives you an estimate of

5 sec × 343.4
meters

sec
= 1717 meters

for the distance between you and the spot where the lightning struck. You
also know that the velocity v of sound varies as the square root of the tem-
perature T measured in degrees Kelvin (the Kelvin temperature = Celsius
temperature + 273), so

v(T ) = k
√

T
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for some constant k.

a) Use the information given here to determine the value of k.

b) If your estimate of the temperature is off by 5 degrees, how far off is
your estimate of the distance to the lightning strike? How significant is this
source of error likely to be in comparison with the imprecision with which
you measured the 5 second time lapse? (Suppose your uncertainty about the
time is .25 seconds.) Give a clear analysis justifying your answer.

9. We can measure the distance to the moon by bouncing a laser beam off a
reflector placed on the moon’s surface and seeing how long it takes the beam
to make the round trip. If the moon is roughly 400,000 km away, and if light
travels at 300,000 km/sec, how accurately do we have to be able to measure
the length of the time interval to be able to determine the distance to the
moon to the nearest .1 meter?
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3.5 A Global View

Derivative as Function

Up to now we have looked upon the derivative as a number. It gives us
information about a function at a point—the rate at which the function is
changing, the slope of its graph, the value of the multiplier in the microscope
equation. But the numerical value of the derivative varies from point The derivative

is a function
in its own right

to point, and these values can also be considered as the values of a new
function—the derivative function—with its own graph. Viewed this way the
derivative is a global object.

The connection between a function and its derivative can be seen very
clearly if we look at their graphs. To illustrate, we’ll use the function I(t)
that describes how the size of an infected population varies over time, from
the S-I-R problem we analyzed in chapter 1. The graph of I appears below,
and directly beneath it is the graph of I ′, the derivative of I. The graphs
are lined-up vertically: the values of I(a) and I ′(a) are recorded on the same
vertical line that passes through the point t = a on the t-axis.
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To understand the connection between the graphs, keep in mind that the
derivative represents a slope. Thus, at any point t, the height of the lowerThe height of I ′

is the slope of I graph (I ′) tells us the slope of the upper graph (I). At the points where I is
increasing, I ′ is positive—that is, I ′ lies above its t-axis. At the point where I
is increasing most rapidly, I ′ reaches its highest value. In other words, where
the graph of I is steepest, the graph of I ′ is highest. At the point where I is
decreasing most rapidly, I ′ has its lowest value.

Next, consider what happens when I itself reaches its maximum value.
Since I is about to switch from increasing to decreasing, the derivative must
be about to switch from positive to negative. Thus, at the moment when I is
largest, I ′ must be zero. Note that the highest point on the graph of I lines
up with the point where I ′ crosses the t-axis. Furthermore, if we zoomed in
on the graph of I at its highest point, we would find a horizontal line—in
other words, one whose slope is zero.

All functions and their derivatives are related the same way that I and
I ′ are. In the following table we list the various features of the graph of
a function; alongside each is the corresponding feature of the graph of the
derivative.

function derivative

increasing
decreasing
horizontal
steep (rising or falling)
gradual (rising or falling)
straight

positive
negative
zero
large (positive or negative)
small (positive or negative)
horizontal

By using this table, you should be able to make a rough sketch of the graph of
the derivative, when you are given the graph of a function. You can also read
the table from right to left, to see how the graph of a function is influenced
by the graph of its derivative.

For instance, suppose the graph of the function L(x) is

a

b c
de

f g

h
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Then we know that its derivative L′ must be 0 at points a, b, c, and d; that the Finding a derivative
“by eye”derivative must be positive between a and b and between c and d, negative

otherwise; that the derivative takes on relatively large values at e and g
(positive) and at f and h (negative); that the derivative must approach 0 at
the right endpoint and be large and negative at the left endpoint. Putting
all this together we conclude that the graph of the derivative L′ must look
something like following:

a b c de
f

g
h L' = 0

Conversely, suppose all we are told about a certain function G is
that the graph of its derivative G′ looks like this:

c
a

b
G' = 0

Then we can infer that the function G itself is decreasing between a and b
and is increasing everywhere else; that the graph of G is horizontal at a, b,
and c; that both ends of the graph of G slope upward from left to right—the
left end more or less straight, the right getting steeper and steeper.

Formulas for Derivatives

Basic Functions

If a function is given by a formula, then its derivative also has a formula,
defined for the points where the function is locally linear. The formula is
produced by a definite process, called differentiation. In this section we
look at some of the basic aspects, and in the next we will take up the chain
rule, which is the key to the whole process. Then in chapter 5 we will review
differentiation systematically.
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Most formulas are constructed by combining only a few basic functionsFormulas are
combinations of basic
functions

in various ways. For instance, the formula

3 x7 − sin x

8
√

x
,

uses the basic functions x7, sin x, and
√

x. In fact, since
√

x = x1/2, we can
think of x7 and

√
x as two different instances of a single basic “power of

x”—which we can write as xp.
The following table lists some of the more common basic functions with

their derivatives. The number c is an arbitrary constant, and so is the power
p. The last function in the table is the exponential function with base b. Its
derivative involves a parameter kb that varies with the base b. For instance,
exercise 6 in section 3 established that, when b = 2, then k2 ≈ .69. Exercise 7
established, for any base b, that kb is the value of the derivative of bx when
x = 0. We will have more to say about the parameter kb in the next chapter.

function derivative

c 0

xp pxp−1

sin x cos x

cos x – sin x

tan x sec2 x

bx kb · bx

Remember that the input to the trigonometric functions is always measured in radians; the
above formulas are not correct if x is measured in degrees. There are similar formulas if you
insist on using degrees, but they are more complicated. This is the principal reasons we work in
radians—the formulas are nice!

For example,

• the derivative of 1/x = x−1 is −x−2 = −1/x2;

• the derivative of
√

w = w1/2 is tfrac12w−1/2 =
1

2
√

w
;

• the derivative of xπ is πxπ−1; and

• the derivative of πx is kπ · πx ≈ 1.14 πx.
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Compare the last two functions. The first, xπ, is a power function—it is
a power of the input x. The second, πx, is an exponential function—the
input x appears in the exponent. When you differentiate a power function,
the exponent drops by 1; when you differentiate an exponential function, the
exponent doesn’t change.

Basic Rules

Since basic functions are combined in various ways to make formulas, we
need to know how to differentiate combinations . For example, suppose we
add the basic functions g(x) and h(x), to get f(x) = g(x) + h(x). Then The addition rule

f is differentiable, and f ′(x) = g′(x) + h′(x). Actually, this is true for all
differentiable functions g and h, not just basic functions. It says: “The rate
at which f changes is the sum of the separate rates at which g and h change.”
Here are some examples that illustrate the point.

If f(x) = tan x + x−6, then f ′(x) = sec2 x − 6x−7.

If f(w) = 2w +
√

w, then f ′(w) = k2 2w +
1

2
√

w
(and k2 ≈ .69).

Likewise, if we multiply any differentiable function g by a constant c, then
the product f(x) = cg(x) is also differentiable and f ′(x) = cg′(x). This says: The constant multiple

rule“If f is c times as large as g, then f changes at c times the rate of g.” Thus
the derivative of 5 sin x is 5 cosx. Likewise, the derivative of (5x)2 is 50 x.
(This took an extra calculation.) However, the rule does not tell us how to
find the derivative of sin(5x), because sin(5x) 6= 5 sin(x). We will need the
chain rule to work this one out.

The rules about sums and constant multiples of functions are just the first
of several basic rules for differentiating combinations of functions. We will
describe how to handle products and quotients of functions in chapter 5. For
the moment we summarize in the following table the rules we have already
covered.

function derivative

f(x) + g(x) f ′(x) + g′(x)

c · f(x) c · f ′(x)

With just the few facts already laid out we can differentiate a variety of
functions given by formulas. In particular, we can differentiate any polyno-
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mial function:

P (x) = anxn + an−1x
n−1 + · · ·+ a2x

2 + a1x + a0.

Here an, an−1, . . . , a2, a1, a0 are various constants, and n is a positive integer,
called the degree of the polynomial. A polynomial is a sum of constant
multiples of integer powers of the input variable. A polynomial of degree 1
is just a linear function. The derivative is

P ′(x) = nanx
n−1 + (n − 1)an−1x

n−2 + · · ·+ 2a2x + a1.

All the rules presented up to this point are illustrated in the following
examples; note that the first three involve polynomials.

function derivative

7x + 2 7

5x4 − 2x3 20x3 − 6x2

5x4 − 2x3 + 17 20x3 − 6x2

3u15 + .5u8 − πu3 + u −
√

2 45u14 + 4u7 − 3πu2 + 1

6 · 10z + 17/z5 6·k10 10z − 85/z6

3 sin t − 2t3 3 cos t − 6t2

π cos x −
√

3 tanx + π2 −π sin x −
√

3 sec2 x

The first two functions have the same derivative because they differ only by
a constant, and the derivative of a constant is zero. The constant k10 that
appears in the fourth example is approximately 2.30.

Exercises

Sketching the graph of the derivative

1. Sketch the graphs of two different functions that have the same deriva-
tive. (For example, can you find two linear functions that have the same
derivative?)
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2. Here are the graphs of four related functions: s, its derivative s′, another
function c(t) = s(2t), and its derivative c′(t). The graphs are out of order.
Label them with the correct names s, s′, c, and c′.

a b c
d

3. a) Suppose a function y = g(x) satisfies g(0) = 0 and 0 ≤ g′(x) ≤ 1 for
all values of x in the interval 0 ≤ x ≤ 3. Explain carefully why the graph of
g must lie entirely in the triangular region shaded below:

0 1 2 3 4

1

2

3

y

x

b) Suppose you learn that g(1) = .5 and g(2) = 1. Draw the smallest shaded
region in which you can guarantee that the graph of g must lie.

4. Suppose h is differentiable over the interval 0 ≤ x ≤ 3. Suppose h(0) = 0,
and that

.5 ≤ h′(x) ≤ 1 for 0 ≤ x ≤ 1

0 ≤ h′(x) ≤ .5 for 1 ≤ x ≤ 2

−1 ≤ h′(x) ≤ 0 for 2 ≤ x ≤ 3

Draw the smallest shaded region in the x, y-plane in which you can guarantee
that the graph of y = h(x) must lie.
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5. For each of the functions graphed below, sketch the graph of its deriva-
tive.

y

x

i. y

x

ii. y

x

iii.

y

x

iv. y

x

v. y

x

vi.

y

x

vii. y

x

viii. y

x

ix.
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Differentiation

6. Find formulas for the derivatives of the following functions; that is, dif-
ferentiate them.

a) f(x) = 3x7 − .3x4 + πx3 − 17

b) g(x) =
√

3
√

x +
7

x5

c) h(w) = 2w8 − sin w +
1

3w2

d) R(u) = 4 cosu − 3 tanu + 3
√

u

e) V (s) = 4
√

16 − 4
√

s

f) F (z) =
√

7 · 2z + (1/2)z

g) P (t) = −a

2
t2 + v0t + d0 (a, v0, and d0 are constants)

7. Use a computer graphing utility for this exercise. Graph on the same
screen the following three functions:

1. the function f given below, on the indicated interval;

2. the function g(x) = (f(x + .01) − f(x − .01)) /.02 that estimates the
slope of the graph of f at x;

3. the function h(x) = f ′(x), where you use the differentiation rules to
find f ′.

a) f(x) = x4 on −1 ≤ x ≤ 1.

b) f(x) = x−1 on 1 ≤ x ≤ 8.

c) f(x) =
√

x on .25 ≤ x ≤ 9.

d) f(x) = sin x on 0 ≤ x ≤ 2π.

The graphs of g and h should coincide—or “share phosphor”—in each case.
Do they?

8. In each case below, find a function f(x) whose derivative f ′(x) is:

a) f ′(x) = 12 x11.

b) f ′(x) = 5x7.

c) f ′(x) = cos x + sin x.

d) f ′(x) = ax2 + bx + c.
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e) f ′(x) = 0.

f) f ′(x) =
5√
x

.

9. What is the slope of the graph of y = x−√
x at x = 4? At x = 100? At

x = 10000?

10. a) For which values of x is the function x − x3 increasing?

b) Where is the graph of y = x − x3 rising most steeply?

c) At what points is the graph of y = x − x3 horizontal?

d) Make a sketch of the graph of y = x − x3 that reflects all these results.

11. a) Sketch the graph of the function y = 2x +
5

x
on the interval .2 ≤

x ≤ 4.

b) Where is the lowest point on that graph? Give the value of the x-
coordinate exactly. [Answer: x =

√

5/2.]

12. What is the slope of the graph of y = sin x + cos x at x = π/4?

13. a) Write the microscope equation for y = sin x at x = 0.

b) Using the microscope equation, estimate the following values: sin .3,
sin .007, sin(−.02). Check these values with a calculator. (Remember to
set your calculator to radian mode!)

14. a) Write the microscope equation for y = tanx at x = 0.

b) Estimate the following values: tan .007, tan .3, tan(−.02). Check these
values with a calculator.

15. a) Write the microscope equation for y =
√

x at x = 3600.

b) Use the microscope equation to estimate
√

3628 and
√

3592. How far are
these estimates from the values given by a calculator?

16. If the radius of a spherical balloon is r inches, its volume is 4
3
πr3 cubic

inches.

a) At what rate does the volume increase, in cubic inches per inch, when
the radius is 4 inches?

b) Write the microscope equation for the volume when r = 4 inches.
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c) When the radius is 4 inches, approximately how much does it increase if
the volume is increased by 50 cubic inches?

d) Suppose someone is inflating the balloon at the rate of 10 cubic inches
of air per second. If the radius is 4 inches, at what rate is it increasing, in
inches per second?

17. A ball is held motionless and then dropped from the top of a 200 foot
tall building. After t seconds have passed, the distance from the ground to
the ball is d = f(t) = −16t2 + 200 feet.

a) Find a formula for the velocity v = f ′(t) of the ball after t seconds. Check
that your formula agrees with the given information that the initial velocity
of the ball is 0 feet/second.

b) Draw graphs of both the velocity and the distance as functions of time.
What time interval makes physical sense in this situation? (For example,
does t < 0 make sense? Does the distance formula make sense after the ball
hits the ground?)

c) At what time does the ball hit the ground? What is its velocity then?

18. A second ball is tossed straight up from the top of the same building
with a velocity of 10 feet per second. After t seconds have passed, the distance
from the ground to the ball is d = f(t) = −16t2 + 10t + 200 feet.

a) Find a formula for the velocity of the second ball. Does the formula
agree with given information that the initial velocity is +10 feet per second?
Compare the velocity formulas for the two balls; how are they similar, and
how are they different?

b) Draw graphs of both the velocity and the distance as functions of time.
What time interval makes physical sense in this situation?

c) Use your graph to answer the following questions. During what period of
time is the ball rising? During what period of time is it falling? When does
it reach the highest point of its flight?

d) How high does the ball rise?

19. a) What is the velocity formula for a third ball that is thrown downward
from the top of the building with a velocity of 40 feet per second? Check
that your formula gives the correct initial velocity.

b) What is the distance formula for the third ball? Check that it satisfies
the initial condition (namely, that the ball starts at the top of the building).
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c) When does this ball hit the ground? How fast is it going then?

20. A steel ball is rolling along a 20-inch long straight track so that its
distance from the midpoint of the track (which is 10 inches from either end)
is d = 3 sin t inches after t seconds have passed. (Think of the track as
aligned from left to right. Positive distances mean the ball is to the right of
the center; negative distances mean it is to the left.)

a) Find a formula for the velocity of the ball after t seconds. What is
happening when the velocity is positive; when it is negative; when it equals
zero? Write a sentence or two describing the motion of the ball.

b) How far from the midpoint of the track does the ball get? How can you
tell?

c) How fast is the ball going when it is at the midpoint of the track? Does
it ever go faster than this? How can you tell?

21. A forester who wants to know the height of a tree walks 100 feet from
its base, sights to the top of the tree, and finds the resulting angle to be 57
degrees.

a) What height does this give for the tree?

b) If the measurement of the angle is certain only to 5 degrees, what can you
say about the uncertainty of the height found in part (a)? (Note: you need
to express angles in radians to use the formulas from calculus: π radians =
180 degrees.)

22. a) In the preceding problem, what percentage error in the height of the
tree is produced by a 1 degree error in measuring the angle?

b) What would the percentage error have been if the angle had been 75
degrees instead of 57 degrees? 40 degrees?

c) If you can measure angles to within 1 degree accuracy and you want to
measure the height of a tree that’s roughly 150 feet tall by means of the
technique in the preceding problem, how far away from the tree should you
stand to get your best estimate of the tree’s height? How accurate would
your answer be?
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3.6 The Chain Rule

Combining Rates of Change

Let’s return to the expanding house that we studied in section 4. When the
temperature T increased, every side s of the house got longer; when s got
longer, the volume V got larger. We already discussed how V responds to
changes in s, but that’s only part of the story. What we’d really like to know
is this: exactly how does the volume V respond to changes in temperature
T ? We can work this out in stages: first we see how V responds to changes
in s, and then how s responds to changes in T .

Stage 1. Our “house” is a cube that measures 200 inches on a side, and the
microscope equation (section 4) describes how V responds to changes in s:

How volume responds
to changes in length∆V ≈ 120000

cubic inches of volume

inch of length
· ∆s inches.

Stage 2. Physical experiments with wood show that a 200 inch length of
wood increases about .0004 inches in length per degree Fahrenheit. This is
a rate, and we can build a second microscope equation with it:

How length responds
to changes in
temperature∆s ≈ .0004

inches of length

degree F
· ∆T degrees F,

where ∆T measures the change in temperature, in degrees Fahrenheit.

We can combine the two stages because ∆s appears in both. Replace
∆s in the first equation by the right-hand side of the second equation. The
result is

∆V ≈ 120000
cubic inches

inch
× .0004

inches

degree F
· ∆T degrees F.

We can condense this to
How volume responds

to changes in
temperature

∆V ≈ 48
cubic inches

degree F
· ∆T degrees F.

This is a third microscope equation, and it shows directly how the volume
of the house responds to changes in temperature. It is the answer to our
question.

As always, the multiplier in a microscope equation is a rate. The mul-
tiplier in the third microscope equation, 48 cubic inches/degree F, tells us
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the rate at which volume changes with respect to temperature. Thus, if the
temperature increases by 10 degrees between night and day, the house will be-
come about 480 cubic inches larger. Recall that Bodanis (see section 4) said
that the house might become only a few cubic inches larger—say, ∆V = 3
cubic inches. If we solve the microscope equation

3 ≈ 48 · ∆T

for ∆T , we see that the temperature would have risen only 1/16-th of a
degree F!

The rate that appears as the multiplier in the third microscope equation
is the product of the other two:

How the rates combine 48
cubic inches

degree F
= 120000

cubic inches

inch
× .0004

inches

degree F
.

Each of these rates is a derivative:

48
cubic inches

degree F
︸ ︷︷ ︸

dV/dT

= 120000
cubic inches

inch
︸ ︷︷ ︸

dV/ds

× .0004
inches

degree F
︸ ︷︷ ︸

ds/dT

.

We wrote the derivatives in Leibniz’s notation because it’s particularly help-
ful in keeping straight what is going on. For instance, dV/dT indicates very
clearly the rate at which volume is changing with respect to temperature, and
dV/ds the rate at which it is changing with respect to length. These rates
are quite different—they even have different units—but the notation V ′ does
not distinguish between them. In Leibniz’s notation, the relation between
the three rates takes this striking form:

dV

dT
=

dV

ds
· ds

dT
.

This relation is called the chain rule for the variables T , s, and V . (We’ll
see in a moment what this has to do with chains.)

The chain rule is a consequence of the way the three microscope equations
are related to each other. We can see how it emerges directly from the
microscope equations if we replace the numbers that appear as multipliers in
those equations by the three derivatives. To begin, we write

∆V ≈ dV

ds
· ∆s and ∆s ≈ ds

dT
· ∆T.
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Then, combining these equations, we get

∆V ≈ dV

ds
· ds

dT
· ∆T.

In fact, this is the microscope equation for V in terms of T , which can be
written more directly as

∆V ≈ dV

dT
· ∆T.

In these two expressions we have the same microscope equation, so the mul-
tipliers must be equal. Thus, we recover the chain rule:

dV

ds
· ds

dT
=

dV

dT
.

Recall that Leibniz worked directly with differentials, like dV and ds, so a derivative was a genuine
fraction. For him, the chain rule is true simply because we can cancel the two appearances of
“ds” in the derivatives. For us, though, a derivative is not really a fraction, so we need an
argument like the one in the text to establish the rule.

Chains and the Chain Rule

Let’s analyze the relationships between the three variables in the expanding
house problem in more detail. There are three functions involved: volume is a
function of length: V = V (s); length is a function of temperature: s = s(T );
and finally, volume is a function of temperature, too: V = V (s(T )). To
visualize these relationships better, we introduce the notion of an input–
output diagram. The input–output diagram for the function s = s(T ) is
just T → s. It indicates that T is the input of a function whose output is
s. Likewise s → V says that volume V is a function of length s. Since the
output of T → s is the input of s → V , we can make a chain of these two
diagrams:

An input–output chainT −→ s −→ V.

The result describes a function that has input T and output V . It is thus an
input–output diagram for the third function V = V (s(T )).

We could also write the input–output diagram for the third function sim-
ply as T → V ; in other words,

T −→ V equals T −→ s −→ V.
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We say that T → s → V is a chain that is made up of the two links T → sA chain and its links

and s → V . Since each input–output diagram represents a function, we
can attach a derivative that describes the rate of change of the output with
respect to the input:

-T s

ds

dT
-s V

dV

ds
-T V

dV

dT

Here is a single picture that shows all the relationships:

T s V-
ds

dT

-
dV

ds

�� XXz

dV

dT

We can thus relate the derivative dV/dT of the whole chain to the derivatives
dV/ds and ds/dT of the individual links by

dV

dT
=

dV

ds
· ds

dT
.

The same argument holds for any chain of functions. If u is a function of
x, and if y is some function of u, then a small change in x produces a small
change in u and hence in y. The total multiplier for the chain is simply the
product of the multipliers of the individual links:

The chain rule:
dy

dx
=

dy

du
· du

dx

Moreover, an obvious generalization extends this result to a chain containing
more than two links.
A simple example. We can sometimes use the chain rule without giving it
much thought. For instance, suppose a bookstore makes an average profit of
$3 per book, and its sales are increasing at the rate of 40 books per month.
At what rate is its monthly profit increasing, in dollars per month? Does it
seem clear to you that the rate is $120 per month?
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Let’s analyze the question in more detail. There are three variables here:

time t measured in months;

sales s measured in books;

profit p measured in dollars.

The two known rates are

dp

ds
= 3

dollars

book
and

ds

dt
= 40

books

month
.

The rate we seek is dp/dt, and we find it by the chain rule:

dp

dt
=

dp

ds
· ds

dt

= 3
dollars

book
× 40

books

month

= 120
dollars

month

Chains, in general. The chain rule applies whenever the output of one
function is the input of another. For example, suppose u = f(x) and y =
g(u). Then y = g(f(x)), and we have:

x u y-

du

dx

-

dy

du

�� XXz

dy

dx

dy

dx
=

dy

du
· du

dx

Let’s take
u = x2 and y = sin(u);

then y = sin(x2), and it is not at all obvious what the derivative dy/dx ought
to be. None of the basic rules in section 4 covers this function. However,
those rules do cover u = x2 and y = sin(u):

du

dx
= 2x and

dy

du
= cos(u).

We can now get dy/dx by the chain rule:

dy

dx
=

dy

du
· du

dx
= cos(u) · 2x.
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Since we are interested in y as a function of x—rather than u—we should
rewrite dy/dx so that it is expressed entirely in terms of x:

If y = sin(x2), then
dy

dx
= 2x cos(u) = 2x cos(x2).

Let’s start over, using the function names f and g we introduced at the
outset:

u = f(x) and y = g(u), so y = g(f(x)).

The third function, y = g(f(x)), needs a name of its own; let’s call it h. Thus

Composition
of functions

y = h(x) = g(f(x)).

We say that h is composed of g and f , and h is called the composite, or
the composition, of g and f .

The problem is to find the derivative h′ of the composite function, knowing
g′ and f ′. Let’s translate all the derivatives into Leibniz’s notation.

h′(x) =
dy

dx
g′(u) =

dy

du
f ′(x) =

du

dx
.

We can now invoke the chain rule:

h′(x) =
dy

dx
=

dy

du
· du

dx
= g′(u) · f ′(x).

Although h′ is now expressed in terms of g′ and f ′, we are not yet done. The
variable u that appears in g′(u) is out of place—because h is a function of
x, not u. (We got to the same point in the example; the original form of the
derivative of sin(x2) was 2x cos(u).) The remedy is to replace u by f(x); we
can do this because u = f(x) is given.

The chain rule: h′(x) = g′(f(x))·f ′(x) when h(x) = g(f(x))

There is a certain danger in a formula as terse and compact as this that it
loses all conceptual meaning and becomes simply a formal string of symbols
to be manipulated blindly. You should always remember that the expression
in the box is just a mathematical statement of the intuitively clear idea that
when two functions are chained together, with the output of one serving as
the input of the other, then the combined function has a multiplier which is
simply the product of the multipliers of the two constituent functions.
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Using the Chain Rule

The chain rule will allow us to differentiate nearly any formula. The key is
to recognize when a given formula can be written as a chain—and then, how
to write it.
Example 1. Here is a problem first mentioned on page 149: What is the
derivative of y = sin(5x)? If we set

y = sin(u) where u = 5x,

then we find immediately

dy

du
= cos(u) and

du

dx
= 5.

Thus, by the chain rule we see

dy

dx
=

dy

du
· du

dx
= cos(u) · 5 = 5 cos(5x).

Example 2. w = 2cos z. Set

w = 2u and u = cos z.

Then, once again, the basic rules from section 4 are sufficient to differentiate
the individual links:

dw

du
= k2 2u and

du

dz
= − sin z.

The chain rule does the rest:

dw

dz
=

dw

du
· du

dz
= k2 2u · (− sin z) = −k2 sin z2cos z.

Example 3. p =
√

7t3 + sin2 t. This presents several challenges. First let’s
make a chain:

p =
√

u where u = 7t3 + sin2 t.

The basic rules give us dp/du = 1/2
√

u, but it is more difficult to deal with
u. Let’s at least introduce separate labels for the two terms in u:

q = 7t3 and r = sin2 t.
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Then
du

dt
=

dq

dt
+

dr

dt
and

dq

dt
= 21t2.

The remaining term r = sin2 t = (sin t)2 can itself be differentiated by
the chain rule. Set

r = v2 where v = sin t.

Then
dr

dv
= 2v and

dv

dt
= cos(t),

so
dr

dt
=

dr

dv
· dv

dt
= 2v cos t = 2 sin t cos t.

The final step is to assemble all the pieces:

dp

dt
=

dp

du
· du

dt
=

1

2
√

u
·
(
21t2 + 2 sin t cos t

)
=

21t2 + 2 sin t cos t

2
√

7t3 + sin2 t

By breaking down a complicated expression into simple pieces, and ap-
plying the appropriate differentiation rule to each piece, it is possible to
differentiate a vast array of formulas. You may meet two sorts of difficulties:
you may not see how to break down the expression into simpler parts; and
you may overlook a step. Practice helps overcome the first, and vigilance the
second.

Here is an example of the second problem: find the derivative of y =
−3 cos(2x). The derivative is not 3 sin(2x); it is 6 sin(2x). Besides remem-
bering to deal with the constant multiplier −3, and with the fact that there
is a minus sign in the derivative of cos u, you must not overlook the link
u = 2x in the chain that connects y to x.

Exercises

1. Use the chain rule to find dy/dx, when y is given as a function of x in
the following way.

a) y = 5u − 3, where u = 4 − 7x.

b) y = sin u, where u = 4 − 7x.

c) y = tan u, where u = x3.
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d) y = 10u, where u = x2.

e) y = u4, where u = x3 + 5.

2. Find the derivatives of the following functions.

a) F (x) = (9x + 6x3)5.

b) G(w) =
√

4w2 + 1.

c) S(w) =
√

(4w2 + 1)3.

d) R(x) =
1

1 − x
. (Hint: think of

1

1 − x
as (1 − x)−1.)

e) D(z) = 3 tan

(
1

z

)

.

f) dog(w) = sin2(w3 + 1).

g) pig(t) = cos(2t).

h) wombat(x) = 51/x.

3. If h(x) = (f(x))6 where f is some function satisfying f(93) = 2 and
f ′(93) = −4, what is h′(93)?

4. If H(x) = F (x2 − 4x + 2) where F is some function satisfying F ′(2) = 3,
what is H ′(4)?

5. If f(x) = (1 + x2)5, what are the numerical values of f ′(0) and f ′(1)?

6. If h(t) = cos(sin t), what are the numerical values of h′(0) and h′(π)?

7. If f ′(x) = g(x), which of the following defines a function which also must
have g as its derivative?

f(x + 17) f(17x) 17f(x) 17 + f(x) f(17)

8. Let f(t) = t2 + 2t and g(t) = 5t3 − 3. Determine all of the following:
f ′(t), g′(t), g(f(t)), f(g(t)), g′(f(t)), f ′(g(t)), (f(g(t)))′, (g(f(t)))′.

9. a) What is the derivative of f(x) = 2−x2

?

b) Sketch the graphs of f and its derivative on the interval −2 ≤ x ≤ 2.

c) For what values(s) of x is f ′(x) = 0? What is true about the graph of f
at the corresponding points?
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d) Where does the graph of f have positive slope, and where does it have
negative slope?

10. a) With a graphing utility, find the point x where the function y =
1/(3x2 − 5x + 7) takes its maximum value. Obtain the numerical value of x
accurately to two decimal places.

b) Find the derivative of y = 1/(3x2−5x+7), and determine where it takes
the value 0.

[Answer: y′ = −(6x − 5)(3x2 − 5x + 7)−2, and y′ = 0 when x = 5/6.]

c) Using part (b), find the exact value of x where y = 1/(3x2−5x+7) takes
its maximum value.

d) At what point is the graph of y = 1/(3x2 − 5x + 7) rising most steeply?
Describe how you determined the location of this point.

11. a) Write the microscope equation for the function y = sin
√

x at x = 1.

b) Using the microscope equation, estimate the following values: sin
√

1.05,
sin

√
.9.

12. a) Write the microscope equation for w =
√

1 + x at x = 0.

b) Use the microscope equation to estimate the values of
√

1.1056 and√
.9788. Compare your estimates with the values provided by a calculator.

13. When the sides of a cube are 5 inches, its surface area is changing at
the rate of 60 square inches per inch increase in the side. If, at that moment,
the sides are increasing at a rate of 3 inches per hour, at what rate is the
area increasing: is it 60, 3, 63, 20, 180, 5, or 15 square inches per hour?

14. Find a function f(x) for which f ′(x) = 3x2(5 + x3)10. Find a function
p(x) for which p′(x) = x2(5 + x3)10. A useful way to proceed is to guess. For
instance, you might guess f(x) = (5 + x3)11. While this guess isn’t correct,
it suggest what modification you might make to get the answer.

15. Find a function g(t) for which g′(t) = t/
√

1 + t2.
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3.7 Partial Derivatives

Let’s return to the sunrise function once again. The time of sunrise depends
not only on the date, but on our latitude. In fact, if we are far enough north
or south, there are days when the sun never rises at all. We give in the table
below the time of sunrise at eight different latitudes on March 15, 1990.

Latitude 36◦N 38◦N 40◦N 42◦N 44◦N 46◦N 48◦N 50◦N
Mar 15 6:10 6:11 6:12 6:13 6:13 6:13 6:14 6:14

Thus on March 15, the time of sunrise increases as latitude increases.
Clearly what this shows is that the time of sunrise is actually a function The time of sunrise

depends on latitude as
well as on the date

of two independent inputs: the date and the latitude. If T denotes the time
of sunrise, then we will write T = T (d, λ) to make explicit the dependence of
T on both the date d and the latitude λ. To capture this double dependence,
we need information like the following table:

Latitude 36◦N 38◦N 40◦N 42◦N 44◦N 46◦N 48◦N 50◦N
Mar 3 6:24 6:27 6:31 6:33 6:34 6:36 6:38 6:40

7 6:20 6:22 6:25 6:26 6:27 6:29 6:30 6:32
11 6:15 6:17 6:19 6:19 6:20 6:21 6:22 6:23
15 6:10 6:11 6:12 6:13 6:13 6:13 6:14 6:14
19 6:06 6:06 6:06 6:06 6:06 6:06 6:06 6:06
23 6:01 6:00 5:59 5:59 5:58 5:58 5:58 5:57
27 5:56 5:54 5:53 5:52 5:51 5:50 5:49 5:48

Thus we can say T (74, 42◦N) = 6:13 (March 15 is the 74-th day of the year).
Note, though, that at this date and place the time of sunrise is changing in
two very different senses:

First: At 42◦N, during the eight days between March 11 and March 19, the
time of sunrise gets 13 minutes earlier. We thus would say that on
March 15 at 42◦N, sunrise is changing at –1.63 minutes/day.

Second: On the other hand, on March 15 we see that the time of sunrise
varies by 1 minute as we go from 40◦N to 44◦N. We would thus say
that at 42◦N the rate of change of sunrise as the latitude varies is
approximately 1 minute/4◦ = +.25 minutes/degree of latitude.

Two quite different rates are at work here, one with respect to time, the
other with respect to latitude.
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We need a notation which allows us to talk about the different rates at
which a function can change, when that function depends on more than oneA function of several

variables has several
rates of change

variable. A rate of change is, of course, a derivative. But since a change
in one input produces only part of the change that a function of several
variables can experience, we call the rate of change with respect to any one
of the inputs a partial derivative. If the value of z depends on the variables
x and y according to the rule z = F (x, y), then we denote the rate at which
z is changing with respect to x when x = a and y = b by

Fx(a, b) or by
∂z

∂x
(a, b).

We call this rate the partial derivative of F with respect to x. Similarly,Partial derivatives

we define the partial derivative of F with respect to y to be the rate at which
z is changing when y is varied. It is denoted

Fy(a, b) or
∂z

∂y
(a, b).

There is nothing conceptually new involved here; to calculate either of these
partial derivatives you simply hold one variable constant and go through
the same limiting process as before for the input variable of interest. Note
that, to call attention to the fact that there is more than one input variable
present, we write

∂z

∂x
rather than

dz

dx
,

as we did when x was the only input variable.
To calculate the partial derivative of F with respect to x at the point

(a, b), we can use

Fx(a, b) =
∂z

∂x
(a, b) = lim

∆x→0

F (a + ∆x, b) − F (a, b)

∆x
.

Similarly,

Fy(a, b) =
∂z

∂y
(a, b) = lim

∆y→0

F (a, b + ∆y) − F (a, b)

∆y
.

By using this notation for partial derivatives, we can cast some of our
earlier statements about the sunrise function T = T (d, λ) in the following
form:

Td(74, 42◦N) ≈ −1.63 minutes per day;

Tλ(74, 42◦N) ≈ +.25 minutes per degree.
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Partial Derivatives as Multipliers

For any given date d and latitude λ we can write down two microscope
equations for the sunrise function T (d, λ). One describes how the time of
sunrise responds to changes in the date, the other to changes in the latitude.
Let’s consider variations in the time of sunrise in the vicinity of March 15
and 42◦N.

The partial derivative Td(74, 42◦N) of T with respect to d is the multiplier
in the first of these microscope equations:

The microscope
equation for dates∆T ≈ Td(74, 42◦N) · ∆d.

For example, from March 15 to March 17 (∆d = 2 days), we would expect
the time of sunrise to change by

∆T ≈ −1.63
min

day
× 2 days = −3.3 minutes.

Thus, we would expect the time of sunrise on March 17 at 42◦N to be ap-
proximately

T (76, 42◦N) ≈ 6:09.7.

The partial derivative Tλ(74, 42◦N) of T with respect to λ is the multiplier
in the second microscope equation:

The microscope
equation for latitudes∆T ≈ Tλ(74, 42◦N) · ∆λ.

If, say, we moved 1◦ north, to 43◦N, we would expect the time of sunrise on
March 7 to change by

∆T ≈ .25
min

deg
× 1 degree = .25 minute.

The time of sunrise on March 15 at 43◦N would therefore be

T (74, 43◦N) ≈ 6:13.25.

We have seen what happens to the time of sunrise from March 15 to
March 17 if we stay at 42◦N, and we have seen what happens to the time
on March 15 if we move from 42◦N to 43◦N. Can we put these two pieces
of information together? That is, can we determine the time of sunrise on
March 17 at 43◦N? This involves changing both the date and the latitude.
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To determine the total change we shall just combine the two changes ∆TThe total change

we have already calculated. Making the date two days later moves the time
of sunrise 3.3 minutes earlier, and travelling one degree north makes the time
of sunrise .25 minutes later, so the net effect would be to change the time of
sunrise by

∆T ≈ −3.3 min + .25 min ≈ −3 minutes.

This puts the time of sunrise at T (76, 43◦N) ≈ 6:10.

We can formulate this idea more generally in the following way: par-
tial derivatives are not only multipliers for gauging the separate effects that
changes in each input have on the output, but they also serve as multipliers
for gauging the cumulative effect that changes in all inputs have on the out-
put. In general, if z = F (x, y) is a function of two variables, then near the
point (a, b), the combined change in z caused by small changes in x and y
can be stated by the full microscope equation:

The full microscope equation:

∆z ≈ Fx(a, b) · ∆x + Fy(a, b) · ∆y

As was the case for the functions of one variable, there is an important
class of functions for which we may write “=” instead of “≈” in this relation,
the linear functions. The most general form of a linear function of two
variables is z = F (x, y) = mx + ny + c, for constants m, n, and c.

In the exercises you will have an opportunity to verify that for a linear
function z = F (x, y) = mx+ny+c and for all (a, b), we know that Fx(a, b) =
m and Fy(a, b) = n, and the full microscope equation ∆z = Fx(a, b) · ∆x +
Fy(a, b) · ∆y is true for all values of ∆x and ∆y.

Formulas for Partial Derivatives

No new rules are needed to find the formulas for the partial derivatives of
a function of two variables that is given by a formula. To find the partialTo find a partial

derivative, treat the
other variable as a
constant

derivative with respect to one of the variables, just treat the other variable
as a constant and follow the rules for functions of a single variable. (The
basic rules are described in section 5 and the chain rule in section 6.) We
give two examples to illustrate the method.
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Example 1. For z = F (x, y) = 3x2y + 5y2
√

x, we have

Fx(x, y) = 3y(2x) + 5y2 1

2
√

x
= 6xy +

5y2

2
√

x

Fy(x, y) = 3x2 + 10y
√

x

Example 2. For w = G(u, v) = 3u5 sin v − cos v + u, we have

∂w

∂u
= 15u4 sin v + 1

∂w

∂v
= 3u5 cos v + sin v

The formulas for derivatives and the combined multiplier effect of partial
derivatives allow us to determine the effect of changes in length and in width
on the area of a rectangle. The area A of the rectangle is a simple function
of its dimensions l and w, A = F (l, w) = lw. The partial derivatives of the
area are then

Fl(l, w) = w and Fw(l, w) = l.

area = l · w

area = l · ∆w � area = ∆l · ∆w

� area = w · ∆l

∆w

{

w







l
︷ ︸︸ ︷

∆l
︷︸︸︷

Changes ∆l and ∆w in the dimensions produce a change
The full microscope

equation for
rectangular area

∆A ≈ w · ∆l + l · ∆w

in the area. The picture below shows that the exact value of ∆A includes
an additional term—namely ∆l · ∆w—that is not in the approximation w ·
∆l + l ·∆w. The difference, ∆l ·∆w, is very small when the changes ∆l and
∆w are small. In chapter 5 we will have a further look at the nature of this
approximation.
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Exercises

1. Use differentiation formulas to find the partial derivatives of the following
functions.

a) x2y.

b)
√

x + y.

c) x2y + 5x3 −√
x + y.

d) 10xy.

e)
y

x
.

f) sin
y

x
.

g) 17
x2

y3
− x2 sin y + π.

h)
uv

5
+

5

uv
.

i) 2
√

x 3
√

y − 7 cos x.

j) x tan y.

2. On March 7 in the Northern Hemisphere, the farther south you are the
earlier the sun rises. The sun rises at 6:25 on this date at 40◦N. If we had
been far enough south, we could have experienced a 6:25 sunrise on March
5. Near what latitude did this happen?

3. The volume V of a given quantity of gas is a function of the temperature
T (in degrees Kelvin) and the pressure P . In a so-called ideal gas the func-
tional relationship between volume and pressure is given by a particularly
simple rule called the ideal gas law:

V (T, P ) = R
T

P
,

where R is a constant.

a) Find formulas for the partial derivatives VT (T, P ) and VP (T, P )

b) For a particular quantity of an ideal gas called a mole, the value of R can
be expressed as 8.3 × 103 newton-meters per degree Kelvin. (The newton is
the unit of force in the MKS unit system.) Check that the units in the ideal
gas law are consistent if V is measured in cubic meters, T in degrees Kelvin,
and P in newtons per square meter.
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c) Suppose a mole of gas at 350 degrees Kelvin is under a pressure of 20
newtons per square meter. If the temperature of the gas increases by 10
degrees Kelvin and the volume increases by 1 cubic meter, will the pressure
increase or decrease? By about how much?

4. Write the formula for a linear function F (x, y) with the following prop-
erties:

Fx(x, y) = .15 for all x and y

Fy(x, y) = 2.31 for all x and y

F (4, 1) = 8

5. The purpose of this exercise is to verify the claims made in the text
for the linear function z = F (x, y) = mx + ny + c, where m, n and c are
constants.

a) Use the differentiation rules to find the partial derivatives of F .

b) Use the definition of the partial derivative Fx(a, b) to show that Fx(a, b) =
m for any input (a, b). That is, show that the value of

F (a + ∆x, b) − F (a, b)

∆x

exactly equals m, no matter what a and b are.

c) Compute the exact value of the change

∆z = F (a + ∆x, b + ∆y) − F (a, b)

corresponding to changing a by ∆x and b by ∆y.

6. Suppose w = G(u, v) =
uv

3 + v
.

a) Approximate the value of the partial derivative Gu(1, 2) by computing
∆w/∆u for ∆u = ±.1, ±.01, . . . , ±.00001.

b) Approximate the value of Gv(1, 2) by computing ∆w/∆v for ∆v = ±.1,
±.01, . . . , ±.00001.

c) Write the full microscope equation for G(u, v) at (u, v) = (1, 2).

d) Use the full microscope equation to approximate G(.8, 2.1). How close is
your approximation to the true value of G(.8, 2.1)?
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7. a) A rectangular piece of land has been measured to be 51 feet by 2034
feet. What is its area?

b) The narrow dimension has been measured with an accuracy of 4 inches,
but the long dimension is accurate only to 10 feet. What is the error, or
uncertainty, in the calculated area? What is the percentage error?

8. Suppose z = f(x, y) and

f(3, 12) = 240, fx(3, 12) = 7, fy(3, 12) = 4.

a) Estimate f(4, 12), f(3, 13), f(4, 13), f(4, 10).

b) When x = 3 and y = 12, how much does a 1% increase in x cause z to
change? How much does a 1% increase in y cause z to change? Which has
the larger effect: a 1% increase in x or a 1% increase in y?

9. Let P (K, L) represent the monthly profit, in thousands of dollars, of a
company that produces a product using capital whose monthly cost is K
thousand dollars and labor whose monthly cost is L thousand dollars. The
current levels of expense for capital and labor are K = 23.5 and L = 39.0.
Suppose now that company managers have determined

∂P

∂K
(23.5, 39.0) = −.12,

∂P

∂L
(23.5, 39.0) = −.20.

a) Estimate what happens to the monthly profit if monthly capital expenses
increase to $24,000.

b) Each typical person added to the work force increases the monthly labor
expense by $1,500. Estimate what happens to the monthly profit if one more
person is added to the work force. What, therefore, is the rate of change of
profit, in thousands of dollars per person? Is the rate positive or negative?

c) Suppose managers respond to increased demand for the product by adding
three workers to the labor force. What does that do to monthly profit? If
the managers want to keep the profit level unchanged, they could try to alter
capital expenses. What change in K would leave profit unchanged after the
three workers are added? (This is called a trade-off.)

10. A forester who wants to know the height of a tree walks 100 feet from
its base, sights to the top of the tree, and finds the resulting angle to be 57
degrees.
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a) What height does this give for the tree?

b) If the 100-foot measurement is certain only to 1 foot and the angle mea-
surement is certain only to 5 degrees, what can you say about the uncertainty
of the height measured in part (a)? (Note: you need to express angles in ra-
dians to use calculus: π radians = 180 degrees.)

c) Which would be more effective: improving the accuracy of the angle mea-
surement, or improving the accuracy of the distance measurement? Explain.
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3.8 Chapter Summary

The Main Ideas

• The functions we study with the calculus have graphs that are locally
linear; that is, they look approximately straight when magnified under
a microscope.

• The slope of the graph at any point is the limit of the slopes seen
under a microscope at that point.

• The rate of change of a function at a point is the slope of its graph
at that point, and thus is also a limit. Its dimensional units are (units
of output)/(unit of input).

• The derivative of f(x) at x = a is name given to both the rate of
change of f at a and the slope of the graph of f at (a, f(a)).

• The derivative of y = f(x) at x = a is written f ′(a). The Leibniz
notation for the derivative is dy/dx.

• To calculate the derivative f ′(a), make successive approximations
using ∆y/∆x:

f ′(a) = lim
∆x→0

∆y

∆x
= lim

h→0

f(a + h) − f(a − h)

2h
= lim

h→0

f(a + h) − f(a)

h
.

• The microscope equation ∆y ≈ f ′(a) ·∆x describes the relation
between x and y = f(x) as seen under a microscope at (a, f(a)); ∆x
and ∆y are the microscope coordinates.

• The microscope equation describes how the output changes in response
to small changes in the input. The response is proportional, and the
derivative f ′(a) plays the role of multiplier, or scaling factor.

• The microscope equation expresses the local linearity of a function in
analytic form. The microscope equation is exact for linear functions.

• The microscope equation describes error propagation when one quan-
tity, known only approximately, is used to calculate another.
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• The derivative function is the rule that assigns to any x the number
f ′(x).

• The derivative of a function gives information about the shape of the
graph of the function, and conversely.

• If a function is given by a formula, its derivative also has a formula.
There are formulas for the derivatives of the basic functions, and
there are rules for the derivatives of combinations of basic functions.

• The chain rule gives the formula for the derivative of a chain, or
composite of functions.

• Functions that have more than one input variable have partial deriva-
tives. A partial derivative is the rate at which the output changes with
respect to one variable when we hold all the others constant.

• If a multi-input function is given by a formula, its partial derivatives
also have formulas that can be found using the same rules that apply
to single-input functions.

• A function z = F (x, y) of two variables also has a microscope equa-
tion:

∆z ≈ Fx(a, b) · ∆x + Fy(a, b) · ∆y.

The partial derivatives are the multipliers in the microscope equation.

Expectations

• You should be able to approximate f ′(a) by zooming in on the graph
of f near a and calculating the slope of the graph on an interval on
which the graph appears straight.

• You should be able to approximate f ′(a) using a table of values of f
near a.

• From the microscope equation ∆y ≈ f ′(a) · ∆x, you should be able to
estimate any one of ∆x, ∆y and f ′(a) if given the other two.

• If y = f(x) and there is an error in the measured value of x, you should
be able to determine the absolute and relative error in y.
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• You should be able to sketch the graph of f ′ if you are given the graph
of f .

• You should be able to use the basic differentiation rules to find the
derivative of a function given by a formula that involves sums of con-
stant multiples of xp, sin x, cos x, tanx, or bx.

• You should be able to break down a complicated formula into a chain
of simple pieces.

• You should be able to use the chain rule to find the derivative of a
chain of functions. This could involve several independent steps.

• For z = F (x, y), you should be able to approximate any one of ∆z,
∆x, ∆y, Fx(a, b) and Fy(a, b), if given the other four.

• You should be able to find formulas for partial derivatives using the
basic rules and the chain rule for finding formulas for derivatives.
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Differential Equations

The rate equations with which we began our study of calculus are called
differential equations when we identify the rates of change that appear
within them as derivatives of functions. Differential equations are essential
tools in many area of mathematics and the sciences. In this chapter we
explore three of their important uses:

• Modelling problems using differential equations;

• Solving differential equations, both through numerical techniques like
Euler’s method and, where possible, through finding formulas which
make the equations true;

• Defining new functions by differential equations.

We also introduce two important functions—the exponential function and
the logarithmic function—which play central roles in the theory of solving
differential equations. Finally, we introduce the operation of antidifferen-
tiation as an important tool for solving some special kinds of differential
equations.

4.1 Modelling with Differential Equations

To analyze the way an infectious disease spreads through a population, we
asked how three quantities S, I, and R would vary over time. This was
difficult to answer; we found no simple, direct relation between S (or I or
R) and t. What we did find, though, was a relation between the variables

179
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S, I, and R and their rates S ′, I ′, and R′. We expressed the relation as a
set of rate equations. Then, given the rate equations and initial values for S,
I, and R, we used Euler’s method to estimate the values at any time in the
future. By constructing a sequence of successive approximations, we were
able to make these estimates as accurate as we wished.

There are two ideas here. The first is that we could write down equations
for the rates of change that reflected important features of the process we
sought to model. The second is that these equations determined the variables
as functions of time, so we could make predictions about the real process we
were modelling. Can we apply these ideas to other processes?

To answer this question, it will be helpful to introduce some new terms.Differential equations
and initial value
problems

What we have been calling rate equations are more commonly called dif-
ferential equations. (The name is something of an historical accident.
Since the equations involve functions and their derivatives, we might bet-
ter call them derivative equations.) Euler’s method treats the differential
equations for a set of variables as a prescription for finding future values of
those variables. However, in order to get started, we must always specify
the initial values of the variables—their values at some given time. We call
this specification an initial condition. The differential equations together
with an initial condition is called an initial value problem. Each initial
value problem determines a set of functions which we find by using Euler’s
method.

If we use Leibniz’s notation for derivatives, a differential equation like S′ = −aSI takes the
form dS/dt = −aSI. If we then treat dS/dt as a quotient of the individual differentials dS
and dt (see page 123), we can even write the equation as dS = −aSI dt. Since this expresses
the differential dS in terms of the differential dt, it was natural to call it a differential equation.
Our approach is similar to Leibniz’s, except that we don’t need to introduce infinitesimally small
quantities, which differentials were for Leibniz. Instead, we write ∆S ≈ −aSI ∆t and relay on
the fact that the accumulated error of the resulting approximations can be made as small as we
like.

To illustrate how differential equations can be used to describe a wide
range of processes in the physical, biological, and social sciences, we’ll devote
this section to a number of ways to model and analyze the long-term behavior
of animal populations. To be specific, we will talk about rabbits and foxes,
but the ideas can be adapted to the population dynamics of virtually all living
things (and many non-living systems as well, such as chemical reactions).

In each model, we will begin by identifying variables that describe what
is happening. Then, we will try to establish how those variables change over
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time. Of course, no model can hope to capture every feature of the pro-
cess we seek to describe, so we begin simply. We choose just one or two
elements that seem particularly important. After examining the predictions
of our simple model and checking how well they correspond to reality, we
make modifications. We might include more features of the population dy- Models can provide

successive
approximations to

reality

namics, or we might describe the same features in different ways. Gradually,
through a succession of refinements of our original simple model, we hope for
descriptions that come closer and closer to the real situation we are studying.

Single-species Models: Rabbits

The problem. If we turn 2000 rabbits loose on a large, unpopulated island
that has plenty of food for the rabbits, how might the number of rabbits vary
over time? If we let R = R(t) be the number of rabbits at time t (measured in
months, let us say), we would like to be able to make some predictions about
the function R(t). It would be ideal to have a formula for R(t)—but this is
not usually possible. Nevertheless, there may still be a great deal we can say
about the behavior of R. To begin our explorations we will construct a model
of the rabbit population that is obviously too simple. After we analyze the
predictions it makes, we’ll look at various ways to modify the model so that
it approximates reality more closely.

The first model. Let’s assume that, at any time t, the rate at which the

Constant
per capita growth

rabbit population changes is simply proportional to the number of rabbits
present at that time. For instance, if there were twice as many rabbits, then
the rate at which new rabbits appear will also double. In mathematical
terms, our assumption takes the form of the differential equation

(1)
dR

dt
= k R

rabbits

month
.

The multiplier k is called the per capita growth rate (or the reproductive
rate), and its units are rabbits per month per rabbit. Per capita growth is
discussed in exercise 22 in chapter 1.2.

For the sake of discussion, let’s suppose that k = .1 rabbits per month per
rabbit. This assumption means that, on the average, one rabbit will produce
.1 new rabbits every month. In the S-I-R model of chapter 1, the reciprocals
of the coefficients in the differential equations had natural interpretations.
The same is true here for the per capita growth rate. Specifically, we can say
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that 1/k = 10 months is the average length of time required for a rabbit to
produce one new rabbit.

Since there are 2000 rabbits at the start, we can now state a clearly
defined initial value problem for the function R(t):

dR

dt
= .1 R R(0) = 2000.

By modifying the program SIRPLOT, we can readily produce the graph ofUse Euler’s method to
find R(t) the function that is determined by this problem. Before we do that, though,

let’s first consider some of the implications that we can draw out of the
problem without the graph.

Since R′(t) = .1 R(t) rabbits per month and R(0) = 2000 rabbits, we see
that the initial rate of growth is R′(0) = 200 rabbits per month. If this rate
were to persist for 20 years (= 240 months), R would have increased by

∆R = 240 months × 200
rabbits

month
= 48000 rabbits,

yielding altogether

R(240) = R(0) + ∆R = 2000 + 48000 = 50000 rabbits

at the end of the 20 years. However, since the population R is always getting
larger, the differential equation tells us that the growth rate R′ will also
always be getting larger. Consequently, 50,000 is actually an underestimate
of the number of rabbits predicted by this model.

Let’s restate our conclusions in a graphical form. If R′ were always 200
rabbits per month, the graph of R plotted against t would just be a straight
line whose slope is 200 rabbits/month. But R′ is always getting bigger, soThe graph of R curves

up the slope of the graph should increase from left to right. This will make the
graph curve upward. In fact, SIRPLOT will produce the following graph of
R(t):
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Later, we will see that the function R(t) determined by this initial value
problem is actually an exponential function of t, and we will even be able to
write down a formula for R(t), namely

R(t) = 2000 (1.10517)t.

This model is too simple to be able to describe what happens to a rabbit
population very well. One of the obvious difficulties is that it predicts the
rabbit population just keeps growing—forever. For example, if we used the
formula for R(t) given above, our model would predict that after 20 years (t =
240) there will be more than 50 trillion rabbits! While rabbit populations
can, under good conditions, grow at a nearly constant per capita rate for a
surprisingly long time (this happened in Australia during the 19th century),
our model is ultimately unrealistic.

It is a good idea to think qualitatively about the functions determined by a differential equation
and make some rough estimates before doing extensive calculations. Your sketches may help you
see ways in which the model doesn’t correspond to reality. Or, you may be able to catch errors
in your computations if they differ noticeably from what your estimates led you to expect.

The second model. One way out of the problem of unlimited growth is to
modify equation (1) to take into account the fact that any given ecological
system can support only some finite number of creatures over the long term. The carrying capacity

of the environmentThis number is called the carrying capacity of the system. We expect that
when a population has reached the carrying capacity of the system, the pop-
ulation should neither grow nor shrink. At carrying capacity, a population
should hold steady—its rate of change should be zero. For the sake of speci-
ficity, let’s suppose that in our example the carrying capacity of the island
is 25,000 rabbits.

What we would like to do, then, is to find an expression for R′ which is
similar to equation (1) when the number of rabbits R is near 2000, but which
approaches 0 as R approaches 25,000. One model which captures these fea-
tures is the logistic equation, first proposed by the Belgian mathematician
Otto Verhulst in 1845:

Logistic growth(2) R′ = k R

(

1 − R

b

)
rabbits

month
.

In this equation, the coefficient k is called the natural growth rate. It
plays the same role as the per capita growth rate in equation (1), and it has
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the same units—rabbits per month per rabbit. The number b is the carrying
capacity; it is measured in rabbits. (We first saw the logistic equation on
pages 80–86.) Notice also that we have written the derivative of R in the
simpler form R′, a practice we will continue for the rest of the section.

If the carrying capacity of the island is 25,000 rabbits, and if we keep
the natural growth rate at .1 rabbits per month per rabbit, then the logistic
equation for the rabbit population is

R′ = .1 R

(

1 − R

25000

)
rabbits

month
.

Check to see that this equation really does have the behavior claimed for it—
namely, that a population of 25,000 rabbits neither grows or declines. Notice
also that R′ is positive as long as R is less than 25000, so the population
increases. However, as R approaches 25000, R′ will get closer and closer toThe graph of R(t)

levels off near
R = 25000

0, so the graph will become nearly horizontal. (What would happen if the
island ever had more than 25,000 rabbits?)

These observations about the qualitative behavior of R(t) are consistent
with the following graph, produced by a modified version of the program
SIRPLOT. For comparison, we have also graphed the exponential function
produced by the first model. Notice that the two graphs “share ink” when
R near 2000, but diverge later on.
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By modifying the program SIRVALUE, we can even get numerical an-
swers to specific questions about the two models. For example, after 30
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months under constant per capita growth, the rabbit population will be more
than 40,000—well beyond the carrying capacity of the island. Under logistic
growth, though, the population will be only about 16,000.

In the following figure we display several functions that are determined
by the logistic equation

R′ = .1 R

(

1 − R

25000

)

when different initial conditions are given. Each graph therefore predicts
the future for a different initial population R(0). One of the graphs is just
the t-axis itself. What does this graph predict about the rabbit population?
What other graph is just a straight line, and what initial population will lead
to this line?

While the logistic equation above was developed to model a physical problem in which only
values of R with R ≥ 0 have any meaning, the mathematical problem of finding solutions for
the resulting differential equation makes sense for all values of R. We have drawn three graphs
resulting from initial values R(0) < 0. While this growth behavior of ‘anti-rabbits’ is of little
practical interest in this case, there may well be other physical problems of an entirely different
sort which lead to the same mathematical model, and in which the solutions below the t–axis
are crucial.

t

R

25000

60−60

Solutions to the logistic equation R′ = .1R (1 − R/25000)
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Two-species Models: Rabbits and Foxes

No species lives alone in an environment, and the same is true of the rab-Introduce predators

bits on our island. The rabbit population will probably have to deal with
predators of various sorts. Some are microscopic—disease organisms, for
example—while others loom as obvious threats. We will enrich our popula-
tion model by adding a second species—foxes—that will prey on the rabbits.
We will continue to suppose that the rabbits live on abundant native vegeta-
tion, and we will now assume that the rabbits are the sole food supply of the
foxes. Can we say what will happen? Will the number of foxes and rabbits
level off and reach a “steady state” where their numbers don’t vary? Or will
one species perhaps become extinct?

Let F denote the number of foxes, and R the number of rabbits. As
before, measure the time t in months. Then F and R are functions of t:
F (t) and R(t). We seek differential equations that describe how the growth
rates F ′ and R′ are related to the population sizes F and R. We make the
following assumptions.

• In the absence of foxes, the rabbit population grows logistically.

• The population of rabbits declines at a rate proportional to the product
R · F . This is reasonable if we assume rabbits never die of old age—
they just get a little too slow. Their death rate, which depends on the
number of fatal encounters between rabbits and foxes, will then be ap-
proximately proportional to both R and F—and thus to their product.
(This is the same kind of interaction effect we used in our epidemic
model to predict the rate at which susceptibles become infected.)

• In the absence of rabbits, the foxes die off at a rate proportional to the
number of foxes present.

• The fox population increases at a rate proportional to the number of
encounters between rabbits and foxes. To a first approximation, this
says that the birth rate in the fox population depends on maternal fox
nutrition, and this depends on the number of rabbit-fox encounters,
which is proportional to R · F .

Our assumptions are about birth and death rates, so we can convert
them quite naturally into differential equations. Pause here and check that
the assumptions translate into these differential equations:
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R′ = a R

(

1 − R

b

)

− cRF = a R − a

b
R2 − c RF

F ′ = d RF − e F

These are the Lotka–Volterra equations with bounded growth. The Lotka–Volterra
equations with

bounded growth
coefficients a, b, c, d, and e are parameters—constants that have to be
determined through field observations in particular circumstances.

An example. To see what kind of predictions the Lotka–Volterra equations
make, we’ll work through an example with specific values for the parameters.
Let

a = .1 rabbits per month per rabbit
b = 10000 rabbits
c = .005 rabbits per month per rabbit-fox
d = .00004 foxes per month per rabbit-fox
e = .04 foxes per month per fox

(Check that these five parameters have the right units.) These choices give
us the specific differential equations

R′ = .1 R − .00001 R2 − .005 RF

F ′ = .00004 RF − .04 F

To use this model to follow R and F into the future, we need to know
the initial sizes of the two populations. Let’s suppose that there are 2000
rabbits and 10 foxes at time t = 0. Then the two populations will vary in The graphs

of R and Fthe following way over the next 250 months.
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A variant of the program SIRPLOT was used to produce these graphs.
Notice that it plots 100F rather than F itself. This is because the number of
foxes is about 100 times smaller than the number of rabbits. Consequently,
100F and R are about the same size, so their graphs fit nicely together on
the same screen.

The graphs have several interesting features. There are different scales for
the R and the F values, because the program plots 100F instead of F . The
peak fox population is about 30, while the peak rabbit population is about
2300. The rabbit and fox populations rise and fall in a regular manner. They
rise and fall less with each repeat, though, and if the graphs were continued
far enough into the future we would see R and F level off to nearly constant
values.

The illustration below shows what happens to an initial rabbit populationHow rabbits respond to
changes in the initial
fox population

of 2000 in the presence of three different initial fox populations F (0). Note
that the peak rabbit populations are different, and they occur at different
times. The size of the intervals between peaks also depends on F (0).
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Rabbit populations for different initial fox populations

We have looked at three models, each a refinement of the preceding one.
The first was the simplest. It accounted only for the rabbits, and it assumed
the rabbit population grew at a constant per capita rate. The second was also
restricted to rabbits, but it assumed logistic growth to take into account the
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carrying capacity of the environment. The third introduced the complexity
of a second species preying on the rabbits. In the exercises you will have
an opportunity to explore these and other models. Remember that when
you use Euler’s method to find the functions determined by an initial value
problem, you must construct a sequence of successive approximations, until
you obtain the level of accuracy desired.

Exercises

Single-species models

1. Constant per capita Growth. This question considers the initial
value problem given in the text:

R′ = 0.1 R rabbits per month; R(0) = 2000 rabbits.

a) Use Euler’s method to determine how many rabbits there are after 6
months. Present a table of successive approximations from which you can
read the exact value to whole-number accuracy.

b) Determine, to whole-number accuracy, how many rabbits there are after
24 months.

c) How many months does it take for the rabbit population to reach 25,000?

2. Logistic Growth. The following questions concern a rabbit population
described by the logistic model

R′ = 0.1 R

(

1 − R

25000

)

rabbits per month.

a) What happens to a population of 2000 rabbits after 6 months, after 24
months, and after 5 years? To answer each question, present a table of
successive approximations that allows you to give the exact value to the
nearest whole number.

b) Sketch the functions determined by the logistic equation if you start with
either 2000 or 40000 rabbits. (Suggestion: you can modify the program
SIRPLOT to answer this question.) Compare the two functions. How do
they differ? In what ways are they similar?
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3. Seasonal Factors Living conditions for most wild populations are not
constant throughout the year—due to factors like drought or cold, the envi-
ronment is less supportive during some parts of the year than at others. Par-
tially in response to this, most animals don’t reproduce uniformly throughout
the year. This problem explores ways of modifying the logistic model to re-
flect these facts.

a) For the eastern cottontail rabbit, most young are born during the months
of March–May, with reduced reproduction during June–August, and virtually
no reproduction during the other six months of the year. Write a program
to generate the solution to the differential equation R′ = k(1 − R/25000),
where k = .2 during March, April, and May; k = .05 during June, July, and
August; and k = 0 the rest of the year. Start with an initial population
of 2000 rabbits on January 1. You may find that using the IF ... THEN

construction in your program is a convenient way to incorporate the varying
reproductive rate.

b) How would you modify the model to take into account the fact that
rabbits don’t reproduce during their first season?

4. World population. The world’s population in 1990 was about 5 billion,
and data show that birth rates range from 35 to 40 per thousand per year
and death rates from 15 to 20. Take this to imply a net annual growth rate
of 20 per thousand. One model for world population assumes constant per
capita growth, with a per capita growth rate of 20/1000 = 0.02.

a) Write a differential equation for P that expresses this assumption. Use
P to denote the world population, measured in billions.

b) According to the differential equation in (a), at what rate (in billions of
persons per year) was the world population growing in 1990?

c) By applying Euler’s method to this model, using the initial value of 5
billion in 1990, estimate the world population in the years 1980, 2000, 2040,
and 2230. Present a table of successive approximations that stabilizes with
one decimal place of accuracy (in billions). What step size did you have to
use to obtain this accuracy?

5. Supergrowth. Another model for the world population, one that actu-
ally seems to fit recent population data fairly well, assumes “supergrowth”—
the rate P ′ is proportional to a higher power of P , rather than to P itself.
The model is

P ′ = .015 P 1.2.
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As in the previous exercise, assume that P is measured in billions, and the
population in 1990 was about 5 billion.

a) According to this model, at what rate (in billions of persons per year)
was the population growing in 1990?

b) Using Euler’s method, estimate the world population in the years 1980,
2000 and 2040. Use successive approximations until you have one decimal
place of accuracy (in billions). What step size did you have to use to obtain
this accuracy?

c) Use an Euler approximation with a step size of 0.1 to estimate the world
population in the year 2230. What happens if you repeat your calculation
with a step size of 0.01? [Comment: Something strange is going on here. We
will look again at this model in the next section.]

Two-species models

Here are some other differential equations that model a predator-prey inter-
action between two species.

6. The May Model. This model has been proposed by the contemporary
ecologist, R.M. May, to incorporate more realistic assumptions about the
encounters between predators (foxes) and their prey (rabbits). So that you
can work with quantities that are about the same size (and therefore plot
them on the same graph), let y be the number of foxes and let x be the
number of rabbits divided by 100—we are thus measuring rabbits in units of
“hectorabbits”.

While a term like “hectorabbits” is deliberately whimsical, it echoes the common and sensible
practice of choosing units that allow us to measure things with numbers that are neither too
small nor too large. For example, we wouldn’t describe the distance from the earth to the moon
in millimeters, and we wouldn’t describe the mass of a raindrop in kilograms.

In his model, May makes the following assumptions.

• In the absence of foxes, the rabbits grow logistically.

• The number of rabbits a single fox eats in a given time period is a
function D(x) of the number of rabbits available. D(x) varies from 0 if
there are no rabbits available to some value c (the saturation value)
if there is an unlimited supply of rabbits. The total number of rabbits
consumed in the given time period will thus be D(x) · y.
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• The fox population is governed by the logistic equation, and the carry-
ing capacity is proportional to the number of rabbits.

a) Explain why D(x) =
c x

x + d
(d some constant) might be a reasonable

model for the function D(x). Include a sketch of the graph of D in your
discussion. What is the role of the parameter d? That is, what feature of
rabbit – fox interactions is reflected by making d smaller or larger?

b) Explain how the following system of equations incorporates May’s as-
sumptions.

x′ = a x
(

1 − x

b

)

− c xy

x + d

y′ = e y

(

1 − y

fx

)

The parameters a, b, c, d, e and f are all positive.

c) Assume you begin with 2000 rabbits and 10 foxes. (Be careful: x(0) 6=
2000.) What does May’s model predict will happen to the rabbits and foxes
over time if the values of the parameters are a = .6, b = 10, c = .5, d = 1,
e = .1 and f = 2? Use a suitable modification of the program SIRPLOT.

d) Using the same parameters, describe what happens if you begin with 2000
rabbits and 20 foxes; with 1000 rabbits and 10 foxes; with 1000 rabbits and 20
foxes. Does the eventual long-term behavior depend on the initial condition?
How does the long-term behavior here compare with the long-term behavior
of the two populations in the Lotka–Volterra model of the text?

e) Using 2000 rabbits and 20 foxes as the initial values, let’s see how the
behavior of the solutions is affected by changing the values of the parameter
c, the saturation value for the number of rabbits (measured in centirabbits,
remember) a single fox can eat in a month. Keeping all the other parameters
(a, b, d, . . . ) fixed at the values given above, get solution curves for c = .5,
c = .45, c = .4, . . . , c = .15, and c = .1 . The solutions undergo a qualitative
change somewhere between c = .3 and c = .25. Describe this change. Can
you pinpoint the crucial value of c more closely? This phenomenon is an
example of Hopf bifurcation, which we will look at more closely in chapter
8. The May model undergoes a Hopf bifurcation as you vary each of the
other parameters as well. Choose a couple of them and locate approximately
the associated bifurcation values.
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7. The Lotka–Volterra Equations. This model for predator and prey
interactions is slightly simpler than the “bounded growth” version we con-
sider in the text. It is important historically, though, because it was one of
the first mathematical population models, proposed as a way of understand-
ing why the harvests of certain species of fish in the Adriatic Sea exhibited
cyclical behavior over the years. For the sake of variety, let’s take the prey
to be hares and the predators to be lynx.

Let H(t) denote the number of hares at time t and L(t) the number of
lynx. This model, the basic Lotka–Volterra model, differs from the bounded
growth model in only one respect: it assumes the hares would experience
constant per capita growth if there were no lynx.

a) Explain why the following system of equations incorporates the assump-
tions of the basic model. (The parameters a, b, c, and d are all positive.)

H ′ = a H − bHL

L′ = c HL − d L

(These are called the Lotka–Volterra equations. They were developed
independently by the Italian mathematical physicist Vito Volterra in 1925–
26, and by the mathematical ecologist and demographer Alfred James Lotka
a few years earlier. Though simplistic, they form one of the principal starting
points in ecological modeling.)

b) Explain why a and b have the units hares per month per hare and hares
per month per hare-lynx, respectively. What are the units of c and d? Ex-
plain why.

Suppose time t is measured in months, and suppose the parameters have
values

a = .1 hares per month per hare

b = .005 hares per month per hare-lynx

c = .00004 lynx per month per hare-lynx

d = .04 lynx per month per lynx

This leads to the system of differential equations

H ′ = .1 H − .005 HL

L′ = .00004 HL− .04 L.
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c) Suppose that you start with 2000 hares and 10 lynx—that is, H(0) =
2000 and L(0) = 10. Describe what happens to the two populations. A good
way to do this is to draw graphs of the functions H(t) and L(t). It will be
convenient to have the Hare scale run from 0 to 3000, and the Lynx scale
from 0 to 50. If you modify the program SIRPLOT, have it plot H and 60L.
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Hare and lynx populations as a function of time

You should get graphs like those above. Notice that the hare and lynx
populations rise and fall in a fashion similar to the rabbits and foxes, but
here they oscillate—returning periodically to their original values.

d) What happens if you keep the same initial hare population of 2000, but
use different initial lynx populations? Try L(0) = 20 and L(0) = 50. (In
each case, use a step size of .1 month.)

e) Start with 2000 hares and 10 lynx. From part (c), you know the solutions
are periodic. The goal of this part is to analyze this periodic behavior. You
can do this with your program in part (c), but you may prefer to replace
the FOR-NEXT loop in your program by a variety of DO-WHILE loops (see
page 77). First find the maximum number of hares. What is the length
of one period for the hare population? That is, how long does it take the
hare population to complete one cycle (e.g., to go from one maximum to the
next)? Find the length of one period for the lynx. Do the hare and lynx
populations have the same periods?

f) Plot the hare populations over time when you start with 2000 hares and,
successively, 10, 20, and 50 lynx. Is the hare population periodic in each
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case? What is the period? Does it vary with the size of the initial lynx
population?

Fermentation

Wine is made by yeast; yeast digests the sugars in grape juice and produces
alcohol as a waste product. This process is called fermentation. The alcohol
is toxic to the yeast, though, and the yeast is eventually killed by the alcohol.
This stops fermentation, and the liquid has become wine, with about 8–12%
alcohol.

Although alcohol isn’t a “species,” it acts like a predator on yeast. Un-
like the other predator-prey problems we have considered, though, the yeast
does not have an unlimited food supply. The following exercises develop a se-
quence of models to take into account the interactions between sugar, yeast,
and alcohol.

8. a) In the first model assume that the sugar supply is not depleted, that
no alcohol appears, and that the yeast simply grows logistically. Begin by
adding 0.5 lb of yeast to a large vat of grape juice whose carrying capacity
is 10 lbs of yeast. Assume that the natural growth rate of the yeast is 0.2
lbs of yeast per hour, per pound of yeast. Let Y (t) be the number of pounds
of live yeast present after t hours; what differential equation describes the
growth of Y ?

b) Graph the solution Y (t), for example by using a suitable modification
of the program SIRPLOT. Indicate on your graph approximately when the
yeast reaches one-half the carrying capacity of the vat, and when it gets to
within 1% of the carrying capacity.

c) Suppose you use a second strain of yeast whose natural growth rate is
only half that of the first strain of yeast. If you put 0.5 lb of this yeast into
the vat of grape juice, when will it reach one-half the carrying capacity of the
vat, and when will it get to within 1% of the carrying capacity? Compare
these values to the values produced by the first strain of yeast: are they
larger, or smaller? Sketch, on the same graph as in part (b), the way this
yeast grows over time.

9. a) Now consider how the yeast produces alcohol. Suppose that waste
products are generated at a rate proportional to the amount of yeast present;
specifically, suppose each pound of yeast produces 0.05 lbs of alcohol per hour.
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(The other major waste product is carbon dioxide gas, which bubbles out of
the liquid.) Let A(t) denote the amount of alcohol generated after t hours.
Write a differential equation that describes the growth of A.

b) Consider the toxic effect of the alcohol on the yeast. Assume that yeast
cells die at a rate proportional to the amount of alcohol present, and also
to the amount of yeast present. Specifically, assume that, in each pound of
yeast, a pound of alcohol will kill 0.1 lb of yeast per hour. Then, if there are
Y lbs of yeast and A lbs of alcohol, how many pounds of yeast will die in
one hour? Modify the original logistic equation for Y (strain 1) to take this
effect into account. The modification involves subtracting off a new term that
describes the rate at which alcohol kills yeast. What is the new differential
equation?

c) You should now have two differential equations describing the rates of
growth of yeast and alcohol. The equations are coupled, in the sense that
the yeast equation involves alcohol, and the alcohol equation involves yeast.
Assuming that the vat contains, initially, 0.5 lb of yeast and no alcohol,
describe by means of a graph what happens to the yeast. How close does
the yeast get to carrying capacity, and when does this happen? Does the
fermentation end? If so, when; and how much alcohol has been produced by
that time? (Note that since Y will never get all the way to 0, you will need
to adopt some convention like Y ≤ .01 to specify the end of fermentation.)

10. What happens if the rates of toxicity and alcohol production are dif-
ferent? Specifically, increase the rate of alcohol production by a factor of
five—from 0.05 to 0.25 lbs of alcohol per hour, per pound of yeast—and at
the same time reduce the toxicity rate by the same factor—from 0.10 to 0.02
lb of yeast per hour, per pound of alcohol and pound of yeast. How do these
changes affect the time it takes for fermentation to end? How do they affect
the amount of alcohol produced? What happens if only the rate of alcohol
production is changed? What happens if only the toxicity rate is reduced?

11. a) The third model will take into account that the sugar in the grape
juice is consumed. Suppose the yeast consumes .15 lb of sugar per hour, per
lb of yeast. Let S(t) be the amount of sugar in the vat after t hours. Write
a differential equation that describes what happens to S over time.

b) Since the carrying capacity of the vat depends on the amount of sugar in
it, the carrying capacity must now vary. Assume that the carrying capacity
of S lbs of sugar is .4 S lbs of yeast. How much sugar is needed to maintain
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a carrying capacity of 10 lbs of yeast? How much is needed to maintain a
carrying capacity of 1 lb of yeast? Rewrite the logistic equation for yeast so
that the carrying capacity is .4 S lbs, instead of 10 lbs, of yeast. Retain the
term you developed in 9.b to reflect the toxic impact of alcohol on the yeast.

c) There are now three differential equations. Using them, describe what
happens to .5 lbs of yeast that is put into a vat of grape juice that contains
25 lbs of sugar at the start. Does all the sugar disappear? Does all the yeast
disappear? How long does it take before there is only .01 lb of yeast? How
much sugar is left then? How much alcohol has been produced by that time?

Newton’s law of cooling

Suppose that we start off with a freshly brewed cup of coffee at 90◦C and set
it down in a room where the temperature is 20◦C. What will the temperature
of the coffee be in 20 minutes? How long will it take the coffee to cool to
30◦C?

If we let the temperature of the coffee be Q (in ◦C), then Q is a function
of the time t, measured in minutes. We have Q(0) = 90◦C, and we would
like to find the value t1 for which Q(t1) = 30◦C.

It is not immediately apparent how to give Q as a function of t. However,
we can describe the rate at which a liquid cools off, using Newton’s law of
cooling: the rate at which an object cools (or warms up, if it’s cooler than
its surroundings) is proportional to the difference between its temperature
and that of its surroundings.

12. In our example, the temperature of the room is 20◦C, so Newton’s law
of cooling states that Q′(t) is proportional to Q− 20, the difference between
the temperature of the liquid and the room. In symbols, we have

Q′ = −k (Q − 20)

where k is some positive constant.

a) Why is there a minus sign in the equation?

The particular value of k would need to be determined experimentally. It
will depend on things like the size and shape of the cup, how much sugar
and cream you use, and whether you stir the liquid. Suppose that k has the
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value of .1◦ per minute per ◦C of temperature difference. Then the differential
equation becomes:

Q′ = −.1(Q − 20) ◦C per minute.

b) Use Euler’s method to determine the temperature Q after 20 minutes.
Write a table of successive approximations with smaller and smaller step
sizes. The values in your table should stabilize to the second decimal place.

c) How long does it take for the temperature Q to drop to 30◦C? Use
a DO-WHILE loop to construct a table of successive approximations that
stabilize to the second decimal place.

13. On a hot day, a cold drink warms up at a rate approximately propor-
tional to the difference in temperature between the drink and its surround-
ings. Suppose the air temperature is 90◦F and the drink is initially at 36◦F.
If Q is the temperature of the drink at any time, we shall suppose that it
warms up at the rate

Q′ = −0.2(Q − 90) ◦F per minute.

According to this model, what will the temperature of the drink be after
5 minutes, and after 10 minutes. In both cases, produce values that are
accurate to two decimal places.

14. In our discussion of cooling coffee, we assumed that the coffee did not
heat up the room. This is reasonable because the room is large, compared to
the cup of coffee. Suppose, in an effort to keep it warmer, we put the coffee
into a small insulated container—such as a microwave oven (which is turned
off). We must assume that the coffee does heat up the air inside the container.
Let A be the air temperature in the container and Q the temperature of the
coffee. Then both A and Q change over time, and Newton’s law of cooling
tells us the rates at which they change. In fact, the law says that both Q′

and A′ are proportional to Q − A. Thus,

Q′ = −k1(Q − A)

A′ = k2(Q − A),

where k1 and k2 are positive constants.

a) Explain the signs that appear in these differential equations.
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b) Suppose k1 = .3 and k2 = .1. If Q(0) = 90◦C and A(0) = 20◦C, when
will the temperature of the coffee be 40◦C? What is the temperature of the
air at this time? Your answers should be accurate to one decimal place.

c) What does the temperature of the coffee become eventually? How long
does it take to reach that temperature?

S-I-R revisited

Consider the spread of an infectious disease that is modelled by the S-I-R
differential equations

S ′ = −.00001 SI,

I ′ = .00001 SI − .08 I,

R′ = .08 I.

Take the initial condition of the three populations to be

S(0) = 35, 400 persons,

I(0) = 13, 500 persons,

R(0) = 22, 100 persons.

15. How many susceptibles are left after 40 days? When is the largest
number of people infected? How many susceptibles are there at that time?
Explain how you could determine the last number without using Euler’s
method.

16. What happens as the epidemic “runs its course”? That is, as more and
more time goes by, what happens to the numbers of infecteds and suscepti-
bles?

17. One of the principal uses of a mathematical model is to get a qualitative
idea how a system will behave with different initial conditions. For instance,
suppose we introduce 100 infected individuals into a population. How will
the spread of the infection depend on the size of the population? Assume the
same S-I-R differential equations that were used in the previous exercise, and
draw the graphs of S(t) for initial susceptible population sizes S(0) ranging
from 0 to 45,000 in increments of 5000 (that is, take S(0) = 0, 5000, 10000,
. . . , 45000). In each case assume that R(0) = 0 and I(0) = 100. Use these
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graphs to argue that the larger the initial susceptible population, the more
rapidly the epidemic runs its course.

18. Draw the graphs of I(t) for the same initial conditions as in the pre-
vious problem. Using these graphs you can demonstrate that the larger
the susceptible population, the larger will be the fraction of the popula-
tion that is infected during the worst stages of the epidemic. Do this by
constructing a table displaying Imax, tmax, and Pmax, where Imax is the max-
imum value of I(t), tmax is the time at which this maximum occurs (that
is, Imax = I(tmax)), and Pmax is the ratio of Imax to the initial susceptible
population: Pmax = Imax/S(0). The table below gives the first three sets of
values.

S(0) Imax Pmax tmax

5 000
10 000
15 000

100
315

2071

0.02
0.03
0.14

0
> 100

66
...

...
...

...

Your table should show that there is a time when over half the population
is infected if S(0) = 45000, while there is never a time when more than
one-fourth of the population is infected if S(0) = 20000.

Constructing models

Systems in which we know a number of quantities at a given time and would
like to know their values at a future time (or know at what future time they
will attain given values) occur in many different contexts. The following are
some systems for discussion. Can any of these be modelled as initial value
problems? What information would you need to resolve the question? Make
some reasonable assumptions about the missing information and write down
an initial value problem which would model the system.

19. We deposit a fixed sum of money in a bank, and we’d like to know how
much will be there in ten years.

20. We know the diameter of the mold spot growing on a cheese sandwich
is 1/4 inch, and we’d like to know when its diameter will be one inch.
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21. We know the fecal bacterial and coliform concentrations in a local swim-
ming hole, and we’d like to know when they fall below certain prescribed
levels (which the Board of Health deems safe).

22. We know what the temperature and rainfall is today, and we’d like to
know what both will be one week from today.

23. We know what the winning lottery number was yesterday, and we’d like
to know what the winning number will be the day after tomorrow.

24. We know where the earth, sun, and moon are in relation to each other
now, and how fast and in what direction they are moving. We would like to
be able to predict where they are going to be at any time in the future. We
know the gravity of each affects the motions of the others by determining the
way their velocities are changing.

4.2 Solutions of Differential Equations

Differential Equations are Equations

Until now, we have viewed a system of differential equations as a set of Differential equations
give instructions for

Euler’s method
instructions for “stepping into the future” (or the past). Put another way,
an initial value problem was treated as a prescription for using Euler’s method
to determine a set of functions which were then given either graphically or
in tabular form.

In this section we take a new point of view: we will think of differential
equations as equations for which we would like to find solutions in terms of
functions which can be given by explicit formulas. While it is unfortunately
the case that most differential equations do not have solutions which can be
given by formulas, there are enough important classes of equations where
such solutions do exist to make them worth studying. When such solutions
can be found, we have a very powerful tool for examining the behavior of the
phenomenon being modelled.

To see what this means, let’s look first at equations in algebra. Consider
the equation x2 = x + 6. As it stands, this is neither true nor false. We
make it true or false, though, when we substitute a particular number for x.
For example, x = 3 makes the equation true, because 32 = 3 + 6. On the
other hand, x = 1 makes the equation false, because 12 6= 1+6. Any number Equations have

solutions
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that makes an equation true is called a solution to that equation. In fact,
x2 = x + 6 has exactly two solutions: x = 3 and x = −2.

We can view differential equations the same way. Consider, for example,
the differential equation

dy

dt
=

1

2y
.

Because it involves the expression dy/dt, we understand that y is a function
of t. As it stands, the differential equation is neither true nor false. We make
it true or false, though, when we substitute a particular function for y. For
example, y =

√
t = t1/2 makes the differential equation true. To see this,

first look at the left-hand side of the equation:

Substitute y =
√

t
into the differential
equation

dy

dt
= 1

2
t−1/2 =

1

2
√

t
.

Now look at the right-hand side:

1

2y
=

1

2
√

t
.

The two sides of the equation are equal, so the substitution y =
√

t makes
the equation true.

The function y = t2, however, makes the differential equation false. The
left-hand side is

dy

dt
= 2t,

but the right-hand side is
1

2y
=

1

2t2
.

Since 2t and 1/2t2 are different functions, the two sides are unequal and the
equation is therefore false.

We say that y =
√

t is a solution to this differential equation. TheA solution makes
the equation true function y = t2 is not a solution. To decide whether a particular function is

a solution when the function is given by a formula, notice that we need to
be able to differentiate the formula.

If we view differential equations simply as instructions for carrying out Euler’s method, we need
only the microscope equation ∆y ≈ y′ · ∆t in order to find functions. However, if we want to
find functions that are solutions to differential equations from our new point of view, we first
need to introduce the idea of the derivative and the rules for differentiating functions.
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Just as an algebraic equation can have more than one solution, so can a
differential equation. In fact, we can show that y =

√
t + C is a solution to

the differential equation
dy

dt
=

1

2y
,

for any value of the constant C. To evaluate the left-hand side dy/dt, we
need the chain rule (chapter 3.6). Let’s write

y =
√

u where u = t + C.

Then the left-hand side is the function

dy

dt
=

dy

du
· du

dt
=

1

2
√

u
· 1 =

1

2
√

t + C
.

Since the right-hand side of the differential equation is

1

2y
=

1

2
√

t + C
,

the two sides are equal—no matter what value C happens to have. This A differential equation
can have infinitely

many solutions
proves that every function of the form y =

√
t + C is a solution to the

differential equation. Since there are infinitely many values that C can take,
the differential equation has infinitely many different solutions!

If a differential equation arises in modelling a physical or biological pro-
cess, the variables involved must also satisfy an initial condition. Suppose
we add an initial condition to our differential equation:

dy

dt
=

1

2y
and y(0) = 5.

Does this problem have a solution—that is, can we find a function y(t) that is
a solution to the differential equation and also satisfies the condition y(0) =
5?

Notice y =
√

t is not a solution to this new problem. Although it satisfies
the differential equation, it fails to satisfy the initial condition:

y(0) =
√

0 = 0 6= 5.

Perhaps one of the other solutions to the differential equation will work.
When we evaluate the solution y =

√
t + C at t = 0 we get

y(0) =
√

0 + C =
√

C.
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We want this to equal 5, and it will if C = 25. Thus, y =
√

t + 25 is
a solution to the initial value problem. Furthermore, the only value of C An initial value

problem
only one solution

which will make y(0) = 5 is C = 25, so the initial value problem has only
one solution of the form

√
t + C. Here is the graph of this solution:

-

6

t

y

−25

r5
y =

√
t + 25

As always, you can use Euler’s method to find the function determined by
an initial value problem, and you can graph that function using the program
SIRPLOT, for example. How will that graph compare with this one? In the
exercises you can explore this question.

Checking solutions versus finding solutions. Notice that we have only
checked whether a given function solves an initial value problem; we have not
constructed a formula to solve the problem. By this point you are probably
wondering where the given solutions came from.

It is helpful to continue exploring the parallels with solutions of algebraic
equations. In the case of the equation x2 = x + 6, there are, of course,
methods to find solutions. One possibility is to rewrite x2 = x + 6 in the
form x2 − x − 6 = 0. By factoring x2 − x − 6 as

x2 − x − 6 = (x − 3)(x + 2)

we can see that either x − 3 = 0 (so x = 3), or x + 2 = 0 (so x = −2).
Another method is to use the quadratic formula

x =
−b ±

√
b2 − 4ac

2a

for the roots of the quadratic function ax2+bx+c. In our case, the quadratic
formula yields

x =
−(−1) ±

√

1 − 4 · 1 · (−6)

2 · 1 =
1 ±

√

1 + 24

2
=

1 ± 5

2
,

so again we find that x must be either 3 or −2.
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Thus we have at least two different methods for finding solutions to this
particular equation. The methods we use to solve an algebraic equation
depend very much on the equation we face. For example, there is no wayThere are special

methods to solve
rticular equations,

but other methods
ork generally

to find a solution to sin x = 2x by factoring, or by using a “magic formula”
like the quadratic formula. Nevertheless, there are methods that do work.
In chapters 1 and 2 we dealt with similar problems by using a computer
graphing utility that could zoom in on the point of intersection of two graphs.
In chapter 6 we will introduce another tool, the Newton–Raphson method,
for finding roots. These are both powerful methods, because they will work
with nearly all algebraic equations. It is important to recognize that these
numerical methods really do solve the problem, even though they do not give
solutions in closed form the way the quadratic formula does.

The situation is entirely analogous in dealing with differential equations.
The methods we use to solve a differential equation depend on the equation
we face. A course in differential equations provides methods for finding for-
mulas that solve many different kinds of differential equations. The methods
are like the quadratic formula in algebra, though—they give a complete solu-
tion, but they work only with differential equations that have a very specific
form. This course will not attempt to survey the methods that find such for-
mulas, although in the next sections we will see effective methods for dealing
with some special subcases.

It is important to realize, though, that Euler’s method is always there
if we can’t think of anything cleverer, and it really does provide solutions.
In fact, most initial value problems have one, and only one, solution, and Most initial value

problem have one,
and only one, solution.

Euler’s method
will find it.

Euler’s method can be used to determine this unique solution. If we can also
find a formula for the solution, then it must be the same solution as that
produced by Euler’s method. In more advanced courses you will see a proof
that this is true in general, provided some mild conditions are satisfied. To
emphasize the importance of this idea, we give it a name:

Existence and Uniqueness Principle
Under most conditions, an initial value problem

has one and only one solution.

The existence and uniqueness principle is one of the most important mathe-
matical results in the theory of differential equations.

We will continue to rely primarily on Euler’s method, which generates
solutions for nearly all differential equations.
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However, there are clear benefits to having a formula for the solution
to a differential equation, allowing us to investigate questions that we can’t
answer very well if we only have solutions given by Euler’s method. In this
section, we will look at some of those benefits.

World Population Growth

Two models

In the exercises in the last section, we looked at two different models that seek
to describe how the world population will grow. One model assumed constant
per capita growth—rate of change proportional to population size. The other
assumed “supergrowth”—rate of change proportional to a higher power of
the population size. Let’s write P for the population size in the constant per
capita growth model and Q for the population size in the supergrowth model.
In both cases, the population is expressed in billions of persons and time is
measured in years, with t = 0 in 1990. In this notation, the two models are

Models for world
population growth

constant per capita:
dP

dt
= .02 P P (0) = 5;

supergrowth:
dQ

dt
= .015 Q1.2 Q(0) = 5.

By using Euler’s method, we discover that the two models predict fairly
similar results over sixty years, although the supergrowth model lives up
to its name by predicting larger populations than the constant per capita
growth model as time passes:

t P Q

− 10
0

10
50

4.09
5.00
6.11

13.59

4.08
5.00
6.18

15.94

These estimates are accurate to one decimal place, and that level of accuracy
was obtained with the step size ∆t = .1.

However, the predictions made by the models differ widely over longer
time spans. If we use Euler’s method to estimate the populations after 240
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years, we get

∆t P (240) Q(240)

.1

.01

.001

6.046 × 102

6.073 × 102

6.075 × 102

1.979 × 1010

2.573 × 1011

3.825 × 1011

As the step size decreases from 0.1 to 0.01 to 0.001, the estimates of the
constant per capita growth model P (240) behave as we have come to expect:
already three digits have stabilized. But in the estimates of the supergrowth
model, not even one digit of Q(240) has stabilized.

In this section we will see that there are actually formulas for the func-
tions P (t) and Q(t). These formulas will illuminate the reason behind the
differences in speed of stabilization in the estimates.

A formula for the supergrowth model

Without asking how the following formula might have been derived, let’s
check that it is indeed a solution to the supergrowth initial value problem.

Q(t) =

(
1
5
√

5
− .003 t

)−5

First of all, the formula satisfies the initial condition Q(0) = 5: Checking the
initial condition

Q(0) =

(
1
5
√

5

)−5

= (
5
√

5)5 = 5.

To check that it also satisfies the differential equation, we must evaluate Checking the
differential equationthe two sides of the differential equation

dQ

dt
= .015 Q1.2.

Let’s begin by evaluating the left-hand side. To differentiate Q(t), we will Left-hand side

write Q as a chain of functions:

Q = u−5 where u =
1
5
√

5
− .003 t.
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Since Q = u−5, dQ/du = (−5)u−6. Also, since u is just a linear function of t
in which the multiplier is −.003, we have du/dt = −.003. Consequently,

dQ

dt
=

dQ

du
· du

dt
= (−5) u−6 · (−.003)

= .015 u−6

Ordinarily, we would “finish the job” by substituting for u its formula in
terms of t. However, in this case it is clearer to just leave the left-hand side
in this form.

To evaluate the right-hand side of the differential equation (which is theRight-hand side

expression .015 Q1.2), we would expect to substitute for Q its formula in terms
of t. But since in evaluating the left-hand side, we expressed things in terms
of u, let’s do the same thing here. Since Q = u−5,

Q1.2 = Q6/5 = (u−5)6/5 = u−5·6/5 = u−6.

Therefore, the right-hand side is equal to .015 u−6. But so is the left-hand
side, so Q(t) is indeed a solution to the differential equation

dQ

dt
= .015 Q1.2.

Notice two things about this result. First, when we work with formulas we have greater need for
algebra to manipulate them. For example, we needed one of the laws of exponents, (ab)c = abc,
to evaluate the right-hand side. Second, we found it simpler to express Q in terms of the
intermediate variable u, instead of the original input variable t. In another computation, it might
be preferable to replace u by its formula in terms of t. You need to choose your algebraic strategy
to fit the circumstances.

Behavior of the supergrowth solution

It was convenient to use a negative exponent in the formula for Q(t) when
we wanted to differentiate Q. However, to understand what the formula tells
us about supergrowth, it will be more useful to write Q as

Q(t) =

(
1

1/ 5
√

5 − .003 t

)5

.
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This way makes it clear that Q is a fraction, and we can see its denominator.
In particular, this fraction is not defined when the denominator is zero—that
is, when

1
5
√

5
− .003 t = 0, or t =

1/ 5
√

5

.003
= 241.6 . . . years after 1990.

Consider what happens, though, as t approaches this special value 241.6. . . .
The denominator isn’t yet zero, but it is approaching zero, so the fraction Q Q “blows up” as

t → 241.6 . . .is becoming infinite. This means that the supergrowth model predicts the
world population will become infinite in about 240 years!

Let’s see what the predicted population size is when t = 240 (which is
the year 2230 a.d.), shortly before Q becomes infinite. We have

Q(240) =

(
1
5
√

5
− (.003)(240)

)−5

≈ 4.0088 × 1011.

Remember that Q expresses the population in billions of people, so the su-
pergrowth model predicts about 4 × 1020 people (i.e. 400 quintillion!) in
the year 2230. Refer back to our estimates of Q(240) using Euler’s method
(page 207). Although not even one digit of the estimates had stabilized, at
least the final one (with a step size of .001) had reached the right power
of ten. In fact, estimates made with still smaller step sizes do eventually
approach the value given by the formula for Q:

step size Q(240)

.1 0.1979 × 1011

.01 2.5727 × 1011

.001 2.8249 × 1011

.0001 3.9999 × 1011

.00001 4.0069 × 1011

Let’s look at the relationship between the Euler approximations of Q and
the formula for Q graphically. Here are graphs produced by a modification
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of the program SEQUENCE.

Q(t)

120 180 24060

10

.5 10

0

11

11

∆   = 2         ∆   = 1t        and     t

∆   = .1t

The range of values of Q for 0 ≤ t ≤ 240 is so immense that these graphs
are useless. In a case like this, it is helpful to rescale the vertical axis so
that the space between one power of 10 and the next is the same. In other
words, instead of seeing 1, 2, 3, . . . , we see 101, 102, 103, . . . . This is
called a logarithmic scale. Here’s what happens to the graphs if we put a
logarithmic scale on the vertical axis:
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t

Q(t)

120 180 2406010 -1

10 1

10 3

10 5

10 7

10 9

10 11

∆   = 2t
∆   = 1t

∆   = .1t

Euler approximations and the formula for Q

The second graph makes it clearer that the Euler approximations do indeed
approach the graph of the function given by our formula, but they approach
more and more slowly, the closer t approaches 241.6. . . .

Graphs are made with logarithmic scales particularly when the numbers being plotted cover a
wide range of values. When just one axis is logarithmic, the result is called a semi-log plot; when
both axes are logarithmic, the result is called a log–log plot.

Since Q(t) becomes infinite when t = 241.6 . . . , we must conclude that
the solution to the original initial value problem is meaningful only for t < The initial value

problem has a solution
only for t < 241.6 . . .

241.6 . . . . Of course, the formula for Q works quite well when t > 241.6 . . .
. It just has no meaning as the size of a population. For instance, when
t = 260 we get

Q(260) =

(
1
5
√

5
− (.003)(260)

)−5

≈ (−.05522)−5 ≈ −1.948 × 106.

In other words, the function determined by the initial value problem is defined
only on intervals around t = 0 that do not contain t = 241.6 . . . .

The formula for Q′(t) is informative too:

Q′(t) = .015

(
1

1/ 5
√

5 − .003t

)6
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Since Q′ has the same denominator as Q, it becomes infinite the same wayQ′ blows up as
t → 241.6 . . . Q does: Q′(t) → ∞ as t → 241.6 . . . . Because Euler’s method uses the

microscope equation ∆Q ≈ Q′ · ∆t to predict the next value of Q, we can
now understand why the estimates of Q(240) were so slow to stabilize: as
Q′ → ∞, ∆Q → ∞, too.

A formula for constant per capita growth

The constant per capita growth model for the world population that we are
considering is

dP

dt
= .02 P P (0) = 5.

This differential equation has a very simple form; if P (t) is a solution, then
the derivative of P is just a multiple of P . We have already seen in chapter 3
that exponential functions behave this way (exercises 5–7 in section 3). For
example, if P (t) = 2t, then

dP

dt
= .69 · 2t = .69 P.

Of course, the multiplier that appears here is .69, not .02, so P (t) = 2t is not
a solution to our problem.

However, the multiplier that appears when we differentiate an exponentialExponential functions
satisfy dy/dt = ky function changes when we change the base. That is, if P (t) = bt, then

P ′(t) = kb · bt, where kb depends on b. Here is a sample of values of kb for
different bases b:

b kb

.5
2
3

10

− .693147 . . .
.693147 . . .

1.098612 . . .
2.302585 . . .

Notice that kb gets larger as b does. Since .02 lies between −.693147 and
+.693147, the table suggests that the value of b we want lies somewhere
between .5 and 2.

We can say even more about the multiplier. Since P ′(t) = kb · P (t) and
P (t) = bt, we find

P ′(0) = kb · P (0) = kb · b0 = kb · 1 = kb.
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In other words, kb is the slope of the graph of P (t) = bt at the origin.

Thus, we will be able to solve the differential equation dP/dt = .02 P if
we can find an exponential function P (t) = bt whose graph has slope .02 at The correct

exponential function
has slope .02 at the

origin

the origin. This is a problem that we can solve with a computer microscope.
Pick a value of b and graph bt. Zoom in on the graph at the origin and
measure the slope. If the slope is more than .02, choose a smaller value for b;
if the slope is less than .02, choose a larger value for b. Repeat this process,
narrowing down the possibilities for b until the slope is as close to .02 as you
wish. Eventually, we get

P (t) = (1.0202)t.

You should check that P ′(0) = .02000 . . . ; see the exercises.
Thus P (t) = (1.0202)t solves the differential equation P ′ = .02 P . How-

ever, it does not satisfy the initial condition, because

P (0) = (1.0202)0 = 1 6= 5.

This is easy to fix; P (t) = 5 · (1.0202)t satisfies both conditions. More
generally, P (t) = C (1.0202)t satisfies the initial condition P (0) = C as well
as the differential equation P ′(t) = .02 P (t). To check the initial condition,
we compute

P (0) = C (1.0202)0 = C · 1 = C.

The differential equation is also satisfied:

P ′(t) = (C (1.0202)t)′ = C · ((1.0202)t)′ = C · (.02 (1.0202)t) = .02 P (t).

So we have verified that the solution to our problem is

The formula
for P

P (t) = 5 (1.0202)t.

Because exponential functions are involved, constant per capita growth
is commonly called exponential growth. In the figure below we compare
exponential growth P (t) to “supergrowth” Q(t). The two graphs agree quite
well when t < 50. Notice that population is plotted on a logarithmic scale
(a semi–log plot). This makes the graph of P a straight line!
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t

Q(t)

P(t)

120 180 2406010 -1
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10 11

The graphs of P (t) and Q(t)

Differential Equations Involving Parameters

The S-I-R model contained two parameters—the transmission and recovery
coefficients a and b. When we used Euler’s method to analyze S, I, and R,
we were working numerically. To do the computations, we had to give the
parameters definite numerical values. That made it more difficult to dealHow do parameters

affect solutions? with our questions about the effects of changing the parameters. As a result,
we took other approaches to explore those questions. For example, we used
algebra to see that there was a threshold for the spread of the disease: if
there were fewer than b/a people in the susceptible population, the infection
would fade away.

This is the situation generally. Euler’s method can be used to produce
solutions to a very broad range of initial value problems. However, if the
model includes parameters, then we usually want to know how the solutions
are affected when the parameters change. Euler’s method is a rather clumsy
tool for investigating this question. Other methods—ones that don’t require
the values of the parameters to be fixed—work better. One possibility is to
start with a formula.

The supergrowth problem illustrates both how questions about parame-Supergrowth
parameters ters can arise and how useful a formula for the solution can be to answer the

questions. One of the most striking features of the supergrowth model is that
it predicts the population becomes infinite in 241.6. . . years. That prediction
was based on an initial population of 5 billion and a growth constant of .015.
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Suppose those values turn out to be incorrect, and we need to start with
different values. Will that change the prediction? If so, how?

We should treat the initial population and the growth constant as parameters—
that is, as quantities that can vary, although they will have fixed values in
any specific situation that we consider. Suppose we let A denote the size of
the initial population, and k the growth constant. If we incorporate these
parameters into the supergrowth model, the initial value problem takes this
form:

dQ

dt
= k Q1.2 Q(0) = A

Here is the formula for a function that solves this problem:

The supergrowth
solution with

parameters
Q(t) =

(
1

5
√

A
− .2kt

)−5

Notice that, when A = 5 and k = .015, this formula reduces to the one we
considered earlier.

Let’s check that the formula does indeed solve the initial value problem. Checking the formula

First, the initial condition:

Q(0) =

(
1

5
√

A
− .2k · 0

)−5

=

(
1

5
√

A

)−5

= (
5
√

A)5 = A.

Next, the differential equation. To differentiate Q(t) we introduce the chain

Q = u−5 where u =
1

5
√

A
− .2kt.

We see that dQ/du = −5 u−6. Since u is a linear function of t in which the
multiplier is −.2k, we also have du/dt = −.2k. Thus, by the chain rule,

dQ

dt
=

dQ

du
· du

dt
= −5 u−6 · (−.2k) = k u−6.

That is the left-hand side of the differential equation. To evaluate the right-
hand side, we use the fact that Q = u−5. Thus

k Q1.2 = k Q6/5 = k(u−5)6/5 = k u−5·6/5 = k u−6.

Since both sides equal k u−6, they equal each other, proving that Q(t) is a
solution to the differential equation.
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Next, we ask when the population becomes infinite. Exactly as before,
this will happen when the denominator of the formula for Q(t) becomes zero:

The time to infinity 1
5
√

A
− .2 kt = 0, or t =

1

.2 k 5
√

A
.

Here, in fact, is a formula that tells us how each of the parameters A and k
affects the time it takes for the population to become infinite.

Let’s use τ (the Greek letter “tau”) to denote the “time to infinity.” For
example, if we double the initial population, so A = 10 billion people, while
keeping the original growth constant k = .015, then the time to infinity is

τ =
1

.003 × 5
√

10
≈ 210.3 years.

By contrast, if we double the growth rate, to k = .030, while keeping the
original A = 5, then the time to infinity is only

τ =
1

.006 × 5
√

5
≈ 120.8 years

Conclusion: doubling the growth rate has a much greater impact than dou-
bling the initial population.

For any specific growth rate and initial population, we can always cal-Uncertainty in
the size of τ culate the time to infinity. But we can actually do more; the formula for τ

allows us to do an error analysis along the patterns described in chapter 3.4.
For example, suppose we are uncertain of our value of the growth rate k;
there may be an error of size ∆k. How uncertain does that make us about
the calculated value of τ? Likewise, if the current world population A is
known only with an error of ∆A, how uncertain does that make τ? Also,
how are the relative errors related? Let’s do this analysis, assuming that
k = .015 and A = 5.

Our tool is the error propagation equation—which is the microscope equa-How an error in k
propagates tion. If we deal with k first, then

∆τ ≈ ∂τ

∂k
· ∆k.

We have used partial derivatives because τ is a function of two variables, A
as well as k. If we write

τ =
1

.2 5
√

A
k−1,
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then the differentiation rules yield

∂τ

∂k
= −1 · 1

.2 5
√

A
k−2 =

−1

.2 5
√

5
× (.015)−2 ≈ −16106.

Thus ∆τ ≈ −16106 · ∆k. For example, if the uncertainty in the value of
k = .015 is ∆k = ±.001, then the uncertainty in τ is about ∓16 years.

To determine how an error in A propagates to τ , we first write How an error in A
propagates

τ =
1

.2 k
A−1/5.

Then
∂τ

∂A
= −1

5
· 1

.2 k
A−6/5 =

−1

5 × .2 × .015
× 5−6/5 ≈ −9.7.

The error propagation equation is thus ∆τ ≈ −9.7 · ∆A. If the uncertainty
in the world population is about 100 million persons, so ∆A = ±.1, then the
uncertainty in τ is less than 1 year.

To complete the analysis, let’s compare relative errors. This involves a Relative errors

lot of algebra. To see how an error in k propagates, we have

∆τ ≈ − ∆k

.2 k2 5
√

A
and τ =

1

.2 k 5
√

A
.

We can therefore compute that a given relative error in k propagates as

∆τ

τ
≈ − ∆k

.2 k2 5
√

A
· .2 k 5

√
A

1
= −∆k

k
.

Thus, a 1% error in k leads to a 1% error in τ , although the sign is reversed.
To analyze how a given relative error in A propagates, we start with

∆τ ≈ −1

5
· ∆A

.2 kA6/5
.

Then
∆τ

τ
≈ −1

5
· ∆A

.2 kA6/5
· .2 k 5

√
A

1
= −1

5
· ∆A

A
.

This says that it takes a 5% error in A to produce a 1% error in τ . Conse- How sensitive τ is to
errors in k and Aquently, the time to infinity τ is 5 times more sensitive to errors in k than

to errors in A.
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The exercises in this section will give you an opportunity to check that
a particular formula is a solution to an initial value problem that arises in a
variety of contexts. Later in this chapter, we will make a modest beginning on
the much harder task of finding solutions given by formulas for special initial
value problems. There are more sophisticated methods for finding formulas,Special methods give

formulas; general
methods are numerical

when the formulas exist, and they provide powerful tools for some important
problems, especially in physics. However, most initial value problems we
encounter cannot be solved by formulas. This is particularly true when two
or more variables are needed to describe the process being modelled. The
tool of widest applicability is Euler’s method. This isn’t so different from
the situation in algebra, where exact solutions given by formulas (e.g. the
quadratic formula) are also relatively rare, and numerical methods play an
important role. (Chapter 5.5, presents the Newton–Raphson method for
solving algebraic equations by successive approximation.) In most cases that
will interest us, there are simply no formulas to be found—the limitation lies
in the mathematics, not the mathematicians.

Exercises

In exercises 1–4, verify that the given formula is a solution to the initial value
problem.

1. Powers of y.

a) y′ = y2, y(0) = 5: y(t) = 1/(1
5
− t)

b) y′ = y3, y(0) = 5: y(t) = 1/
√

1
25

− 2t

c) y′ = y4, y(0) = 5: y(t) = 1/ 3

√
1

125
− 3t

d) Write a general formula for the solution of the initial value problem y′ =
yn, y(0) = 5, for any integer n > 1.

e) Write a general formula for the solution of the initial value problem y′ =
yn, y(0) = C, for any integer n > 1 and any constant C ≥ 0.

2. Powers of t.

a) y′ = t2, y(0) = 5: y(t) = 1
3
t3 + 5

b) y′ = t3, y(0) = 5: y(t) = 1
4
t4 + 5

c) y′ = t4, y(0) = 5: y(t) = 1
5
t5 + 5
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d) Write a general formula for the solution of the initial value problem y′ =
tn, y(0) = 5 for any integer n > 1.

e) Write a general formula for the solution of the initial value problem y′ =
tn, y(0) = C for any integer n > 1 and any constant C.

3. Sines and cosines.

a) x′ = −y, y′ = x, x(0) = 1, y(0) = 0: x(t) = cos t, y(t) = sin t

b) x′ = −y, y′ = x, x(0) = 0, y(0) = 1: x(t) = cos(t + π/2), y(t) =
sin(t + π/2)

4. Exponential functions.

a) y′ = 2.3 y, y(0) = 5: y(t) = 5 · 10t

b) y′ = 2.3 y, y(0) = C: y(t) = C · 10t

c) y′ = −2.3 y, y(0) = 5: y(t) = 5 · 10−t

d) y′ = 4.6 ty, y(0) = 5: y(t) = 5 · 10t2

5. Initial Conditions.

a) Choose C so that y(t) =
√

t + C is a solution to the initial value problem

y′ =
1

2y
y(3) = 17.

b) Choose C so that y(t) = −1/(t + C) is a solution to the initial value
problem

y′ = y2 y(0) = −5.

c) Choose C so that y(t) = −1/(t + C) is a solution to the initial value
problem

y′ = y2 y(2) = 3.

World population growth with parameters

6. a) Using a graphing utility or a calculator, show that the derivative of
P (t) = (1.0202)t at the origin is approximately .02: P ′(0) ≈ .02. Since quick
convergence is desirable, use

∆P

∆t
=

P (0 + h) − P (0 − h)

2h
=

(1.0202)h − (1.02020)−h

2h
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b) By using more decimal places to get higher precision, show that P (t) =
(1.0202013)t satisfies P ′(0) = .02 even more exactly.

7. a) Show that the function y = 2t/.69 satisfies the differential equation
dy/dt = y. Use the chain rule: y = 2u, u = t/.69. (Recall that k2 = .69 . . . .)

b) Show that the function y = 2kt/.69 satisfies the differential equation
dy/dt = k y.

c) Show that the function P (t) = A · 2kt/.69 is a solution to the initial value
problem

dP

dt
= k P P (0) = A.

Note that this describes a population that grows at the constant per capita
rate k from an initial size of A.

8. a) Show that the function y = 10t/2.3 satisfies the differential equation
dy/dt = y. Use the chain rule: y = 10u, u = t/2.3. (Recall that k10 =
2.3 . . . .)

b) Show that the function y = 10kt/2.3 satisfies the differential equation
dy/dt = k y.

c) Show that the function P (t) = A · 10kt/2.3 is a solution to the initial value
problem

dP

dt
= k P P (0) = A.

This formula provides an alternative way to describe a population that grows
at the constant per capita rate k from an initial size of A.

9. a) The formula P (t) = 5 · 2k t/.69 describes how an initial population of
5 billion will grow at a constant per capita rate of k persons per year per
person. Use this formula to determine how many years t it will take for the
population to double, to 10 billion persons.

b) Suppose the initial population is A billion, instead of 5 billion. What is
the doubling time then?

c) Suppose the initial population is 5 billion, and the per capita growth
rate is .02, but that value is certain only with an error of ∆k. How much
uncertainty is there in the doubling time that you found in part (a)?
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Newton’s law of cooling

There are formulas that describe how a body cools, or heats up, to match
the temperature of its surroundings. See the exercises on Newton’s law of
cooling in section 1. Consider first the model

dT

dt
= −.1(T − 20) T (0) = 90,

introduced on page 197 to describe how a cup of coffee cools.

10. Show that the function y = 2−.1 t/.69 is a solution to the differential
equation dy/dt = −.1 y. (Use the chain rule: y = 2u, u = −.1 t/.69.)

11. a) Show that the function

T = 70 · 2−.1 t/.69 + 20

is a solution to the initial value problem dT/dt = −.1(T − 20), T (0) = 90.
This is the temperature T of a cup of coffee, initially at 90◦C, after t minutes
have passed in a room whose temperature is 20◦C.

b) Use the formula in part (a) to find the temperature of the coffee after 20
minutes. Compare this result with the value you found in exercise 12 (b),
page 198.

c) Use the formula in part (a) to determine how many minutes it takes for
the coffee to cool to 30◦C. In doing the calculations you will find it helpful
to know that 1/7 = 2−2.8. Compare this result with the value you found in
exercise 11 (c), page 198.

12. a) A cold drink is initially at Q = 36◦F when the air temperature is
90◦F. If the temperature changes according to the differential equation

dQ

dt
= −.2(Q − 90)◦F per minute,

show that the function Q(t) = 90 − 54 · 2−.2 t/.69 describes the temperature
after t minutes.

b) Use the formula to find the temperature of the drink after 5 minutes
and after 10 minutes. Compare your results with the values you found in
exercise 12, page 198.

13. Find a formula for a function that solves the initial value problem

dQ

dt
= −k(Q − A) Q(0) = B.
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A leaking tank

The rate at which water leaks from a small hole at the bottom of a tank
is proportional to the square root of the height of the water surface above
the bottom of the tank. Consider a cylindrical tank that is 10 feet tall and
stands on one of its circular ends, which is 3 feet in diameter. Suppose the
tank is currently half full, and is leaking at a rate of 2 cubic feet per hour.

14. a) Let V (t) be the volume of water in the tank t hours from now.
Explain why the leakage rate can be written as the differential equation

V ′(t) = −k
√

V (t),

for some positive constant k. (The issue to deal with is this: why is it
permissible to use the square root of the volume here, when the rate is known
to depend on the square root of the height?)

b) Determine the value of k. [Answer: k ≈ .3364; you need to explain why
this is the value.]

15. a) How much water leaks out of the tank in 12 hours; in 24 hours? Use
Euler’s method, and compute successive approximations until your results
stabilize.

b) How many hours does it take for the tank to empty?

16. a) Use the differentiation rules to show that any function of the form

V (t) =







k2

4
(C − t)2 if 0 ≤ t ≤ C

0 if C < t

satisfies the differential equation.

b) For the situation we are considering, what is the value of C? According
to this solution, how long does it take for the tank to empty? Compare this
result with your answer using Euler’s method.

c) Sketch the graph of V (t) for 0 ≤ t ≤ 2C, taking particular care to display
the value V (0) in terms of k and C.
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Motion

Newton created the calculus to study the motion of the planets. He said
that all motion obeys certain basic laws. One law says that the velocity of
an object changes only if a force acts on the body. Furthermore, the rate
at which the velocity changes is proportional to the force. By knowing the
forces that act on a body we can construct—and then solve—a differential
equation for the velocity.

Falling bodies–with gravity. A body falling through the air starts up
slowly but picks up speed as it falls. Its velocity is thus changing, so there
must be a force acting. We call the force that pulls objects to the earth
gravity. Near the earth, the strength of gravity is essentially constant.

Suppose an object is x meters above the surface of the earth after t
seconds have passed. Then, by definition, its velocity is

v =
dx

dt
meters/second.

According to Newton’s laws of motion, the force of gravity causes the velocity
to change, and we can write

dv

dt
= −g.

Here g is a constant whose numerical value is about 9.8 meters/second per
second. Since x and v are positive when measured upwards, but gravity
acts downwards, a minus sign is needed in the equation for dv/dt. (The
derivative of velocity is commonly called acceleration, and g is called the
acceleration due to gravity.)

17. Verify that v(t) = −g t + v0 is a solution to the differential equation
dv/dt = −g with initial velocity v0.

18. Since dx/dt = v, and since v(t) = −g t + v0, the position x of the body
satisfies the differential equation

dx

dt
= −g t + v0 meters/second.

Find a formula for x(t) that solves this differential equation. This function
describes how a body moves under the force of gravity.
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19. Suppose the initial position of the body is x0, so that the position x is
a solution to the initial value problem

dx

dt
= −g t + v0 x(0) = x0 meters.

Find a formula for x(t).

20. a) Suppose a body is held motionless 200 meters above the ground, and
then released. What values do x0 and v0 have? What is the formula for the
motion of this body as it falls to the ground?

b) How far has the body fallen in 1 second? In 2 seconds?

c) How long does it take for the body to reach the ground?

Falling bodies–with gravity and air resistance. As a body falls, air
pushes against it. Air resistance is thus another force acting on a falling
body. Since air resistance is slight when an object moves slowly but increases
as the object speeds up, the simplest model we can make is that the force of
air resistance is proportional to the velocity: force = −bv (reality turns out
to be somewhat more complicated than this). The multiplier b is positive,
and the minus sign tells us that the direction of the force is always opposite
the velocity. The forces of gravity and air resistance combine to change the
velocity:

dv

dt
= −g − b v meters/second per second.

21. Show that

v(t) =
g

b

(
2−b t/.69 − 1

)
meters/second

is a solution to this differential equation that also satisfies the initial condition
v(0) = 0 meters/second.

22. a) Show that the position x(t) of a body that falls against air resistance
from an initial height of x0 meters is given by the formula

x(t) = x0 −
g

b
t − g

b2

(
2−b t/.69 − 1

)
meters.

b) Suppose the coefficient of air resistance is b = .2 per second. If a body
is held motionless 200 meters above the ground, and then released, how far
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will it fall in 1 second? In 2 seconds? Compare these values with those you
obtained assuming there was no air resistance.

c) How long does it take for the body to reach the ground? (Use a computer
graphing package to get this answer.) Compare this value with the one you
obtained assuming these was no air resistance. How much does air resistance
add to the time?

23. a) According to the equation dv/dt = −g − b v, there is a velocity vT

at which the force of air resistance exactly balances the force of gravity, and
the velocity doesn’t change. What is vT , expressed as a function of g and
b. Note: vT is called the terminal velocity of the body. Once the body
reaches its terminal velocity, it continues to fall at that velocity.

b) What is the terminal velocity of the body in the previous exercise?

The oscillating spring. Springs can smooth out life’s little irregularities (as
in the suspension of a car) or amplify and measure them (as

in earthquake detection devices). Suppose a
spring that hangs from a hook has a weight at its
end. Let the weight come to rest. Then, when
the weight moves, let x denote the position of the
weight above the rest position. (If x is negative,
this means the weight is below the rest position.)
If you pull down on the weight, the spring pulls
it back up. If you push up on the weight, the
spring (and gravity) push it back down. This
push is the spring force.

m x

cm

0 rest
position




The simplest assumption is that the spring force is proportional to the
amount x that the spring has been stretched: force = −c2x. The constant
c2 is customarily written as a square to emphasize that it is positive. The
minus sign tells us the force pushes down if x > 0 (so the weight is above the
rest position), but it pushes up if x < 0.

If v = dx/dt is the velocity of the weight, then Newton’s law of motion
says

dv

dt
= −c2x.

Suppose we move the weight to the point x = a on the scale, hold it mo-
tionless momentarily, and then release it at time t = 0. This determines the
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initial value problem
x′ = v x(0) = a
v′ = −c2x v(0) = 0.

24. a) Show that

x(t) = a cos(ct) v(t) = −ac sin(ct)

is a solution to the initial value problem.

b) What range of values does x take on; that is, how far does the weight
move from its rest position?

25. a) Use a graphing utility to compare the graphs of y = cos(x), y =
cos(2x), y = cos(3x), and y = cos(.5x). Based on your observations, explain
how the value of c affects the nature of the motion x(t) = a cos(ct) for a fixed
value of a.

b) How long does it take the weight to complete one cycle (from x = a back
to x = a) when c = 1? The motion of the weight is said to be periodic, and
the time it takes to complete one cycle is called its period.

c) What is the period of the motion when c = 2? When c = 3? Does the
period depend on the initial position a?

d) Write a formula that expresses the period of the motion in terms of the
parameters a and c.

26. a) The parameter c depends on two things: the mass m of the weight,
and the stiffness k of the spring:

c =

√

k

m
.

Write a formula that expresses the period of the motion of the weight in
terms of m and k.

b) Suppose you double the weight on the spring. Does that increase or
decrease the period of the motion? Does your answer agree with your intu-
itions?

c) Suppose you put the first weight on a second spring that is twice as stiff
as the first (i.e., double the value of k). Does that increase or decrease the
period of the motion? Does your answer agree with your intuitions?
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d) When you calculate the period of the motion using your formula form
part (a), suppose you know the actual value of the mass only to within 5%.
How accurately do you know the period—as a percentage of the calculated
value?

4.3 The Exponential Function

The Equation y′ = ky

As we have seen, initial value problems define functions—as their solutions.
They therefore provide us with a vast, if somewhat bewildering, array of
new functions. Fortunately, a few differential equations—in fact, the very
simplest—arise over and over again in an astonishing variety of contexts.
The functions they define are among the most important in mathematics.

One of the simplest differential equations is dy/dt = ky, where k is a A simple and natural
model of growth and

decay
constant. It is also one of the most useful. We used it in chapter 1 to
model the populations of Poland and Afghanistan, as well as bacterial growth
and radioactive decay. In this chapter, it was our initial model of a rabbit
population and one of our models of the world population. Later, we will
use it to describe how money accrues interest in a bank and how radiation
penetrates solid objects.

In this section we will look at the solutions to differential equations of this
form from two different vantage points. On the one hand, we already have
named functions which solve such equations—the exponential functions. On
the other hand, the fact that Euler’s method produces the same functions
will allow us to prove properties of such functions and to compute their values
effectively.

In chapter 3 we established that the solutions to dy/dt = ky are exponen- Exponential
solutions—variable

base . . .
tial functions. Specifically, for each base b, the exponential function y = bt

was a solution to dy/dt = kb · bt = kb · y, where kb was the slope of the graph
of y = bt at the origin. In this approach, if the constant k changes, we must
change the base b so that kb = k.

Exercise 7 in the previous section (page 220) opened up a new possibility: . . . and
fixed basefor the fixed base 2, the function

y = 2kt/.6931...

was a solution to the differential equation dy/dt = kt, no matter what value
k took. There was nothing special about the base 2, of course. In the next
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exercise, we saw that the functions

y = 10kt/2.3025...

would serve equally well as solutions.
In fact, we can show that, for any base b, the functions

y = bkt/kb

are also solutions to dy/dt = ky. Construct the chain

y = bu where u = kt/kb.

Then dy/du = kb · bu = kb · y, while du/dt = k/kb. Thus, by the chain rule
we have

dy

dt
=

dy

du
· du

dt
= kb y · k

kb
= ky.

If we express solutions to dy/dt = ky by exponential functions with aAdvantages of a fixed
base fixed base, it is easy to alter the solution if the growth constant k changes.

We just change the value of k in the exponent of bkt/kb . Let’s see how this
works when b = 2 and b = 10:

differential solution solution
equation base 2 base 10

dy

dt
= .16 y 2.231 t 10.069 t

dy

dt
= .18 y 2.260 t 10.078 t

Notice that the growth constant k gets “swallowed up” in the exponent of
the solution when k has a specific numerical value. The number that appears
in the exponent is k divided by k2 = .6931 . . . (when the base is 2) and by
k10 = 2.3025 . . . (when the base is 10).

The most vivid solution to dy/dt = ky would use the base b for which
kb = 1 exactly. There is such a base, and it is always denoted e. (We willThe base e

determine the value of e in a moment.) Since ke = 1, k would stand out in
the exponent:

differential solution
equation base e

dy

dt
= .16 y e.16 t

dy

dt
= .18 y e.18 t
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The simplicity and clarity of this expression have led to the universal adop-
tion of the base e for describing exponential growth and decay—that is, for
describing solutions to dy/dt = ky.

The use of the symbol e to denote the base dates back to a paper that Euler wrote at age
21, entitled Meditatio in experimenta explosione tormentorum nuper instituta (Meditation upon
recent experiments on the firing of cannons), where the symbol e was used sixteen times. It is
now in universal use. The number e is, like π, one of the most important and ubiquitous numbers
in mathematics.

By design, y = et is a solution to the differential equation dy/dt = y. In
particular, the slope of the graph of y = et at the origin is exactly 1. As we
have just seen, the function y = ekt is a solution to the differential equations
dy/dt = ky whose growth constant is k. Finally:

The general initial
value problem for

exponential functions
y = C · ekt is the solution to the initial value problem

dy

dt
= ky y(0) = C.

We can check this quickly. The initial condition is satisfied because e0 = 1,
so y(0) = C · ek·0 = C · 1 = C. The differential equation is satisfied because

(
C · ekt

)′
= C ·

(
ekt
)′

= C · k ekt = k y.

We used the differentiation rule for a constant multiple of a function, and we
used the fact that the derivative of ekt was already established to be k ekt.

The Number e

The number e is determined by the property that ke = 1. Since this number Finding e with a
computer microscopeis the slope of the graph of y = et at the origin, one way to find e is with

a computer microscope. Pick an approximation E for e and graph y = f t.
Zoom in the graph at the origin, and measure the slope. If the slope is more
than 1, choose a smaller approximation; if the slope is less than 1, choose a
larger value. Repeat this process, narrowing down the value of e until you
know its value to as many decimal places as you wish.

We already know E = 2 is too small, because the slope of y = 2t at the Under successive
magnifications:
e = 2.71828 . . .

origin is .69. Likewise, E = 3 is too large, because the slope of y = 3t at the
origin is 1.09. Thus 2 < e < 3, and is closer to 3 than to 2. At the next
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stage we learn that 2.7 is too small (slope = .9933) but 2.8 is too large (slope
= 1.0296). Thus, at least we know e = 2.7 . . . . Several stages later we would
learn e = 2.71828 . . . .

While the method just described for finding the value of e works, it is
somewhat ponderous. We can take a very different approach to finding theFinding e by

Euler’s method numerical value of e by using the fact that e is defined by an initial value
problem. Here is the idea: e is the value of the function et when t = 1, and
y(t) = et is the solution to the initial value problem

y′ = y y(0) = 1.

We can then find e = y(1) in the usual way by solving this initial value prob-
lem using Euler’s method. Due to some convenient algebraic simplifications,
this approach yields powerful insights about the nature of e.

Suppose we take n steps to go from t = 0 to t = 1. Then the step size is
∆t = 1/n. The following table shows the calculations:

Finding y(1) by Euler’s method when y′ = y and y(0) = 1

t y y′ = y ∆y = y′ · ∆t

0 1 1 1 · 1/n
1/n 1 + 1/n 1 + 1/n (1 + 1/n) · 1/n
2/n (1 + 1/n)2 (1 + 1/n)2 (1 + 1/n)2 · 1/n
3/n (1 + 1/n)3 (1 + 1/n)3 (1 + 1/n)3 · 1/n
...

...
...

...
n/n (1 + 1/n)n

The entries in the y column need to be explained. The first two should be
clear: y(0) is the initial value 1, and y(1/n) = y(0) + ∆y = 1 + 1/n. To get
from any entry to the next we must do the following:

new y = current y + ∆y

= current y + y′ · ∆t

= current y + current y · ∆t

= current y · (1 + ∆t)

= current y · (1 + 1/n)

The new y is the current y multiplied by (1 + 1/n). Since the second y is
itself (1 + 1/n), the third will be (1 + 1/n)2, the fourth will be (1 + 1/n)3,
and so on.
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Euler’s method with n steps therefore gives us the following estimate for
e = y(1) = y(n/n):

e ≈ (1 + 1/n)n

We can calculate these numbers on a computer. In the following table we
give values of (1 + 1/n)n for increasing values of n. By the time n = 240

(about 1012), eleven digits of e have stabilized.

n (1 + 1/n)n

20

24

28

212

216

220

224

228

232

236

240

2.0
2.638
2.712 992
2.717 950 081
2.718 261 089 905
2.718 280 532 282
2.718 281 747 448
2.718 281 823 396
2.718 281 828 142
2.718 281 828 439
2.718 281 828 458

The true value of e is the limit of these approximations as we take n Expressing e as a limit

arbitrarily large:

e = lim
n→∞

(1 + 1/n)n = 2.71828182845904 . . .

We can generalize the preceding to get an expression for eT for any value
of T . In exactly the same way as we did above, divide the interval from 0 to T
into n pieces, each of width ∆t = T/n. Starting from t = 0 and y(0) = 1 and
applying Euler’s method, we find, using the same algebraic simplifications,
that after n steps the value for t will be T and y will be (1 + T/n)n. Since
these approximations approach the true value of the function as n → ∞, we
have that

eT = lim
n→∞

(1 + T/n)n for any value of T .
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Differential Equations Define Functions

There is an important point underlying the operations we just performed hav-
ing to do with the question of computability. While it may be appalling to
think about doing it by hand, there is nothing conceptually difficult about
evaluating an expression like (1 + 1/1000)1000—all we need are ordinary ad-Euler’s method uses

only arithmetic dition, division, and multiplication. In fact, for any differential equation,
Euler’s method generates a solution using only ordinary arithmetic.

By contrast, think for a moment about the earlier method for evaluating
e by evaluating expressions like (2.718.0001 − 2.718−.0001)/.0002 and seeing
whether we get a value bigger than or less than 1. While a calculator or a
computer will readily give us a value, how does it “know” what 2.718.0001

is? The fact is, it doesn’t have a built-in exponentiator which lets it know
immediately what the value of this expression is any more than we do. A
computer—like humans—can essentially only add, subtract, and multiply.
Any other operation has to be reduced to these operations somehow. Thus
when we use a computer to evaluate something like 2.718.0001, we actual
trigger a fairly elaborate program having little directly to do with raising
numbers to powers which produces an approximation to the desired number.
It turns out that if you use the xy key on your calculator to evaluate 25 it
doesn’t come up with the answer by multiplying 2 by itself 5 times, but uses
this more complicated program.

There is often a large gap between naming and defining a function, and
being able to compute values for it to four or five decimals. Think aboutDefining a function is

not the same as being
able to evaluate it

the trigonometric functions for a moment. You have probably seen several
definitions of the cosine function by now—as the ratio of the adjacent side
over the hypotenuse of a right triangle, or as the x-coordinate of a point
moving around a circle of radius 1. Yet neither of these definitions would
help you calculate cos(2) to five decimals. It turns out that most methods
for evaluating functions are based on the way the derivatives of the functions
behave. While we will have much more to say about this in chapter 10,
Euler’s method is a good first example of this.

Returning to exponents, think what would be involved in evaluating 2
√

3

using the pre-calculus concept of exponents. We might first get a series of
rational approximations to

√
3 = 1.73205081 . . .: 17/10 = 1.7, 173/100 =

1.73, 433/250 = 1.732, and so on. We would then calculate
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217/10 = (
10
√

2)17

2173/100 = (
100
√

2)173

2433/250 = (
250
√

2)433

...

Even evaluating the first of these approximations would involve finding the
10th root of 2 and raising it to the 17th power, which would not be easy. We
would continue with these approximations until the desired number of digits
remained fixed.

By contrast, evaluating e
√

3 by Euler’s method is very straightforward.
As we saw above, it reduces to evaluating (1 + 1.73205 . . . /n)n for increas-
ing values of n until the desired number of digits remains fixed. Moreover,
this same process works just as well for any kind of exponent—positive or
negative, rational or irrational.

In fact, all the properties of the exponential function follow from the fact
that it is the solution to its initial value problem, so we could have made
this the definition in the first place. This would have given us the benefit of
coherence (not having to distinguish among different kinds of exponents) and
direct computability. It would also directly reflect the primary reason the
exponential function is important, namely that its rate of change is propor-
tional to its value. Since the process of deducing the properties of a function
from its defining equation will be important later on, and since it is a good
exercise in some of the theoretical ideas we’ve been developing, let’s see how
this works.

We will assume nothing about the function y = et. Instead, we be-
gin simply with the observation that each initial value problem defines a
function—its solution. Therefore, the specific problem

y′ = y y(0) = 1

defines a function; we call it y = exp(t). At the outset, all we know about Defining exp(t)

the function exp(t) is that

exp′(t) = exp(t) exp(0) = 1.

As before, we can use Euler’s method to evaluate exp(1), which we will call
e. From these facts alone we want to deduce that exp(t) = et for all values
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of t. We will actually show this only for all rational values of t, since there is,
as we’ve seen, a bit of hand-waving about what it means to raise a number
to an irrational power. The following theorem is the key to establishing this
result.

Theorem 1. For any real numbers r and s,

exp(r + s) = exp(r) · exp(s).

We will prove this result shortly, but let’s see what we can deduce from
it. First off, note that

exp(2) = exp(1 + 1) = exp(1) · exp(1) = (exp(1))2 = e2.

Notice that we invoked Theorem 1 to equate exp(1+ 1) with exp(1) · exp(1).
In a similar way,

exp(3) = exp(2 + 1) = exp(2) · exp(1) = (exp(1))2 · exp(1) = (exp(1))3 = e3.

Repeating this argument for any positive integer m, we get
Corollary 1. For any positive integer m,

exp(m) = (exp(1))m = em.

We can also express exp(t) in terms of e when t is a negative integer. WeNegative integers

begin with another consequence of Theorem 1:

1 = exp(0) = exp(−1 + 1) = exp(−1) · exp(1).

This says e = exp(1) is the reciprocal of exp(−1):

exp(−1) = (exp(1))−1 = e−1.

Since −2 = −1− 1, −3 = −2− 1, and so forth, we can eventually show that
Corollary 2. For any negative integer −m,

exp(−m) = exp(−1 − 1 − . . . − 1) = (exp(−1))m = (exp(1))−m = e−m.

We can even do the same thing with fractions. Here’s how to deal withRational numbers

exp(1/3), for example:

exp(1) = exp
(

1
3

+ 1
3

+ 1
3

)

= exp(1/3) · exp(1/3) · exp(1/3)

= (exp(1/3))3 ,
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so exp(1/3) is the cube root of exp(1):

exp(1/3) = (exp(1))1/3 = e1/3.

A similar argument will show that

Corollary 3. For any positive integer n, exp(1/n) = e1/n.

Finally, we can deal with any rational number m/n:

exp(m/n) = (exp(1/n))m =
(
e1/n

)m
= em/n.

This leads to

Theorem 2. For any rational number r, exp(r) = (exp(1))r = er.

In other words, Theorem 1 implies that the function exp(t) is the same
function as the exponential function et—at least when t is a rational number
m/n, as claimed. We could now prove that exp(t) = et when t is an irrational
number, which would require being clearer about what it means to raise a
number to an irrational power than most high school texts are.

We adopt a more attractive option. Since exp(t) and et agree at rational
values of t, and since exp(t) is well-defined for all values of t—including
irrational numbers—we define et for irrational values of t by setting it equal
to exp(t).

Proof of Theorem 1
The proof uses the Existence and Uniqueness Principle for differential equa-
tions we articulated earlier: if two functions satisfy the same differential The proof of

Theorem 1equation and satisfy the same initial conditions then they have to be the
same function.

Theorem 1 involves two fixed real numbers, r and s. We fix one of them,
say r, to define two new functions of t:

P (t) = exp(r + t) Q(t) = exp(r) · exp(t).

We shall show that both of these functions are solutions to the same initial
value problem:

dy

dt
= y y(0) = exp(r).

(Remember, exp(r) is a constant, because r is fixed.)
If we show this, it will then follow that P (t) and Q(t) must be the same

function.
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Since
P (0) = exp(r + 0) = exp(r)
Q(0) = exp(r) · exp(0) = exp(r) · 1 = exp(r),

P (t) and Q(t) both satisfy the initial condition y(0) = exp(r).
Next we show that they both satisfy the differential equation y′ = y:

Q′(t) = (exp(r) · exp(t))′ = exp(r) · (exp(t))′ = exp(r) · exp(t) = Q(t),

so Q(t) is a solution.
To differentiate P (t) we construct a chain:

P = exp(u) where u = r + t.

Then dP/du = exp(u) and du/dt = 1, so

P ′(t) =
dP

du
· du

dt
= exp(u) · 1 = P (t) · 1 = P (t),

so P (t) is also a solution.
Therefore P (t) and Q(t) must be the same function. It follows then that

P (t) = Q(t) for all values of t, in particular for t = s. But this means that

exp(r + s) = P (s) = Q(s) = exp(r) · exp(s),

which is exactly the statement of Theorem 1, and so completes the proof.

Now that we have established exp(x) = ex, we will call exp(x) the expo-
nential function and we will use the forms ex and exp(x) interchangeably.
The following theorem summarizes several more properties of the exponential
function.

Theorem 3. For any real numbers r and s,

exp(s) > 0

exp(−s) =
1

exp(s)

exp(r − s) =
exp(r)

exp(s)

exp(rs) = (exp(r))s = (exp(s))r .

To make the statements in this theorem seem more natural, you should
stop and translate them from exp(x) to ex. Proofs will be covered in the
exercises.
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Exponential Growth

The function exp(x) = ex, like polynomials and the sine and cosine functions,
is defined for all real numbers. Nevertheless, it behaves in a way that is quite
different from any of those functions.

One difference occurs when x is large, either positive or negative. The sine
function and the cosine function stay bounded between +1 and −1 over their
entire domain. By contrast, every polynomial “blows up” as x → ±∞. In
this regard, the exponential function is a hybrid. As x → −∞, exp(x) → 0.
As x → +∞, however, exp(x) → +∞.

Let’s look more closely at what happens to power functions xn and the How fast do xn and ex

become infinite?exponential function ex as x → ∞. Both kinds of functions “blow up”
but they do so at quite different rates, as we shall see. Before we compare
power and exponential functions directly, let’s compare one power of x with
another—say x2 with x5. As x → ∞, both x2 and x5 get very large. However,
x2 is only a small fraction of the size of x5, and that fraction gets smaller,
the larger x is. The following table demonstrates this. Even though x2 grows
enormous, we interpret the fact that x2/x5 → 0 to mean that x2 grows more
slowly than x5.

x x2 x5 x2/x5

10 102 105 10−3

100 104 1010 10−6

1000 106 1015 10−9

↓ ↓ ↓ ↓
∞ ∞ ∞ 0

It should be clear to you that we can compare any two powers of x this xp grows more slowly
than xq if p < qway. We will find that xp grows more slowly than xq if, and only if, p < q.

To prove this, we must see what happens to the ratio xp/xq, as x → +∞.
We can write xp/xq = 1/xq−p, and the exponent q − p that appears here is
positive, because q > p. Consequently, as x → ∞, xq−p → ∞ as well, and
therefore 1/xq−p → 0. This completes the proof.

How does ex compare to xp? To make it tough on ex, let’s compare it to
x50. We know already that x50 grows faster than any lower power of x. The
table above compares x50 to ex. However, the numbers involved are so large
that the table shows only their order of magnitude—that is, the number of
digits they contain. At the start, x50 is much larger than ex. However, by
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the time x = 500, the ratio x50/ex is so small its first 82 decimal places are
zero!

x x50 ex x50/ex

100
200
300
400
500

∼ 10100

10115

10123

10130

10134

∼ 1043

1086

10130

10173

10217

∼ 1056

1028

10−7

10−44

10−83

↓ ↓ ↓ ↓
∞ ∞ ∞ 0

So x50 grows more slowly than ex, and so does any lower power of x.
Perhaps a higher power of x would do better. It does, but ultimately theex grows more rapidly

than any power of x ratio xp/ex → 0, no matter how large the power p is. We don’t yet have all
the tools needed to prove this, but we will after we introduce the logarithm
function in the next section.

The speed of exponential growth has had an impact in computer science.
In many cases, the number of operations needed to calculate a particular
quantity is a power of the number of digits of precision required in the answer.
Sometimes, though, the number of operations is an exponential function of
the number of digits. When that happens, the number of operations can
quickly exceed the capacity of the computer. In this way, some problems
that can be solved by an algorithm that is straightforward in theoretical
terms are intractable in practical terms.

Exercises

The exponential functions bt

1. Use a graphing utility or a calculator to approximate the slopes of the
following functions at the origin and show:

a) If f(t) = (2.71)t, then f ′(0) < 1.

b) If g(t) = (2.72)t, then g′(0) > 1.

c) Use parts (a) and (b) to explain why 2.71 < e < 2.72.

2. a) In the same way find the value of the parameter kb for the bases b =
.5, .75, and .9 accurate to 3 decimal places.
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b) What is the shape of the graph of y = bt when 0 < b < 1? What does
that imply about the sign of kb for 0 < b < 1? Explain your reasoning.

Differentiating exponential functions

3. Differentiate the following functions.

a) 7e3x

b) Cekx, where C and k are constants.

c) 1.5et

d) 1.5e2t

e) 2e3x − 3e2x

f) ecos t

4. Find partial derivatives of the following functions.

a) exy

b) 3x2e2y

c) eu sin v

d) eu sin(v)

Powers of e

5. Simplify the following and rewrite as powers of e. For each, explain your
work, citing any theorems you use.

a) exp(2x + 3)

b) (exp(x))2

c) exp(17x)/ exp(5x)

6. Use the second property in Theorem 3 to explain why

lim
t→−∞

exp(t) = 0.

7. This purpose of this exercise is to prove the fourth property listed in
Theorem 3: exp(rs) = (exp(s))r, for all real numbers r and s. The idea
of the proof is the same as for Theorem 1: show that two different-looking
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functions solve the same initial value problem, thus demonstrating that the
functions must be the same. The initial value problem is

y′ = ry y(0) = 1.

a) Show that P (t) = exp(rt) solves the initial value problem. (You need to
use the chain rule.)

b) Show that Q(t) = (exp(t))r solves the initial value problem. (Here use
the chain Q = ur, where u = exp(t). There is a bit of algebra involved.)

c) From parts (a) and (b), and the fact that an initial value problem has a
unique solution, it follows that P (t) = Q(t), for every t. Explain how this
establishes the result.

Solving y′ = ky using et

8. Poland and Afghanistan. Refer to problem 25 in chapter 1.2.

a) Write out the initial value problems that summarize the information
about the populations P and A given in parts (a) and (b) of problem 21.

b) Write formulas for the solutions P and A of these initial value problems.

c) Use your formulas in part (b) (and a calculator) to find the population
of each country in the year 2005. What were the populations in 1965?

9. Bacterial growth. Refer to problem 26 in chapter 1.2.

a) Assuming that we begin with the colony of bacteria weighing 32 grams,
write out the initial value problem that summarizes the information about
the weight P of the colony.

b) Write a formula for the solution P of this initial value problem.

c) How much does the colony weigh after 30 minutes? after 2 hours?

10. Radioactivity. Refer to problem 27 in chapter 1.2.

a) Assuming that when we begin the sample of radium weighs 1 gram, write
out the initial value problem that summarizes the information about the
weight R of the sample.

b) How much did the sample weigh 20 years ago? How much will it weigh
200 years hence?

11. Intensity of radiation. As gamma rays travel through an object,
their intensity I decreases with the distance x that they have travelled. This
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is called absorption. The absorption rate dI/dx is proportional to the
intensity. For some materials the multiplier in this proportion is large; they
are used as radiation shields.

a) Write down a differential equation which models the intensity of gamma
rays I(x) as a function of distance x.

b) Some materials, such as lead, are better shields than others, such as air.
How would this difference be expressed in your differential equation?

c) Assume the unshielded intensity of the gamma rays is I0. Write a formula
for the intensity I in terms of the distance x and verify that it gives a solution
of the initial value problem.

12. In this problem you will find a solution for the initial value problem
y′ = ky and y(t0) = C. (Notice that this isn’t the original initial value
problem, because t0 was 0 originally.)

a) Explain why you may assume y = Aekt for some constant A.

b) Find A in terms of k, C and t0.

Solving other differential equations

13. a) Newton’s law of cooling. Verify that

Q(t) = 70e−.1 t + 20

is a solution to the initial value problem Q′(t) = −.1(Q − 20), Q(0) = 90.
What is the relationship between this formula and the one found in problem
11 in section 2?

b) Verify that
Q(t) = (Q0 − A)e−kt + A

is a solution to the the initial value problem Q′(t) = −k(Q − A), Q(0) = B.
What is the relationship between this formula and the one found in prob-
lem 13 in section 2?

14. In An Essay on the Principle of Population, written in 1798, the British
economist Thomas Robert Malthus (1766–1834) argued that food supplies
grow at a constant rate, while human populations naturally grow at a con-
stant per capita rate. He therefore predicted that human populations would
inevitably run out of food (unless population growth was suppressed by un-
natural means).
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a) Write differential equations for the size P of a human population and the
size F of the food supply that reflect Malthus’ assumptions about growth
rates.

b) Keep track of the population in millions, and measure the food supply
in millions of units, where one unit of food feeds one person for one year.
Malthus’ data suggested to him that the food supply in Great Britain was
growing at about .28 million units per year and the per capita growth rate
of the population was 2.8% per year. Let t = 0 be the year 1798, when
Malthus estimated the population of the British Isles was P = 7 million
people. He assumed his countrymen were on average adequately nourished,
so he estimated that the food supply was F = 7 million units of food. Using
these values, write formulas for the solutions P = P (t) and F = F (t) of the
differential equations in (a).

c) Use the formulas in (b) to calculate the amount of food and the population
at 25 year intervals for 100 years. Use these values to help you sketch graphs
of P = P (t) and F = F (t) on the same axes.

d) The per capita food supply in any year equals the ratio F (t)/P (t). What
happens to this ratio as t grows larger and larger? (Use your graphs in (c)
to assist your explanation.) Do your results support Malthus’s prediction?
Explain.

15. a) Falling bodies. Using the base e instead of the base 2, modify the
solution v(t) to the initial value problem

dv

dt
= −g − bv v(0) = 0

that appears in exercise 21 on page 224. Show that the modified expression
is still a solution.

b) If an object that falls against air resistance is x(t) meters above the
ground after t seconds, and it started x0 meters above the ground, then it is
the solution of the initial value problem

dx

dt
= v(t) x(0) = x0,

where v(t) is the velocity function from the previous exercise. Find a formula
for x(t) using the exponential function with base e. (Compare this formula
with the one in exercise 22 (a), page 224.)
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c) Suppose the coefficient of air resistance is .2 per second. If a body is held
motionless 200 meters above the ground, and then released, how far will it
fall in 1 second? In 2 seconds? Use your formula from part (b). Compare
these values with those you obtained in exercise 22 (b), page 224.

Interest rates

Bank advertisements sometimes look like this:

Civic Bank and Trust

• Annual rate of interest 6%.

• Compounded monthly.

• Effective rate of interest 6.17%.

The first item seems very straightforward. The bank pays 6% interest per
year. Thus if you deposit $100.00 for one year then at the end of the year
you would expect to have $106.00. Mathematically this is the simplest way
to compute interest; each year add 6% to the account. The biggest problem
with this is that people often make deposits for odd fractions of a year, so
if interest were paid only once each year then a depositor who withdrew her
money after 11 months would receive no interest. To avoid this problem
banks usually compute and pay interest more frequently. The Civic Bank
and Trust advertises interest compounded monthly. This means that the
bank computes interest each month and credits it (that is, adds it) to the
account.

Month Start Interest End
1 $100.0000 .5000 $100.5000
2 $100.5000 .5025 $101.0025
3 $101.0025 .5050 $101.5075
4 $101.5075 .5075 $102.0151
5 $102.0151 .5101 $102.5251
6 $102.5251 .5126 $103.0378
7 $103.0378 .5152 $103.5529
8 $103.5529 .5178 $104.0707
9 $104.0707 .5204 $104.5911

10 $104.5911 .5230 $105.1140
11 $105.1140 .5256 $105.6396
12 $105.6396 .5282 $106.1678
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Since this particular account pays interest at the rate of 6% per year and
there are 12 months in a year the interest rate is 6%/12 = 0.5% per month.
The following table shows the interest computations for one year for a bank
account earning 6% annual interest compounded monthly.

Notice that at the end of the year the account contains $106.17. It has ef-
fectively earned 6.17% interest. This is the meaning of the advertised effective
rate of interest. The reason that the effective rate of interest is higher than
the original rate of interest is that the interest earned each month itself earns
interest in each succeeding month. (We first encountered this phenomenon
when we were trying to follow the values of S, I, and R into the future.) The
difference between the original rate of interest and the effective rate can be
very significant. Banks routinely advertise the effective rate to attract de-
positors. Of course, banks do the same computations for loans. They rarely
advertise the effective rate of interest for loans because customers might be
repelled by the true cost of borrowing.

The effective rate of interest can be computed much more quickly than
we did in the previous table. Let R denote the annual interest rate as a
decimal. For example, if the interest rate is 6% then R = 0.06. If interest is
compounded n times per year then each time it is compounded the interest
rate is R/n. Thus each time you compound the interest you compute

V +

(
R

n

)

V =

(

1 +
R

n

)

V

where V is the value of the current deposit. This computation is done n
times during the course of a year. So, if the original deposit has value V ,
after one year it will be worth

(

1 +
R

n

)n

V.

For our example above this works out to

(

1 +
0.06

12

)12

V = 1.061678 V

and the effective interest rate is 6.1678%.
Many banks now compound interest daily. Some even compound interest

continuously. The value of a deposit in an account with interest compounded
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continuously at the rate of 6% per year, for example, grows according to the
differential equation

V ′ = 0.06V.

16. Many credit cards charge interest at an annual rate of 18%. If this rate
were compounded monthly what would the effective annual rate be?

17. In fact many credit cards compound interest daily. What is the effective
rate of interest for 18% interest compounded daily? Assume that there are
365 days in a year.

18. The assumption that a year has 365 days is, in fact, not made by banks.
They figure every one of the 12 months has 30 days, so their year is 360 days
long. This practice stem from the time when interest computations were
done by hand or by tables, so simplicity won out over precision. Therefore
when banks compute interest they find the daily rate of interest by dividing
the annual rate of interest by 360. For example, if the annual rate of interest
is 18% then the daily rate of interest is 0.05%. Find the effective rate of
interest for 18% compounded 360 times per year.

19. In fact, once they’ve obtained the daily rate as 1/360-th of the annual
rate, banks then compute the interest every day of the year. They compound
the interest 365 times. Find the effective rate of interest if the annual rate
of interest is 18% and the computations are done by banks. First, compute
the daily rate by dividing the annual rate by 360 and then compute interest
using this daily rate 365 times.

20. Consider the following advertisement.

Civic Bank and Trust

• Annual rate of interest 6%.

• Compounded daily.

• Effective rate of interest 6.2716%.

Find the effective rate of interest for an annual rate of 6% compounded daily
in the straightforward way—using 1/365-th of the annual rate 365 times.
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Then do the computations the way they are done in a bank. Compare your
two answers.

21. There are two advertisements in the newspaper for savings accounts
in two different banks. The first offers 6% interest compounded quarterly
(that is, four times per year). The second offers 5.5% interest compounded
continuously. Which account is better? Explain.

4.4 The Logarithm Function

Suppose a population is growing at the net rate of 3 births per thousand
persons per year. If there are 100,000 persons now, how many will there be
37 years from now? How long will it take the population to double?

Translating into mathematics, we want to find the function P (t) that
solves the initial value problem

P ′(t) = .003P (t) and P (0) = 100000.

Using the results of section 3 we know that the solution is the exponential
function

P (t) = 100000 e.003 t.

The size of the population 37 years from now will therefore be

P (37) = 100000 e.111

= 100000 × 1.117395

≈ 111740 people

To find out how long it will take the population to double, we want to findThe doubling time
of a population a value for t so that P (t) = 200000. In other words, we need to solve for t in

the equation
100000 e.003 t = 200000.

Dividing both sides by 100,000, we have

e.003 t = 2.

We can’t proceed because one side is expressed in exponential form while
the other isn’t. One remedy is to express 2 in exponential form. In fact,
2 = e.693147, as you should verify with a calculator. Then

e.003 t = 2 = e.693147 implies .003 t = .693147,
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so t = .693147/.003 = 231.049. Thus it will take about 231 years for the
population to double.

To determine the doubling time of the population we had to know the
number b for which

exp(b) = eb = 2.

This is an aspect of a very general question: given a positive number a, Solving an
exponential equationfind a number b for which

eb = a.

A glance at the graph of the exponential function below shows that, by
working backwards from any point a > 0 on the vertical axis, we can indeed
find a unique point b on the horizontal axis which gives us exp(b) = a.

x

y

a

b

y = ex

−3 −2 −1 1 2 3

5

10

15

20

This process of obtaining the number b that satisfies exp(b) = a for any
given positive number a is a clear and unambiguous rule. Thus, it defines a The natural logarithm

functionfunction. This function is called the natural logarithm, and it is denoted
ln(a), or sometimes log(a). That is,

ln(a) = log(a) = {the number b for which exp(b) = a} .

In other words, the two statements

ln(a) = b and exp(b) = a

express exactly the same relation between the quantities a and b.
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The question that led to the introduction of the logarithm function was:
what number gives the exponent to which e must be raised in order to produce
the value 2? This number is ln(2), and we verified that ln(2) = .693147.
Quite generally we can say that the number ln(x) gives the exponent to
which e must be raised in order to produce the value x:

eln(x) = x.

If we set y = ln(x), then x = ey and we can restate the last equation as a
pair of companion equations:

eln(x) = x and ln(ey) = y.

The first equations says the exponential function “undoes” the effect of theThe logarithm and
exponential functions
are inverses

logarithm function and the second one says the logarithm function “undoes”
the effect of the exponential function. For this reason the exponential and
logarithm functions are said to be inverses of each other.

Many of the other pairs of functions—sine and arscsine, squareroot and
squaring—that share a key on a calculator have this property. There are even
functions (at least one can be found on any calculator) that are their own
inverses—apply such a function to any number, then apply this same function
to the result, and you’re back at the original number. What functions do
this? We will say more about inverse functions later in this section.

Properties of the Logarithm Function

The inverse relationship allows us to translate each of the properties of the
exponential function into a corresponding statement about the logarithm
function. We list the major pairs of properties below.

exponential version logarithmic version

e0 = 1 ln(1) = 0

ea + b = ea · eb ln(m · n) = ln(m) + ln(n)

ea − b = ea/eb ln(m/n) = ln(m) − ln(n)
(ea)s = eas ln(ms) = s · ln(m)
range of ex is all positive reals domain of ln(x) is all positive reals
domain of ex is all real numbers range of ln(x) is all real numbers
ex → 0 as x → −∞ ln(x) → −∞ as x → 0
ex grows faster ln(x) goes to infinity slower

than xn, any n > 0 than x1/n, any n > 0
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For each pair, we can use the exponential property and the inverse re-
lationship between exp and ln to establish the logarithmic property. As
an example, we will establish the second property. You should be able to
demonstrate the others.

Proof of the second property. Remember that to show ln(a) = b, we need to
show eb = a. In our case a and b are more complicated. We have

a = m · n
b = ln(m) + ln(n)

Thus, we need to show

eln(m) + ln(n) = m · n .

But, by the exponential version of property 2,

eln(m) + ln(n) = eln(m) · eln(n) = m · n,

and our proof is complete.

The Derivative of the Logarithm Function

Since the natural logarithm is a function in its own right, it is reasonable to
ask: what is the derivative of this function? Since the derivative describes The graph of ln

the slope of the graph, let us begin by examining the graph of ln. Can we
take advantage of the relationship between ln and exp—a function whose
graph we know well—as we do this? Indeed we can, by making the following
observations.

• We know the point (a, b) is on the graph of y = ln(x) if and only if
b = ln(a).

• We know b = ln(a) says the same thing as a = eb.

• Finally, we know a = eb is true if and only if the point (b, a) is on the
graph of y = ex.

Putting our observations together, we have



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

250 CHAPTER 4. DIFFERENTIAL EQUATIONS

(a, b) is on the graph of y = ln(x)

if and only if

(b, a) is on the graph of y = ex.

The picture below demonstrates that the point (a, b) and the point (b, a) areReflection across
the 45◦ line reflections of each other about the 45◦ line. (Remember that points on the

45◦ line have the same x and y coordinates.) This is because these two points
are the endpoints of the diagonal of a square whose other diagonal is the line
y = x.

x

y

a b

a

b

(a, a) (b, a)

(b, b)
(a, b)

Since we have just seen that every point (a, b) on the graph of y = ln(x)
corresponds to a point (b, a) on the graph of y = ex, we see that the graphs
of y = ln(x) and y = ex are the reflections of each other about the line y = x.

y

x

y = ex

y = lnx

Finally, since the two graphs are reflections of one another, a microscopicMicroscopic views at
mirror image points view of ln(x) at any point (b, a) will be the mirror image of the microscopic

view of of ex at the point (a, b). Any change in the y-value on one of these
lines will correspond to an equal change in the x-value in its mirror image,
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and vice versa. The figure below shows what microscopic views of a pair
of corresponding points look like, showing how a vertical change in one line
equals the horizontal change in the other, and conversely.

y

x

b

a

a b

(b, a)

(a, b)

y = ex

y = ln x

∆y
∆x

∆y

∆x

It follows that the slopes of the two lines must be reciprocals of each other. The slopes
are reciprocalsThis says that the rate of change of ln(x) at x = b is just the reciprocal of

the rate of change of ex at x = a, where a = ln(b). But the rate of change
of ex at x = ln(b) is just eln(b) = b. Therefore the rate of change of ln(x) at
x = b is the reciprocal of this value, namely 1/b. We have thus proved the
following result:

Theorem 1. (ln(x))′ = 1/x.

Note that one interpretation of this theorem is that the function ln(x) is
the solution to a certain initial value problem, namely

dy

dx
=

1

x
y(1) = 0.

As was the case with the exponential function, we can now apply Euler’s
method to this differential equation as an effective way to compute values of
ln(x). Applications of this idea can be found in the exercises.
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Exponential Growth

The logarithm gives us a useful tool for comparing the growth rates of ex-Comparing rates
of growth ponential and power functions. In the last section we claimed that ex grows

faster than any power xp of x, as x → +∞. We interpreted that to mean

lim
x→+∞

xp

ex
= 0,

for any number p. Using the natural logarithm, we can now show why it is
true.

To analyze the quotient Q = xp/ex, we first replace it by its logarithm

lnQ = ln (xp/ex) = ln (xp) − ln (ex) = p lnx − x.

Several properties of the logarithm function were invoked here to reduce ln Q
to p ln x− x. By another property of the logarithm function, if we can show
ln Q → −∞ we will have established our original claim that Q → 0.

Let y = ln Q = p lnx − x. We know y is increasing when dy/dx > 0 and
decreasing where dy/dx < 0. Using the rules of differentiation, we find

dy

dx
=

p

x
− 1.

The expression p/x−1 is positive when x is less than p and negative when xy = lnQ decreases
when x > p . . . is greater than p. For x near p, the graph of y must therefore look like this:

-

6

x

y

p

Since dy/dx remains negative as x gets large, y will continue to decrease.
This does not, in itself, imply that y → −∞, however. It’s conceivable that. . . but y may still

“level off” y might “level off” even as it continues to decrease—as it does in the next
graph.
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-

6

x

y

p

However, we can show that y does not “level off” in this way; it continues
to plunge down to −∞. We start by assuming that x has already become
larger than 2p: x > 2p. Then 1/x < 1/2p (the bigger number has the smaller
reciprocal), and thus p/x < p/2p = 1/2. Thus, when x > 2p,

dy

dx
=

p

x
− 1 <

1

2
− 1 = − 1

2
.

In other words, the slope of the graph of y is more negative than −1/2. The y lies below a line that
slopes down to −∞graph of y must therefore lie below the straight line with slope −1/2 that we

see below:

-

6

x

y

p 2p

This guarantees that y = ln Q → −∞ as x → ∞. Hence Q → 0, and since
Q = xp/ex, we have shown that ex grows faster than any power of x.

The Exponential Functions bx

We have come to adopt the exponential function exp(x) = ex as the natural
one for calculus, and especially for dealing with differential equations of the One exponential

function is enoughform dy/dx = ky. Initially, though, all exponential functions bx were on
an equal footing. With the natural logarithm function, however, a single
exponential function will meet our needs. Let’s see why.

If b is any positive real number, then b = eln b. Consequently,

bx =
(
eln b
)x

= eln b · x.
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In other words, bx = ecx, where c = ln b. Thus, every exponential functionbx = eln b·x

can be expressed in terms of exp in a simple way. This is, in fact, the way
computers evaluate exponents, since the computer can raise any number to
any power so long as it has a way to evaluate the functions ln and exp. For
instance, when you ask a computer or calculator to evaluate 2^5 (2 to the 5thHow to calculate 25

power in most computer languages), it will first calculate ln 2, then multiply
this number by 5, then apply exp to the result. That is, it evaluates 25 by
thinking e5 ln 2! While this may seem a roundabout way to come up with
32, its virtue is that the computer needs only one algorithm to calculate any
base to any power, without having to consider different cases.

This expression gives us a new way to find the derivative of bx. We already
know that

(ecx)′ = c · ecx,

for any constant c. This follows from the chain rule. When c = ln b, we get

(bx)′ = (eln(b) · x)′ = ln(b) · eln(b) · x = ln(b) · bx.

Thus, y = bx is a solution to the differential equation

dy

dx
= ln(b) · y.

In chapter 3, we wrote this differential equation as

dy

dx
= kb · y.

We see now that kb = ln(b).kb = ln(b)

We can use the connection between kb and the natural logarithm, and
between the natural logarithm and the exponential function, to gain new
insights. For example, on page 212 we argued that there must be a value of
b for which kb = .02. This simply means

ln b = .02 or b = e.02.

In other words, we now have an explicit formula that tells us the value of b
for which kb = .02:

b = e.02 = 1.02020134 . . . .
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Inverse Functions

Most of what we have said about the exponential and logarithm functions
carries over directly to any pair of inverse functions. We begin by saying
precisely what it means for two functions f and g to be inverses of each
other.

Definition. Two functions f and g are inverses if

f(g(a)) = a

and g(f(b)) = b

for every a in the domain of g and every b in the domain of f .

Observe that if f and g are inverses of each other, then each one “undoes”
the effect of the other by sending any value back to the number it came from
via the other function. One implication of this is that neither function can
have two different input values going to the same output value. For instance,
suppose b1 and b2 get sent to the same value by f : f(b1) = f(b2). Applying
g to both sides of this equation we would get b1 = g(f(b1)) = g(f(b2)) = b2,
so b1 and b2 were actually the same number. This is an important enough
property that there is a name for it:

Definition. We say that a function f is one-to-one, usually written as 1–1,
if it is true that whenever x1 6= x2 then it is also the case that f(x1) 6= f(x2).
Equivalently, f is 1–1 if whenever f(x1) = f(x2), then it must be true that
x1 = x2.

We have thus seen that only functions which are one-to-one can have inverses.
This means that to establish inverses for some functions, we will need to
restrict their domains to regions where they are one-to-one. Let’s re-examine
the examples we mentioned earlier to see how they fit this definition.

Example 1. Suppose f(x) = exp(x) and g(x) = ln(x). Then the equations

f(g(a)) = exp(ln(a)) = eln(a) = a for a > 0

and g(f(b)) = ln(exp(b)) = ln(eb) = b

hold for all real numbers b and for all positive real numbers a. The domain
of the exponential function is all real numbers and the domain of the natural
logarithm function is all positive real numbers.
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Example 2. Suppose f(x) = x2 and g(x) =
√

x. The squaring functionx2 is invertible
on x ≥ 0 is not invertible on its natural domain because it is not one-to-one. Since a

number and its negative have the same square, we wouldn’t know which one
to send the square back to when we took the square root. We can’t avoid
the problem by saying that g(4) = ±2, since a function has to have only
one output for each input. The squaring function is invertible, though, if we
restrict it to non-negative real numbers. Then

f(g(a)) = (
√

a)2 = a (for a ≥ 0)

and g(f(b)) =
√

b2 = b (for b ≥ 0).

The domain of the square root function is all b ≥ 0.
Note that we could have restricted the domain of f in another way to

make it one-to-one by considering only non-positive real numbers. Now g is
no longer the inverse of this restricted f . For instance, g(f(−3)) = g(9) =
3 6= −3. What would the inverse of f be in this case?

Example 3. Suppose f(x) = sin(x) and g(x) = arcsin(x). Since f is notsin x is invertible
on −π/2 ≤ x ≤ π/2 one-to-one on its natural domain, we again need to restrict it in order for

it to have an inverse. By convention, the domain of sin(x) is taken to be
−π/2 ≤ x ≤ π/2.

f(g(a)) = sin(arcsin(a)) = a (for − 1 ≤ a ≤ 1) and

g(f(b)) = arcsin(sin(b)) = b (for − π/2 ≤ b ≤ π/2).

Each pair of inverse functions share corresponding properties, just as the
logarithm and exponential functions do—the particular properties depending
on the particular functions. But two they all share are

• The range of f is the domain of g.

• The domain of f is the range of g.

The exercises check this for examples 2 and 3.
Finally, the graphs—and therefore the derivatives—of a function and of its

inverse are mirror images, exactly like those of the exponential and logarithm
functions. We begin with the same list of observations.

• We know the point (a, b) is on the graph of y = g(x) if and only if
b = g(a).
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• We know b = g(a) says the same thing as a = f(b).

• Finally, we know a = f(b) is true if and only if the point (b, a) is on
the graph of y = f(x).

As before, putting our observations together, we have

(a, b) is on the graph of y = g(x)
if and only if

(b, a) is on the graph of y = f(x).

Exactly as before, we have that the point (a, b) and the point (b, a) are
reflections of each other about the line y = x. Since we have just seen that The graphs of inverse

functions are mirror
images . . .

every point (a, b) on the graph of y = g(x) corresponds to a point (b, a) on
the graph of y = f(x), we again see that the graphs of y = g(x) and y = f(x)
are the reflections of each other about the line y = x.

Finally, since the two graphs are reflections of one another, the local linear
approximation of g(x) at any point (a, b) will be the mirror image of the local
linear approximation of f(x) at the point (b, a). Any change in the y-value
on one of these local lines will correspond to an equal change in the x-value
in its mirror image, and vice versa. Just as before, it follows that the slopes
of the two lines must be reciprocals of each other. This says that the rate
of change of g(x) at x = b is the reciprocal of the rate of change of f(x) at
x = a, where a = g(b). But the rate of change of f(x) at x = g(b) is just . . . and their derivatives

are reciprocalsf ′(g(b)). Therefore the rate of change of g(x) at x = b is the reciprocal of
this value, namely 1/f ′(g(b)). We have thus proved the following result:

Theorem 2. If the functions f and g are inverses, then g is locally linear at
(b, a) if and only if f is locally linear at (a, b). When local linearity holds,

g′(b) =
1

f ′(a)
.

Exercises

1. Determine the numerical value of each of the following.

a) ln(2e) b) ln(e3) c) e−1 d) ln(
√

e)

e) eln 2 f) e3 ln 2 g) (eln 2)3 h) e2 ln 3

i) ln 10 j) ln 103 k) eln 10 l) eln 1000

m) ln(1/e) n) ln(1/2) o) e− ln 2 p) e−3 ln 2
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2. a) In the text we noted that the function ln x is the solution to the
initial-value problem

dy

dx
=

1

x
y(1) = 0,

so that we can use Euler’s method to compute values for lnx. Use this
method to evaluate ln 2 to 3 decimal places. What value of ∆x gives the
desired accuracy?

b) If you now wanted to calculate ln 6 to 3 decimals, can you think of a better
way to do it than simply starting at x = 1 and running Euler’s method out
to x = 6? Remember the basic properties of logarithms, and figure out a
way to use the results of part (a).

c) Suppose you had figured out that ln 2 = 0.693147 . . . . How would you
use Euler’s method to calculate ln 1300 quickly? You might find the fact that
210 = 1024 helpful.

3. The rate of growth of the population of a particular country is propor-
tional to the population. The last two censuses determined that the popu-
lation in 1980 was 40,000,000, and in 1985 it was 45,000,000. What will the
population be in 1995?

4. Find the derivatives of the following functions.

a) ln(3x)

b) 17 ln(x)

c) ln(ew)

d) ln(2t)

e) π ln(3e4s)

5. Suppose a bacterial population grows so that its mass is

P (t) = 200e.12t grams

after t hours. Its initial mass is P (0) = 200 grams. When will its mass
double, to 400 grams? How much longer will it take to double again, to 800
grams? After the population reaches 800 grams, how long will it take for yet
another doubling to happen? What is the doubling time of this population?

6. Suppose a beam of X-rays whose intensity is A rads (the “rad” is a unit
of radiation) falls perpendicularly on a heavy concrete wall. After the rays
have penetrated s feet of the wall, the radiation intensity has fallen to

R(s) = Ae−.35s rads.
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What is the radiation intensity 3 inches inside the wall; 18 inches? (Your
answers will be expressed in terms of A.) How far into the wall must the
rays travel before their intensity is cut in half, to A/2? How much further
before the intensity is A/4?

7. Virtually all living things take up carbon as they grow. This carbon
comes in two principal forms: normal, stable carbon—C12—and radioactive
carbon—C14. C14 decays into C12 at a rate proportional to the amount
of C14 remaining. While the organism is alive, this lost C14 is continually
replenished. After the organism dies, though, the C14 is no longer replaced,
so the percentage of C14 decreases exponentially over time. It is found that
after 5730 years, half the original C14 remains. If an archaeologist finds a
bone with only 20% of the original C14 present, how old is it?

8. The human population of the world appears to be growing exponentially.
If there were 2.5 billion people in 1960, and 3.5 billion in 1980, how many
will there be in 2010?

9. If bacteria increase at a rate proportional to the current number, how
long will it take 1000 bacteria to increase to 10,000 if it takes them 17 minutes
to increase to 2000?

10. Suppose sugar in water dissolves at a rate proportional to the amount
left undissolved. If 40 lb. of sugar reduces to 12 lb. in 4 hours, how long will
you have to wait until 99% of the sugar is dissolved?

11. Atmospheric pressure is a function of altitude. Assume that at any
given altitude the rate of change of pressure with altitude is proportional to
the pressure there. If the barometer reads 30 psi (pounds per square inch)
at sea level and 24 psi at 6000 feet above sea level, how high are you when
the barometer reads 20 psi?

12. a) An important concept in many economic analyses is the idea of
present value. It is used to compare the values of different possible pay-
ments made at different times. As a simple example, suppose you had a
small wood lot and had the choice of selling the timber on it now for $5,000
or waiting 10 years for the trees to get larger, at which point you estimate
the timber could be sold for $8,000. To compare these two options, you
need to convert the prospect of $8,000 ten years from now into an equivalent
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amount of money now—its present value. This is the amount of money you
would need to invest now to have $8,000 in 10 years. Suppose you thought
you could invest money at an annual interest rate of 4% compounded con-
tinuously. If you invested $5,000 now at this rate, then in 10 years you
would have 5000 e.4 = $7, 459.12. That is, $5,000 now is worth $7,459.12 in
10 years—both amounts have the same present value. Clearly $8,000 in 10
years must have a slightly greater present value under the assumption of a
4% annual interest rate. What is it?

b) On the other hand, if you can get a higher interest rate than 4%, the
present value of the $8,000 will be much less. What is the present value of a
payment of $8,000 ten years from now if the annual interest rate is 8%?

c) At what interest rate do $5,000 now and $8,000 in ten years have the
same present value?

13. Use properties of exp to prove the following properties of the logarithm.
(Remember that ln a = b means a = exp b.)

a) ln(1) = 0.

b) ln(m/n) = ln(m) − ln(n).

c) ln(mn) = n ln(m).

14. a) Use a graphing program to find a good numerical approximation to
(ln x)′ at x = 2. Make a short table, for decreasing interval sizes ∆x, of the
quantity ∆(ln x)/∆x.

b) Use a graphing program to find a good numerical approximation to (ex)′

at x = ln(2) = 0.6931 . . .. Make a short table for decreasing interval sizes
∆x, of the quantity ∆(ex)/∆x.

c) What is the relationship between the values you got in parts (a) and (b)?

15. Find a solution (using ln x) to the differential equation

f ′(x) = 3/x satisfying f(1) = 2.

16. a) Find a formula using the natural logarithm function giving the so-
lution of y′ = a/x with y(1) = b.

b) Solve P ′ = 2/t with P (1) = 5.
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17. Find the domain and range of each of the following pairs of inverse
functions.

a) f(x) = x2 (restricted to x ≥ 0) and g(x) =
√

x.

b) f(x) = sin(x) (restricted to −π/2 ≤ x ≤ π/2) and g(x) = arcsin(x).

18. Show that f(x) = 1/x equals its own inverse. What are the domain
and range of f?

19. Let n be a positive integer. and let f(x) = xn. What is an inverse of
f? How do we need to restrict the domain of f for it to have an inverse?
Caution: the answer depends on n.

20. a) What is the inverse g of the function f(x) = 1 − 3x?

b) Do f and g satisfy Theorem 2?

21. What is an inverse of f(x) = x2 − 4?

22. Use the relationship between the derivatives of a function and its inverse
to find the indicated derivatives.

a) g′(100) for g(x) =
√

x.

b) g′(
√

2/2) for g(x) = arcsin(x).

c) g′(1/2) for g(x) = 1/x.

23. a) Use Theorem 2 and the fact that (x2)′ = 2x to derive the formula
for the derivative of

√
x.

b) Use Theorem 2 and the fact that (xn)′ = nxn−1 to derive the formula for
the derivative of n

√
x

24. Compare the rates of growth of ex and bx for both e < b and 1 < b < e.

4.5 The Equation y′ = f(t)

Most differential equations we have encountered express the rate of growth of
a quantity in terms of the quantity itself. The simplest models for biological
growth had this form: y′ = ky and y′ = kyp. Even when several variables
were present—as in the S-I-R model and the predator-prey models—it was
most natural to express the rates at which those variables change in terms of
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the variables themselves. Even the motion of a spring (pages 225–227) was
described that way: the rate of change of position equalled the velocity, and
the rate of change of velocity was proportional to the position.

Sometimes, though, a differential equation will express the rate of changeThe motion of
a falling body . . . of a variable directly in terms of the input variable. For example, on page 223

we saw that the velocity dx/dt of a body falling under the sole influence of
gravity is a linear function of the time:

dx

dt
= −gt + v0.

Here x is the height of the body above the ground, g is the acceleration due
to gravity, and v0 is the velocity at time t = 0. This equation has the general
form

dx

dt
= f(t),

where f(t) is a given function of t. We will now consider special methods
that can be used to study differential equations of this special form.

Antiderivatives

To solve the equation of motion of a body falling under gravity, we must find. . . and its solution

a function x(t) whose derivative is given as

x′ = −gt + v0.

We can call upon our knowledge of the rules of differentiation to find x.
Consider −gt first. What function has −gt as its derivative? We can start−gt is the derivative

of −gt2/2 with t2, whose derivative is 2t. Since we want the derivative to turn out to
be −gt, we can reason this way:

−gt = −g

2
· 2t = −g

2
× the derivative of t2.

This leads us to identify −gt2/2 as a function whose derivative is −gt. Check
for yourself that this is correct by differentiating −gt2/2.

Now consider v0, the other part of dx/dt. What function has the constant
v0 as its derivative? A derivative is a rate of growth, and we know thatv0 is the derivative

of v0t and of v0t + b the linear functions are precisely the ones that have constant growth rates.
Furthermore, the rate is the multiplier for a linear function, so we conclude
that any linear function of the form v0t + b has derivative v0.
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If we put the two pieces together, we find that

x(t) = −g

2
t2 + v0t + b

is a solution to the differential equation, for any value of b. (Recall from sec-
tion 2 that a differential equation can have many solutions.) We constructed
this formula for x(t) by “undoing” the process of differentiation, a process The antiderivative

of a functionsometimes called antidifferentiation. The function produced is called an
antiderivative. Thus:

−g

2
t2 + v0t + b is an antiderivative of − gt + v0

because − gt + v0 is the derivative of − g

2
t2 + v0t + b.

Note that a function has only one derivative, but it has many antiderivatives. All the functions
F (x) + C are

antiderivatives of F ′(x)
If F (t) is an antiderivative of f(t), then so is F (t) + C, where C is any
constant.

The list of functions and their derivatives that we compiled in chapter
3 (see page 146) can be “turned around” to become a list of functions and
their antiderivatives. Note that the antiderivative column should really be
labelled “an antiderivative” since we could add a constant to any of the listed
functions and still have an antiderivative for the function in the first column.

function antiderivative

0 c

xp 1
p+1

xp+1 (if p 6= −1)

x−1 ln x

sin x − cos x

cos x sin x

exp x = ex exp x = ex

bx 1
ln b

bx

Notice the formula for the antiderivative of xp requires p + 1 6= 0, that is, Every power of x has
an antiderivativep 6= −1. This leaves out x−1. However, the antiderivative of x−1 is ln x, so

no power of x is excluded from the table.
We also had differentiation rules that told us how to deal with different

combinations of functions. Each of these rules has an analogue in antidiffer-
entiation. The simplest combinations are a sum and a constant multiple.
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function antiderivative

f(x) F (x)

g(x) G(x)

c · f(x) c · F (x)

f(x) + g(x) F (x) + G(x)

We defer a discussion of the analogue of the chain rule to chapter 11.

With just these rules we can find the antiderivative of any polynomial,
for instance. (Recall that a polynomial is a sum of constant multiples of
powers of the input variable.) Here is a collection of sample antiderivatives
that illustrate the various rules. To emphasize the fact that antiderivatives
are determined only up to an additive constant, various constants have been
tacked on—any other constant would work just as well. You should compare
this table with the one on page 150.

function antiderivative

5x4 − 2x3 x5 − 1
2
x4 + 17

5x4 − 2x3 + 17x x5 − 1
2
x4 + 17

2
x2 − 243.77

6 · 10z + 17/z7 6 · 10z/ ln 10 − 17/6z6 + .002

3 sin t − 2t3 −3 cos t − 1
2
t4 + 5 ln 7

π cos x + π2 π sin x + π2x − 12e7.21

Euler’s Method Revisited

If we know the formula for an antiderivative of f(t), then we can write down
a solution to the differential equation dy/dt = f(t). For example, the general
solution to

dy

dt
= 12t2 + sin t

is y = 4t3 − cos t + C. In such a case we have a shortcut to solving the
differential equation without needing to use Euler’s method. Often, though,
there is no formula for an antiderivative of f(t)—even when f(t) itself has
a simple formula. There is no formula for the antiderivative of cos(t2), or
sin t/t, or

√
1 + t3, for instance. In other cases, f(t) may not even be given
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by a formula. It may be a data function, given as a graph made by a pen
tracing on a moving sheet of graph paper.

Whether we can find a formula for an antiderivative of f(t) or not, we
can still solve the differential equation dy/dt = f(t) by Euler’s method. It
turns out that Euler’s method takes on a relatively simple form in such cases.
Let’s investigate this in the following context.

Let V be the volume of water in a reservoir serving a small town, measured The volume
of a reservoir

varies over time
in millions of gallons. Then V is a function of the time t, measured in days.
Rainfall adds water to the reservoir, while evaporation and consumption
by the townspeople take it away. Let f be the net rate at which water
is flowing into the reservoir, in millions of gallons per day. Sometimes f
will be positive—when rainfall exceeds evaporation and consumption—and
sometimes f will be negative. The net inflow rate varies from day to day;
that is, f is a function of time: f = f(t). Our model of the reservoir is the
differential equation

dV

dt
= f(t) millions of gallons per day.

Suppose f(t) is measured every two days, and those measurements are The net inflow rate

recorded in the following table.

time t rate f(t)
(days) (106 × gals. per day)

0
2
4
6
8

10
12

.34

.11
−.07
−.23
−.14

.03

.08

Note that in this table we are able to write down the rate for all values of
t immediately, without having to calculate the intermediate values of the
dependent variable V . This is in marked contrast with most of the examples
we’ve looked at in this course where we had to know the values of all the
variables for any time t before we could calculate the new rate value at that
time. It is this simplification that gives differential equations of the form
y′ = f(t) their special structure.
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If we assume the value of f(t) remains constant for the two days after
each measurement is made, we can approximate the total change in V over
these 14 days.

The following table tells us two things: first, how much V changes over
each two-day period; second, the total change in V that has accumulatedThe accumulated

change in V by the end of each period. Since ∆t = 2 days, we calculate ∆V by

∆V = V ′ · ∆t = f(t) · ∆t = 2 · f(t).

starting current accumulated ending
t ∆V ∆V t

0
2
4
6
8

10
12

.68

.22
−.14
−.46
−.28

.06

.16

.68

.90

.76

.30

.02

.08

.24

2
4
6
8

10
12
14

At the end of the 14 days, V has accumulated a total change of .24 million
gallons. Notice this does not depend on the initial size of V . If V had been
92.64 million gallons at the start, it would be 92.64 + .24 = 92.88 million
gallons at the end. If it had been only 2 million gallons at the start, it would
be 2 + .24 = 2.24 million gallons at the end. Other models do not behave
this way: in two weeks, a rabbit population of 900 will change much more
than a population of 90. The total change in V is independent of V because
the rate at which V changes is independent of V .

We can therefore use Euler’s method to solve any differential equationCalculating just
the accumulated
change in y

of the form dy/dt = f(t) independently of an initial value for y. We just
calculate the total accumulated change in y, and add that total to any given
initial y. Here is how it works when the initial value of t is a, and the time
step is ∆t.

starting current accumulated ending
t ∆y ∆y t

a
a + ∆t
a + 2∆t
a + 3∆t

...

a + (n − 1)∆t

f(a) · ∆t
f(a + ∆t) · ∆t
f(a + 2∆t) · ∆t
f(a + 3∆t) · ∆t

...

f(a + (n − 1)∆t) · ∆t

previously
accumulated

∆y

+
current

∆y

a + ∆t
a + 2∆t
a + 3∆t
a + 4∆t

...

a + n ∆t
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The third column is too small to hold the values of “accumulated ∆y.” The accumulated
change in yInstead, it contains the instructions for obtaining those values. It says: to

get the current value of “accumulated ∆y,” add the “current ∆y” to the
previous value of “accumulated ∆y.”

Let’s use Euler’s method to find the accumulated ∆y when t = 4, given
that

dy

dt
= cos(t2)

and t is initially 0. If we use 8 steps, then ∆t = .5 and we obtain the
following:

starting current accumulated ending
t ∆y ∆y t

0
.5

1.0
1.5
2.0
2.5
3.0
3.5

.5000

.4845

.2702
−.3141
−.3268

.4997
−.4556

.4752

.5000

.9845
1.2546
.9405
.6137

1.1134
.6579

1.1330

.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

The following program generated the last three columns of this table.

Program: TABLE

DEF fnf (t) = COS(t ^ 2)

tinitial = 0

tfinal = 4

numberofsteps = 2 ^ 3

deltat = (tfinal - tinitial) / numberofsteps

t = tinitial

accumulation = 0

FOR k = 1 TO numberofsteps

deltay = fnf(t) * deltat

accumulation = accumulation + deltay

t = t + deltat

PRINT deltay, accumulation, t

NEXT k
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TABLE is a modification of the program SIRVALUE (page 65). To emphasize
the fact that it is the accumulated change that matters rather than the
actual value of y, we have modified the program accordingly. Note that
accumulation always starts at 0, no matter what the initial value of y is.
The first line of the program takes advantage of a capacity most programming
languages have to define functions which can then be referred to elsewhere
in the program.

As usual, to find the exact value of the accumulated ∆y, it is necessary
to recalculate, using more steps and smaller step sizes ∆t. If we use TABLE
to do this, we find

number accumulated
of steps ∆y

23 1.13304
26 .65639
29 .60212
212 .59542
215 .59458
218 .59448

Thus we can say that if dy/dt = cos(t2), then y increases by .594. . . when t
increases from 0 to 4.

In the same way we changed SIRVALUE to produce the program SIR-
PLOT (page 69), we can change the program TABLE into one that will plot
the values of y. In the following program all those changes are made, and
one more besides: we have increased the number of steps to 400 to get a
closer approximation to the true values of y. The output of PLOT is shown
immediately below.

1

1 2 3 4

ac
cu

m
ul

at
ed

   
∆y

t

The accumulated ∆y when dy/dt = cos(t2)
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Program: PLOT

Set up GRAPHICS

DEF fnf (t) = COS(t ^ 2)

tinitial = 0

tfinal = 4

numberofsteps = 400

deltat = (tfinal - tinitial) / numberofsteps

t = tinitial

accumulation = 0

FOR k = 1 TO numberofsteps

deltay = fnf(t) * deltat

Plot the line from (t, accumulation)
to (t + deltat, accumulation + deltay)

accumulation = accumulation + deltay

t = t + deltat

NEXT k

Let’s compare our reservoir model with population growth. The rate
at which a population grows depends, in an obvious way, on the size of the
population. By contrast, the rate at which the reservoir fills does not depend
on how much water there is in the reservoir. It depends on factors outside the Exogenous and

endogenous factorsreservoir: rainfall and consumption. These factors are said to be exogenous
(from the Greek exo-, “outside” and -gen, “produced,” or “born”). The
opposite is called an endogenous factor (from the Greek endo-, “within”).
Evaporation is an endogenous factor for the reservoir model; population size
is certainly an endogenous factor for a population model.

Precisely because exogenous factors are “outside the system,” we need
to be given the information on how they vary over time. In the reservoir
model, this information appears in the function f(t) that describes the rate
at which V changes. In general, if y depends on exogenous factors that vary
over time, we can expect the differential equation for y to involve a function
of time:

dy

dt
= f(t)

Thus, we can view this section as dealing with models that involve exogenous
factors.
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The differential equation of motion for a falling body, dx/dt = −gt + v0, indicates that gravity
is an exogenous factor. In Greek and medieval European science, the reason an object fell to the
ground was assumed to lie within the object itself—it was the object’s “heaviness.” By making
the cause of motion exogenous, rather than endogenous, Galileo and Newton started a scientific
revolution.

Exercises

1. Find a formula y = F (t) for a solution to the differential equation
dy/dt = f(t) when f(t) is

a) 5t − 3

b) t6 − 8t5 + 22π3

c) 5et − 3 sin t

d) 12
√

t

e) 2t + 7/t9

f) 5e4t − 1/t

2. Find G(5) if y = G(x) is the solution to the initial value problem

dy

dx
=

1

x2
y(2) = 3.

3. Find F (2) if y = F (x) is the solution to the initial value problem

dy

dx
=

1

x
y(1) = 5.

4. Find H(3) if y = H(x) is the solution to the initial value problem

dy

dx
= x3 − 7x2 + 19 y(−1) = 5.

5. Find L(−2) if y = L(x) is the solution to the initial value problem

dy

dx
= e3x y(1) = 6.

6. a) Sketch the graph of the solution to the initial value problem

dy

dx
= sin x y(0) = 1



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

4.5. THE EQUATION Y ′ = F (T ) 271

over the interval 0 ≤ x ≤ 4π.

b) By finding a suitable antiderivative, evaluate y(2).

7. a) Sketch the graph of the solution to the initial value problem

dy

dx
= sin(x2) y(0) = 0

over the interval 0 ≤ x ≤ 5. (This one can’t be done by finding a formula
for the antiderivative.)

b) What is the slope of the solution graph at x = 0? Does your graph show
this?

c) How many peaks (local maxima) does the solution have on the interval
0 ≤ x ≤ 5?

d) What is the maximum value that the solution achieves on the interval
0 ≤ x ≤ 5? For which value of x does this happen?

e) What is y(6)?

8. a) What is the accumulated change in y if dy/dt = 3t2−2t and t increases
from 0 to 1? What if t increases from 1 to 2? What if t increases from 0 to
2?

b) Sketch the graph of the accumulated change in y as a function of t. Let
0 ≤ t ≤ 2.

9. a) Here’s another problem for which there is no formula for an antideriva-
tive. Sketch the graph of the solution to the initial value problem

dy

dx
=

sin x

x
y(0) = 0

on the interval 0 ≤ x ≤ 40. [Note: sin x/x is not defined when x = 0, so take
the initial value of x to be .00001. That is, use y(.00001) = 0.]

b) How many peaks (local maxima) does the solution have on the interval
0 ≤ x ≤ 40?

c) What is the maximum value of the solution on the interval 0 ≤ x ≤ 40?
For which x is this maximum achieved?
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4.6 Chapter Summary

The Main Ideas

• A system of differential equations expresses the derivatives of a set
of functions in terms of those functions and the input variable.

• An initial value problem is a system of differential equations to-
gether with values of the functions for some specified value of the input
variable.

• Many processes in the physical, biological, and social sciences are mod-
elled as initial value problems.

• A solution to a system of differential equations is a set of func-
tions which make the equations true when they and their derivatives
are substituted into the equations.

• A solution to an initial value problem is a set of functions that
solve the differential equations and satisfy the initial conditions. Typ-
ically, a solution is unique.

• Euler’s method provides a recipe to find the solution to an initial
value problem.

• In special circumstances it is possible to find formulas for the solution
to a system of differential equations. If the differential equations involve
parameters, the solutions will, too.

• Systems of differential equations define functions as their solutions.
Among the most important are the exponential and logarithm func-
tions.

• The natural logarithm function is the inverse of the exponential func-
tion.

• The graphs and the derivatives of a function and its inverse are
connected geometrically to each other by reflection.

• Exponential functions bx grow to infinity faster than any power of
x.
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• The solution to dy/dx = f(x) is an antiderivative of f—that is, a
function whose derivative is f .

Expectations

• You should be able to use computer programs to produce tables and
graphs of solutions to initial value problems.

• You should be able to check whether a system of differential equations
reflects the hypotheses being made in constructing a model of a process.

• You should be able to verify whether a set of functions given by formulas
is a solution to a system of differential equations.

• You should be familiar with the basic properties of the exponential and
logarithm functions.

• You should be able to express solutions to initial value problems involv-
ing exponential growth or decay in terms of the exponential function.

• You should be able to solve dy/dx = f(x) by antidifferentiation when
f(x) is a basic function or a simple combination of them.

• You should be able to analyze and graph the inverse of a given function.
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Chapter 5

Techniques of Differentiation

In this chapter we focus on functions given by formulas. The derivatives of
such functions are then also given by formulas. In chapter 4 we used infor-
mation about the derivative of a function to recover the function itself; now
we go from the function to its derivative. We develop the rules for differenti-
ating a function: computing the formula for its derivative from the formula
for the function. Then we use differentiation to investigate the properties
of functions, especially their extreme values. Finally we examine a powerful
method for solving equations that depends on being able to find a formula
for a derivative.

5.1 The Differentiation Rules

There are three kinds of differentiation rules. First, any basic function has
a specific rule giving its derivative. Second, the chain rule will find the
derivative of a chain of functions. Third, there are general rules that allow us
to calculate the derivatives of algebraic combinations—e.g., sums, products,
and quotients—of any functions provided we know the derivatives of each of
the component functions. To obtain all three kinds of rules we will typically
start with the analytic definition of the derivative as the limit of a quotient
of differences:

Definition. The derivative of the function f at x is the value
of the limit

lim
∆x→0

f(x + ∆x) − f(x)

∆x
= f ′(x).

275
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In this chapter we will look at the cases where this limit can be evaluated
exactly. Although using this definition of derivative usually leads to many
algebraic manipulations, the other interpretations of derivatives as slopes,
rates, and multipliers will still be helpful in visualizing what’s going on. The
process of calculating the derivative of a function is called differentiation.
For this reason, functions which are locally linear and not locally vertical
(so they do have slopes, and hence derivatives at every point) are called
differentiable functions. Our goal in this chapter is to differentiate functions
given by formulas.

Derivatives of Basic Functions

When a function is given by a formula, there is in fact a formula for itsFunctions given by
formulas have
derivatives given by
formulas

derivative. We have already seen several examples in chapters 3 and 4. These
examples include all of what we may consider the basic functions. We
collect these formulas in the following table.

Rules for Derivatives of Basic Functions

function derivative

mx + b m
xr rxr−1

sin x cos x
cos x − sin x
ex ex

ln x 1/x

In the case of the linear function mx + b, we obtained the derivative by
using its geometric description as the slope of the graph of the function. The
derivatives of the exponential and logarithm functions came from the defini-
tion of the exponential function as the solution of an initial value problem.
To find the derivatives of the other functions we will need to start from the
definition.

An example: f(x) = x3

We begin by examining the calculation of the derivative of f(x) = x3 using
the definition. The change ∆y in y = f(x) corresponding to a change ∆x in
x is given by
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∆y = f(x + ∆x) − f(x)

= (x + ∆x)3 − x3

= 3x2 · ∆x + 3x(∆x)2 + (∆x)3.

From this we get

f ′(x) = lim
∆x→0

∆y

∆x

= lim
∆x→0

3x2 + 3x · ∆x + (∆x)2.

To see what’s happening with this expression, let’s consider the specific
value x = 2 and evaluate the corresponding values of ∆y/∆x for successively
smaller ∆x.

The value of ∆y/∆x
gets closer and closer

to 12 as ∆x gets
smaller and smaller

∆x 22 + 6∆x + (∆x)2 ∆y/∆x

.1 12 + .6 + .01 12.61

.01 12 + .06 + .0001 12.0601

.001 12 + .006 + .000001 12.006001

.0001 12 + .0006 + .00000001 12.00060001

.00001 12 + .00006 + .0000000001 12.0000600001

It is clear from this table that we can make ∆y/∆x as close to 12 as we like
by making ∆x small enough. Therefore f ′(2) = 12.

Note that in the table above we have used positive values of ∆x. You
should check to convince yourself that if we had used negative values of ∆x
we would have come up with a different set of approximations ∆y/∆x, but
that the limit would still be the same, namely 12—it doesn’t matter whether
we use positive or negative values for ∆x, or a mixture of the two, so long
as ∆x → 0.

In general, for any given x, the second and third terms in the expansion
for ∆y/∆x become vanishingly small as ∆x → 0, so that ∆y/∆x can be
made as close to 3x2 as we like by making ∆x small enough. For this reason,
we say that the derivative f ′(x) is exactly 3x2 :

f ′(x) = lim
∆x→0

3x2 + 3x · ∆x + (∆x)2 = 3x2.

In other words, given the function f specified by the formula f(x) = x3 we
have found the formula for its derivative function f ′: f ′(x) = 3x2. Note that
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this general formula agrees with the specific value f ′(2) = 12 we have already
obtained.

Notice the difference between the statements

f ′(x) ≈ ∆y/∆x and f ′(x) = 3x2.

For a particular value of ∆x, the corresponding value of ∆y/∆x is an approx-
imation of f ′(x). We can obtain another, better approximation by computing
∆y/∆x for a smaller ∆x. The successively better approximations differ from
one another by less and less. In particular, they differ less and less from the
limit value 3x2. The value of the derivative f ′(x) is exactly 3x2.

More generally, for any function y = f(x), a particular difference quotient
∆y/∆x is an approximation of f ′(x). Successively smaller values of ∆x give
successively better approximations of f ′(x). Again f ′(x) exactly equals the
limiting value of these successive approximations. In some cases, however, we
are only able to approximate that limiting value, as we often did in chapter
3, and for many purposes the approximation is entirely satisfactory. In this
chapter we will concentrate on the exact statements that are possible for
functions given by formulas.

The other basic functions

Our formula for the derivative of the function f(x) = x3 is one instance of
the general rule for the derivative of f(x) = xr.

The rule for
the derivative of
a power function

For every real number r , the derivative

of f(x) = xr is f ′(x) = r xr − 1.

We can prove this rule for the case when r is a positive integer using
algebraic manipulations very like the ones carried out for x3; see the exercises
for verifications of this and the other differentiation rules in this section.
Using a rule for quotients of functions (coming later in this section), we
can show that this rule also holds for negative integer exponents. Further
arguments using the chain rule show that the pattern still holds for rational
exponents. We can eliminate this case-by-case approach, though, by recalling
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the approach developed in chapter 4. We saw that we can give meaning to
br for any positive base b and any real number r by defining

br = er ln(b).

Using the formulas for the derivatives of ex and ln x together with the chain
rule, we can prove the rule for x > 0 and for arbitrary real exponent r directly,
without first proving the special cases for integer or rational exponents. See
the exercises for details. Arguments justifying the formulas for the derivatives
of the trigonometric functions are also in the exercises.

Combining Functions

We can form new functions by combining functions. We have already studied
one of the most useful ways of doing this in chapter 3 when we looked at
forming “chains” of functions and developed the chain rule for taking the Functions combined

by chains. . .derivative of such a chain. Suppose u = f(x) and y = g(u). Chaining these
two functions together we have y as a function of x:

y = h(x) = g(f(x)).

The chain rule tells us how to find the derivative of y with respect to x. In
function notation it takes the form

h′(x) = g′(f(x)) · f ′(x).

In Leibniz notation, using f(x) = u we can write the chain rule as

The chain rule
dy

dx
=

dy

du
· du

dx
.

We also saw in chapter 3 that the polynomial 5x3−7x2+3 can be thought
of as an algebraic combination of simple functions. We can build an even . . . and algebraically

more complicated function by forming a quotient with this polynomial in the
numerator and the difference of the functions sin x and ex in the denominator.
The result is

5x3 − 7x2 + 3

sin x − ex
.

The derivative of this function, as well as of other functions formed by
adding, subtracting, multiplying and dividing simpler functions, is obtained
by use of the following rules for the derivatives of algebraic combinations of
differentiable functions.
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Rules for Algebraic Combinations of Functions

Combining functions
by adding, subtracting,
multiplying and
dividing

function derivative

f(x) + g(x) f ′(x) + g′(x)

f(x) − g(x) f ′(x) − g′(x)

cf(x) cf ′(x)

f(x) · g(x) f ′(x) · g(x) + f(x) · g′(x)

f(x)

g(x)

g(x) · f ′(x) − f(x) · g′(x)

[g(x)]2

Notice carefully that the product rule has a plus sign but the quotient rule
has a minus sign. You can remember these formulas better if you think aboutNotice the signs

in the rules where these signs come from. Increasing either factor increases a (positive)
product, so the derivative of each factor appears with a plus sign in the
formula for the derivative of a product. Similarly, increasing the numerator
increases a positive quotient, so the derivative of the numerator appears
with a plus sign in the formula for the derivative of a quotient. However,
increasing the denominator decreases a positive quotient, so the derivative
of the denominator appears with a minus sign.

Let’s now use the rules to differentiate the quotient

5x3 − 7x2 + 3

sin x − ex
.

First, the derivative of the numerator 5x3 − 7x2 + 3 is

5(3x2) − 7(2x) + 0 = 15x2 − 14x.

Similarly the derivative of sin x − ex is cos x − ex. Finally, the derivative of
the quotient function is obtained by using the rule for quotients:

(sin x − ex)(15x2 − 14x) − (5x3 − 7x2 + 3)(cosx − ex)

(sin x − ex)2
.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

5.1. THE DIFFERENTIATION RULES 281

The following examples further illustrate the use of the rules for algebraic
combinations of functions.

function derivative

−3et + 3
√

t −3et + (1/3)t−2/3

5

x3
− 7x4 + lnx 5(−3)x−4 − 7(4x3) + 1/x

7
√

x cos x 7(
1

2
√

x
) cos x + 7

√
x(− sin x)

(
4

3

)

πr3

(
4

3

)

π3r2

3s6

s2 − s

(s2 − s)3(6s5) − 3s6(2s − 1)

(s2 − s)2

For another kind of example, suppose the per capita daily energy con-
sumption in a country is currently 800,000 BTU, and, due to energy con-
servation efforts, it is falling at the rate of 1,000 BTU per year. Suppose
too that the population of the country is currently 200,000,000 people and
is rising at the rate of 1,000,000 people per year. Is the total daily energy
consumption of this country rising or falling? By how much?

Three different quantities vary with time in this example: daily per capita
energy consumption, population and total daily energy consumption. We can
model this situation with three functions C(t), P (t) and E(t).

C(t) : per capita consumption at time t

P (t) : population at time t

E(t) : total energy consumption at time t

Since the per capita consumption times the number of people in the pop-
ulation gives the total energy consumption, these three functions are related
algebraically:

E(t) = C(t) · P (t).

If t = 0 represents today, then we are given the two rates of change

C ′(0) = −1, 000 = −103 BTU per person per year, and

P ′(0) = 1, 000, 000 = 106 persons per year.

Using the product rule we can compute the current rate of change of the
total daily energy consumption:
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E ′(0) = C(0) · P ′(0) + C ′(0) · P (0)

= (8 × 105) · (106) + (−103) · (2 × 108)

= (8 × 1011) − (2 × 1011)

= 6 × 1011 BTU per year.

So the total daily energy consumption is currently rising at the rate of 6×1011

BTU per year. Thus the growth in the population more than offsets the
efforts to conserve energy.

Finally, it is a useful exercise to check that the units make sense in this
computation. Recall that C(t) represents per capita daily energy consump-Checking units

tion, so the units for C(0) · P ′(0) are

BTU

person
· persons

year
=

BTU

year
,

and, similarly, the units for C ′(0) · P (0) are

BTU

person
· 1

year
· persons =

BTU

year
.

Informal Arguments

All of the rules for differentiating algebraic combinations of functions can
be proved by using the algebraic definition of the derivative as a limit of
a difference quotient. In fact, we will examine such a formal proof below.
However, informal arguments based on geometric ideas or other intuitive
insights are also valuable aids to understanding. Here are three examples of
such arguments.

• If a new function g is obtained from f by multiplying by a positive
constant c, so g(x) = cf(x), what is the relationship between the graphs
of y = f(x) and of y = g(x)? Stretching (or compressing, if c is lessStretching

y-coordinates than 1) the y-coordinates of the points of the graph of f by a factor of
c yields the graph of g.

y

x

y = sin(x)
y

x

y = 3sin(x)
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What then is the relationship between the slopes f ′(x) and g′(x)? If
the y-coordinates are tripled, the slope will be three times as great. If
they are halved, the slope will also be half as much. More generally, the
elongated (or compressed) graph of g has a slope equal to c times the
slope of the original graph of f . In other words, g(x) = cf(x) implies
g′(x) = cf ′(x).

• Now suppose instead that g is obtained from f by adding a constant b,
so g(x) = f(x) + b. This time the graph of y = g(x) is obtained from Shifting y-coordinates

the graph of y = f(x) by shifting up or down (according to the sign
of c) by |c| units. What is the relationship between the slopes f ′(x)
and g′(x)? The shifted graph has exactly the same slope as the original
graph, so in this case, g(x) = f(x) + b implies g′(x) = f ′(x).

y

x

y = sin(x)
y

x

y = sin(x) + .5

There is a similar pattern when the coordinates of the input variable are
stretched or shifted—that is when y = f(u) and u is rescaled by the linear
relation u = mx + b. These results depend on the chain rule and appear in
the exercises.

The fact that the derivative of f(x) + b is the same as the derivative of
f(x) is a special case of the general addition rule, which says the derivative
of a sum is the sum of the derivatives. In the special case, the derivative
of the constant function b is zero, so adding a constant leaves the derivative
unchanged. To see that how natural it is to add rates in the general case,
consider the following example:

Suppose we are diluting concentrated orange juice by mixing it with water Adding flows

in a big tub. We may let f(t) be the amount (in gallons) of concentrate in
the tub and g(t) be the amount of water in the tub at time t. Then f ′(t) is
the rate at which concentrate is being added at time t (measured in gallons
per minute), and g′(t) is the rate at which water is flowing into the tub. The
formula F (t) = f(t)+g(t) then gives the total amount of liquid in the tub at
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time t, and F ′(t) is the rate by which that total amount of liquid is changing
at time t. Clearly that rate is the sum of the rates of flow of concentrate and
water into the tank. If at some particular moment we are adding concentrate
at the rate of 3.2 gal/min and water at the rate of 1.1 gal/min, the liquid in
the tub is increasing by 4.3 gal/min at that moment.

A Formal Proof: the Product Rule

We include here the algebraic calculations yielding the rule for the derivative
of the product of two arbitrary functions—just to give the flavor of these
arguments. Algebraic arguments for the rest of these rules may be found in
the exercises.

The Product Rule:

F (x) = f(x) · g(x) implies F ′(x) = f ′(x) · g(x) + f(x) · g′(x)

To save some writing, let

∆F = F (x + ∆x) − F (x),

∆f = f(x + ∆x) − f(x),

and ∆g = g(x + ∆x) − g(x).

Rewrite the last two equations as

f(x + ∆x) = f(x) + ∆f

g(x + ∆x) = g(x) + ∆g.

Now we can write

F (x + ∆x) = f(x + ∆x) · g(x + ∆x)

= (f(x) + ∆f) · (g(x) + ∆g)

= f(x) · g(x) + f(x) · ∆g + ∆f · g(x) + ∆f · ∆g

This gives us a simple expression forSimplifying ∆F

∆F = F (x + ∆x) − F (x)

namely,
∆F = f(x) · ∆g + ∆f · g(x) + ∆f · ∆g
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These quantities all have nice geometric interpretations. First, think of Interpret ∆f and ∆g
as lengthsthe numbers f(x) and g(x) as lengths that depend on x; then F (x) naturally

stands for the area of the rectangle whose sides are f(x) and g(x). If the sides
of the rectangle grow by the amounts ∆f and ∆g, then the area F grows by
∆F . As the following diagram shows, ∆F has three parts, corresponding to
the three terms in the expression we derived algebraically for ∆F .

area = f(x) · g(x)

area = f(x) · ∆g � area = ∆f · ∆g

� area = ∆f · g(x)

∆g

{

g(x)







f(x)
︷ ︸︸ ︷

∆f
︷︸︸︷

Now we divide ∆F by ∆x and finish the argument:

∆F

∆x
=

f(x) · ∆g + ∆f · g(x) + ∆f · ∆g

∆x

= f(x) · ∆g

∆x
+

∆f

∆x
· g(x) +

∆f · ∆g

∆x

Consider what happens to each of the three terms as ∆x gets smaller and
smaller. In the first term, the second factor ∆g/∆x approaches g′(x)—by
the definition of the derivative. The first factor, f(x) doesn’t change at all
as ∆x shrinks. So the first term approaches f(x) · g′(x). Similarly, in the
second term, the quotient ∆f/∆x approaches f ′(x), and the second term
approaches f ′(x) · g(x).

Finally, look at the third term. We would know what to expect if we had
another factor of ∆x in the denominator. We can put ourselves in familiar
territory by the “trick” of multiplying the third term by ∆x/∆x:

∆f · ∆g

∆x
=

∆f

∆x
· ∆g

∆x
· ∆x
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Thus we can see that as ∆x approaches zero, the third term itself approaches
f ′(x) · g′(x) · 0 = 0.

We may summarize our calculation by writing

lim
∆x→0

∆F

∆x
= f(x) ·

(

lim
∆x→0

∆g

∆x

)

+

(

lim
∆x→0

∆f

∆x

)

· g(x)

+

(

lim
∆x→0

∆f

∆x

)

·
(

lim
∆x→0

∆g

∆x

)

·
(

lim
∆x→0

∆x
)

from which we have

lim
∆x→0

∆F

∆x
= f(x) · g′(x) + f ′(x) · g(x) + f ′(x) · g′(x) · 0
= f(x) · g′(x) + f ′(x) · g(x).

This completes the proof of the product rule. Other formal arguments are
left to the exercises.

Exercises

Finding Derivatives

1. Find the derivative of each of the following functions.

a) 3x5 − 10x2 + 8 j) x2ex

b) (5x12 + 2)(π − π2x4) k) cos x + ex

c)
√

u − 3/u3 + 2u7 l) sin x/ cos x
d) mx + b (m, b constant) m) ex ln x

e) .5 sin x + 3
√

x + π2 n)
2x

10 + sin x

f)
π − π2x4

5x12 + 2
o) sin(ex cos x)

g) 2
√

x − 1√
x

p) 6ecos t/ 5 3
√

t

h) tan z (sin z − 5) q) ln(x2 + xex)

i)
sin x

x2
r)

5x2 + lnx

7
√

x + 5

2. Suppose f and g are functions and that we are given

f(2) = 3, g(2) = 4, g(3) = 2,

f ′(2) = 2, g′(2) = −1, g′(3) = 17.
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Evaluate the derivative of each of the following functions at t = 2:

a) f(t) + g(t) f)
√

g(t)
b) 5f(t) − 2g(t) g) t2f(t)
c) f(t)g(t) h) (f(t))2 + (g(t))2

d)
f(t)

g(t)
i)

1

f(t)
e) g(f(t) j) f(3t− (g(1 + t))2)

k) What additional piece of information would you need to calculate the
derivative of f(g(t)) at t = 2?

l) Estimate the value of f(t)/g(t) at t = 1.95

3. a) Extend the product rule to express (f(t)g(t)h(t))′ in terms of f , g,
and h.

b) If the length, width, and height of a rectangular box are changing at the
rates of 3, 6, and −5 inches/minute at the moment when all three dimensions
happen to be 10 inches, at what rate is the volume of the box changing then?

c) If the length, width, and height of a box are 10 inches, 12 inches, and
8 inches, respectively, and if the length and height of the box are changing
at the rates of 3 inches/minute and −2 inches/minute, respectively, at what
rate must the width be changing to keep the volume of the box constant?

4. In this problem we examine the effect of stretching or shifting the co-
ordinates of the input variable of a function. Your answers should address
both the algebra and the geometry of the problem to show how the algebraic
relations between the functions are manifested in their graphs.

a) Suppose f(x) = sin(x) and g(x) = sin(mx), where m is a constant stretch-
ing factor. What is the relation between f ′(x) and g′(x)?

b) As in (a), suppose f(x) = sin(x), but this time g(x) = sin(x + b) where b
is the size of a (constant) shift. What is the relation between f ′(x) and g′(x)
this time?

c) Now consider the general case: f(x) in an unspecified differentiable func-
tion and g(x) = f(mx + b), where the input variable is stretched by the
constant factor m and shifted by the constant amount b. What is the rela-
tion between f ′(x) and g′(x) in this general case?
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5. Which of the following functions has a derivative which is always positive
(except at x = 0, where neither the function nor its derivative is defined)?

1/x − 1/x 1/x2 − 1/x2

6. a) As a function of its radius r, the volume of a sphere is given by the
formula V (r) = 4

3
πr3. If r is measured in centimeters, what are the units for

V ′(r)?

b) Explain why square cm are not the appropriate units for V ′(r), even
though dimensionally correct.

7. Do the following.

a) Show that
1

1 − x2
and

x2

1 − x2
have the same derivative.

b) If f ′(x) = g′(x) for every x, what can be concluded about the relationship
between f and g? (Hint: What is (f(x) − g(x))′ ?)

c) Show that
1

1 − x2
=

x2

1 − x2
+ C by finding C.

8. Suppose that the current total daily energy consumption in a particular
country is 16× 1013 BTU and is rising at the rate of 6× 1011 BTU per year.
Suppose that the current population is 2 × 108 people and is rising at the
rate of 106 people per year. What is the current daily per capita energy
consumption? Is it rising or falling? By how much?

9. The population of a particular country is 15,000,000 people and is grow-
ing at the rate of 10,000 people per year. In the same country the per capita
yearly expenditure for energy is $1,000 per person and is growing at the rate
of $8 per year. What is the country’s current total yearly energy expenditure?
How fast is the country’s total yearly energy expenditure growing?

10. The population of a particular country is 30 million and is rising at
the rate of 4,000 people per year. The total yearly personal income in the
country is 20 billion dollars, and it is rising at the rate of 500 million dollars
per year. What is the current per capita personal income? Is it rising or
falling? By how much?

11. An explorer is marooned on an iceberg. The top of the iceberg is shaped
like a square with sides of length 100 feet. The length of the sides is shrinking
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at the rate of two feet per day. How fast is the area of the top of the iceberg
shrinking? Assuming the sides continue to shrink at the rate of two feet per
day, what will be the dimensions of the top of the iceberg in five days? How
fast will the area of the top of the iceberg be shrinking then?

12. Suppose the iceberg of problem 9 is shaped like a cube. How fast is the
volume of the cube shrinking when the sides have length 100 feet? How fast
after five days?

Deriving Differentiation Rules

13. In this problem we calculate the derivative of f(x) = x4.

a) Expand f(x + ∆x) = (x + ∆x)4 = (x + ∆x)(x + ∆x)(x + ∆x)(x + ∆x)
as a sum of 16 terms. (Don’t collect “like” terms yet.)

b) How many terms in part a involve no ∆x’s? What form do such terms
have?

c) How many terms in part a involve exactly one ∆x? What form do such
terms have?

d) Group the terms in part a so that f(x + ∆x) has the form

Ax4 + B∆x + R(∆x)2 ,

where there are no ∆x’s among the terms in A or B, but R has several terms,
some involving ∆x. Use part b to check your value of A; use part c to check
your value of B.

e) Compute the quotient
f(x + ∆x) − f(x)

∆x
, taking advantage of part d.

f) Now find

lim
∆x→0

f(x + ∆x) − f(x)

∆x
;

this is the derivative of x4. Is your result here compatible with the rule for
the derivative of xn ?

14. In this problem we calculate the derivative of f(x) = xn, where n is any
positive integer.

a) First show that you can write

f(x + ∆x) = xn + nxn−1∆x + R(∆x)2
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by developing the following line of argument. Write (x + ∆x)n as a product
of n identical factors:

(x + ∆x)n = (x + ∆x)
︸ ︷︷ ︸

1-st

(x + ∆x)
︸ ︷︷ ︸

2-nd

(x + ∆x)
︸ ︷︷ ︸

3-rd

. . . (x + ∆x)
︸ ︷︷ ︸

n-th

But now, before tackling this general case, look at the following examples.
In the examples we use notation to help us keep track of which factors are
contributing to the final result.
i) Consider the product (a + b)(a + b) = aa + ab + ba + bb. There are four
individual terms. Each term contains one of the entries in the first factor
(namely a or b) and one of the entries in the second factor (namely a or b).
The four terms represent thereby all possible ways of choosing one entry in
the first factor and one entry in the second factor.

ii) Multiply out the product (a+b)(a+b)(A+B). (Don’t combine like terms
yet.) Does each term contain one entry from the first factor, one from the
second, and one from the third? How many terms did you get? In fact there
are two ways to choose an entry from the first factor, two ways to choose
an entry from the second factor, and two ways to choose an entry from the
third factor. Therefore, how many ways can you make a choice consisting of
one entry from the first, one from the second, and one from the third?

Now return to the general case:

(x + ∆x)n = (x + ∆x)
︸ ︷︷ ︸

1-st

(x + ∆x)
︸ ︷︷ ︸

2-nd

(x + ∆x)
︸ ︷︷ ︸

3-rd

. . . (x + ∆x)
︸ ︷︷ ︸

n-th

How many ways can you choose an entry from each factor and not get any
∆x’s? Multiply these chosen entries together; what does the product look
like (apart from having no ∆x’s in it)?

How many ways can you choose an entry from each factor in such a way
that the resulting product has precisely one ∆x? Describe all the various
choices which give that result. What does a product that contains precisely
one ∆x factor look like? What do you obtain for the sum of all such terms
with precisely one ∆x factor?

What is the minimum number of ∆x factors in any of the remaining terms
in the full expansion of (x + ∆x)n ?

Do your calculations agree with this summary:

(x + ∆x)n = xn + nxn−1∆x + R(∆x)2 ?
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b) Now find the value of
f(x + ∆x) − f(x)

∆x
.

c) Finally, find

lim
∆x→0

f(x + ∆x) − f(x)

∆x
.

Do you get nxn−1?

15. In this problem we give another derivation of the power rule based on
writing

xr = er ln(x).

Use the chain rule to differentiate er ln(x). Explain why your answer equals
rxr−1.

16. Does the rule for the derivative of xr hold for r = 0? Why or why not?

17. In this exercise we prove the Addition Rule: F (x) = f(x)+g(x) implies
F ′(x) = f ′(x) + g′(x).

a) Show F (x + ∆x) − F (x) = f(x + ∆x) − f(x) + g(x + ∆x) − g(x)

b) Divide by ∆x and finish the argument.

18. In this exercise we prove the Quotient Rule: F (x) = f(x)/g(x) implies

F ′(x) =
g(x)f ′(x) − f(x)g′(x)

(g(x))2

a) Rewrite F (x) = f(x)/g(x) as f(x) = g(x)F (x). Pretend for the moment
that you know what F ′(x) is and apply the Product Rule to find f ′(x) in
terms of F (x), g(x), F ′(x), g′(x).

b) Replace F (x) by f(x)/g(x) in your expression for f ′(x) in part a.

c) Solve the equation in part b for F ′(x) in terms of f(x), g(x), f ′(x) and
g′(x).

19. In this problem we calculate the derivative of f(x) = xn when n is a
negative integer. First write n = −m, so m is a positive integer. Then
f(x) = x−m = 1/xm.

a) Use the Quotient Rule and this new expression for f to find f ′(x) .

b) Do the algebra to re-express f ′(x) as nxn−1.
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20. In this problem we calculate the derivatives of sin x and cos x. We will
need the addition formulas:

sin(A + B) = sin A cos B + cos A sin B

cos(A + B) = cos A cos B − sin A sin B

First tackle f(x) = sin x:

a) Use the addition formula for sin(A+B) to rewrite f(x+∆x) in terms of
sin(x), cos(x), sin(∆x), and cos(∆x).

b) The quotient
f(x + ∆x) − f(x)

∆x
can now be written in the form

P (∆x) · sin x + Q(∆x) · cos x ,

where P and Q are specific functions of ∆x. What are the formulas for those
functions?

c) Use a calculator or computer to estimate the limits

lim
∆x→0

P (∆x) and lim
∆x→0

Q(∆x) .

(Try ∆x = .1, .01, .001, .0001. Be sure your calculator is set on radians, not
degrees.) Using part b you should now be able to determine the limit

lim
∆x→0

f(x + ∆x) − f(x)

∆x

by writing it in the form

(

lim
∆x→0

P (∆x)
)

· sin x +
(

lim
∆x→0

Q(∆x)
)

· cos x .

d) What is f ′(x)?

e) Proceed similarly to find the derivative of g(x) = cos x.

21. In this problem we calculate the derivatives of the other circular func-
tions. Use the quotient rule together with the derivatives of sin x and cos x
to verify that the derivatives of the other four circular functions are as given
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in the table below:

function derivative

tan x =
sin x

cos x
sec2 x

csc x =
1

sin x
− cot x csc x

sec x =
1

cos x
sec x tan x

cot x =
1

tanx
− csc2 x

Differential Equations

22. If y = f(x) then the second derivative of f is just the derivative of
the derivative of f ; it is denoted f ′′(x) or d2y/dx2. Find the second derivative
of each of the following functions.

a) f(x) = e3x−2

b) f(x) = sin ωx, where ω is a constant

c) f(x) = x2ex

23. Show that e3x and e−3x both satisfy the (second order) differential equa-
tion

f ′′(x) = 9f(x).

Furthermore, show that any function of the form g(x) = αe3x+βe−3x satisfies
this differential equation. Here α and β are arbitrary constants. Finally,
choose α and β so that g(x) also satisfies the two conditions g(0) = 12 and
g′(0) = 15.

24. Show that y = sin x satisfies the differential equation y′′ + y = 0. Show
that y = cos x also satisfies the differential equation. Show that, in fact, y =
a sin x + b cos x satisfies the differential equation for any choice of constants
a and b. Can you find a function g(x) that satisfies these three conditions:

g′′(x) + g(x) = 0

g(0) = 1

g′(0) = 4?
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25. Show that sin ωx satisfies the differential equation y′′ + ω2y = 0. What
other solutions can you find to this differential equation? Can you find a
function L(x) that satisfies these three conditions:

L′′(x) + 4L(x) = 0

L(0) = 36

L′(0) = 64?

The Colorado River Problem

. Make your answer to this sequence of questions an essay. Identify all the
variables you consider (e.g., “A stands for the area of the lake”), and indicate
the functional relationships between them (“A depends on time t, measured
in weeks from the present”). Identify the derivatives of those functions, as
necessary.

The Colorado River—which excavated the Grand Canyon, among others—
used to empty into the Gulf of California. It no longer does. Instead, it runs
into a marshy area some miles from the Gulf and stops. One of the ma-
jor reasons for this change is the construction of dams—notably the Hoover
Dam. Every dam creates a lake behind it, and every lake increases the total
surface area of the river. Since the rate at which water evaporates is pro-
portional to the area of the water surface exposed to air, the lakes along the
Colorado have increased the loss of river water through evaporation. Over
the years, these losses (in conjunction with other factors, like increased usage
by a rapidly growing population) have been significant enough to dry up the
river at its mouth.

26. Let us analyze the evaporation rate along a
river that was recently dammed. Suppose the lake
is currently 50 yards wide, and getting wider at
a rate of 3 yards per week. As the lake fills, it
gets longer, too. Suppose it is currently 950 yards
long, and it is extending upstream at a rate of
15 yards per week. Assuming the lake remains
approximately rectangular as it grows, find

50
yd

s

950 yds

the River

the
dam

a) the current area of the lake, in square yards;

b) the rate at which the surface of the lake is currently growing, in square
yards per week.
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27. Suppose the lake continues to spread sideways at the rate of 3 yards per
week, and it continues to extend upstream at the rate of 15 yards per week.

a) Express the area of the lake as a (quadratic!) function of time, where
time is measured from the present, in weeks, and where the lake’s area is as
given in problem 25.

b) How many weeks will it take for the lake to cover 30 acres (= 145,200
square yards)?

c) At what rate is the lake surface growing when it covers 30 acres?

28. Compare the rates at which the surface of the lake is growing in problem
25 (which is the “current” rate) and in problem 26 (which is the rate when
the lake covers 30 acres). Are these rates the same? If they are not, how do
you account for the difference? In particular, the width and length grow at
fixed rates, so why doesn’t the area? Use what you know about derivatives
to answer the question.

29. Suppose the local climate causes water to evaporate from the surface
of the lake at the rate of 0.22 cubic yards per week, for each square yard of
surface. Write a formula that expresses total evaporation per week in terms
of area. Use E to denote total evaporation.

30. The lake is fed by the river, and that in turn is fed by rainwater and
groundwater from its watershed. (The watershed, or basin, of a river is
that part of the countryside containing the ponds and streams which drain
into the river.) Suppose the watershed provides the lake, on average, with
25,000 cubic yards of new water each week.

Assuming, as we did in problem 25, that the lake widens at the constant
rate of 3 yards per week, and lengthens at the rate of 15 yards per week, will
the time ever come that the water being added to the lake from its watershed
balances the water being removed by evaporation? In other words, will the
lake ever stop filling?
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5.2 Finding Partial Derivatives

We know from Chapter 3 that no additional formulas are needed to calculate
partial derivatives. We simply use the usual differentiation formulas, treat-
ing all the variables except one—the one with respect to which the partial
derivative is formed—as if they were constants. If we do this we get new
techniques for analyzing rates of change in problems that involve functions
of several variables.

Some Examples

Here are two examples to illustrate the technique for calculating partial
derivatives:

Finding formulas for
partial derivatives

1. Suppose f(x, y) = x2y + 5x3 −√
x + y. Then

fx(x, y) = 2xy + 15x2 − 1

2
√

x + y
, and

fy(x, y) = x2 − 1

2
√

x + y
.

2. Suppose g(u, v) = euv +
u

v
. Then

gu(u, v) = veuv +
1

v
, and

gv(u, v) = ueuv − u

v2
.

Eradication of Disease

Controlling—or, better still, eradicating—a communicable disease depends
first on the development of a vaccine. But even after this step has been
accomplished, public health officials must still answer important questions,
including:

• What proportion of the population must be vaccinated in order to
eliminate the disease?

• At what age should people be vaccinated?
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In their 1982 article, “Directly Transmitted Infectious Diseases: Control
by Vaccination,” (Science, Vol. 215, 1053–1060), Roy Anderson and Robert
May formulate a model for the spread of disease that permits them to answer
these and other questions. For a particular disease in a particular environ-
ment, the important variables in their model are

1. The average human life expectancy L, in years;

2. The average age A at which individuals catch the disease, in years;

3. The average age V at which individuals are vaccinated against the
disease, in years.

Anderson and May deduce from their model that in order to eradicate
the disease, the proportion of the population that is vaccinated must exceed
p, where p is given by

p =
L + V

L + A
.

For a disease like measles, public health officials can directly affect the
variable V , for example by the recommendations they make to physicians Partial derivatives can

tell us which variables
are most significant

about immunization schedules for children. They may also indirectly affect
the variables A and L, because public health policy influences factors which
can modify the age at which children catch the disease or the overall life
expectancy of the population. (Many other factors affect these variables as
well.) Which of these three variables has the greatest effect on the proportion
of the population that must be vaccinated?

In other words, which is largest: ∂p/∂L, ∂p/∂A, or ∂p/∂V ?

Using the rules, we compute:

∂p

∂L
=

1 · (L + A) − 1 · (L + V )

(L + A)2
=

A − V

(L + A)2
,

∂p

∂A
=

−(L + V )

(L + A)2
, and

∂p

∂V
=

1

L + A
.

For measles in the United States, reasonable values of the variables are L
= 70 years, A = 5 years and V = 1 year. Using these values, the crucial
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proportion of the population needing to be vaccinated is p = 71/75 = .947,
and the partial derivatives are

∂p

∂L
=

4

(75)2
= .0007,

∂p

∂A
=

−71

(75)2
= −.0126,

∂p

∂V
=

1

75
= .0133.

A comment is in order here on units. While the input variables L, A andDetermining units

V are all measured in years—so the rates are per year , the output variable p is
dimensionless: it is the ratio of persons vaccinated to persons not vaccinated.
It would be reasonable to write p as a percentage. Then we can attach the
units percent per year to each of the three partial derivatives. Thus we have:

∂p

∂L
= .07% per year

∂p

∂A
= −1.26% per year

∂p

∂V
= 1.33% per year.

It is not surprising that a change in average life expectancy has a negligible
effect on the proportion p of the population that must be vaccinated in order
to eradicate measles. Nor is it surprising that changing the age of vaccination
has the greatest effect on p. But it is not obvious ahead of time that changing
the age at which children catch the disease has nearly as large an effect on p:

• Decreasing the age of vaccination decreases the proportion p by 1.33%
per year of decrease.

• Increasing the age at which children catch measles decreases the pro-
portion p by 1.26% per year of increase.

Changes can also go the “wrong” way. For example, in an area where
use of communal child care facilities is growing, contact among very young
children increases, and the age at which children are exposed to—and can
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catch—communicable diseases like measles falls. The Anderson–May model
tells us that immunization practices must change to compensate: either the
age of vaccination must drop a like amount, or the fraction of the population
that is vaccinated must grow by 1.26% per year of decrease in the average
age at infection.

Exercises

Finding Partial Derivatives

1. Find the partial derivatives of the following functions.

a) x2y.

b)
√

x + y

c) exy

d)
y

x

e)
x + y

y + z

f) sin
y

x

2. a) Suppose f(x, y) = e−(x+2y)(2x − 5y). Find fx(x, y) and fy(x, y).

b) Find a point (a, b) at which fx(a, b) = 0. At such a point a small change
in x leaves the value of f virtually unchanged.

c) Find a point (a, b) at which a small increase in the x-value would produce
the same change in f(a, b) as would the same-sized decrease in the y-value.

3. Suppose g(u, v) =
sin u + v2 + 7uv

1 + u2 + v4
. Find gu(u, v) and gv(u, v).

4. The second partial derivatives of z = f(x, y) are the partial deriva-
tives of ∂f/∂x and ∂f/∂y, namely:

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
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Find the three second partial derivatives of the following functions.

a) x2y.

b)
√

x + y

c) exy

d)
y

x

e) sin
y

x

Eradication of Disease

5. Suppose you were dealing with measles in a developing country where
L = 50 years, A = 4 years, and L = 2 years. Discuss the impact on measles
control if increased public health efforts increase L to 55 years, A to 5 years,
and decrease V to 1.5 years.

Partial differential equations

6. Show that the function z =
1√
t
exp

−x2

4t
satisfies the partial differen-

tial equation

∂2z

∂x2
=

∂z

∂t
.

7. Show that every linear function of the form z = px + qy + c satisfies the
partial differential equation

∂2z

∂x2
+

∂2z

∂y2
= 0.

Here p, q, and c are arbitrary constants.

8. Show that the function z = ex sin y also satisfies the partial differential
equation

∂2z

∂x2
+

∂2z

∂y2
= 0.
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5.3 The Shape of the Graph of a Function

We know from chapter 3 that the derivative gives us qualitative information
about the shape of the graph of a differentiable function.

function derivative
increasing positive
decreasing negative
level zero
steep (rising or falling) large (positive or negative)
gradual (rising or falling) small (positive or negative)
straight constant

Having a formula for the derivative of a function will thus give us a great
deal of information about the behavior of the function itself. In particular we
will be interested in using the derivative to solve optimization problems— Contexts for

optimization problemsfinding maximum or minimum values of a function. Such problems occur
frequently in many fields.

• Economists actually define human rationality in terms of optimization.
Each person is assumed to have a utility function, a function that as-
signs to each of many possible outcomes its utility, a numerical measure
of its value to her. (Different people may have different utility func-
tions, depending on their personal value systems.) A rational person
is one who acts to maximize her utility. Some utilities are expressed
in terms of money. For example, a rational manufacturer will seek to
maximize her profit (in dollars). Her profit will depend on—that is, be
a function of—such variables as the cost of her raw materials and the
unit price she charges for her product.

• Many physical laws are expressed as minimum principles. Ordinary
soap bubbles exhibit one of these principles. A soap film has a surface
energy which is proportional to its surface area. For almost any phys-
ical system, its stable state is one which minimizes its energy. Stable
soap films are thus examples of minimal surfaces. Interfaces involving
crystals also have surface energies, leading to the study of crystalline
minimal surfaces.

• Statisticians develop mathematical summaries for data—in other words,
mathematical models. For example, a relationship between two numer-
ical variables may be summarized by a linear function, say y = mx+ b,
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where x and y are the variables of interest. It would be very rare to
find data that were exactly linear. In a particular case, the statistician
chooses the linear model that minimizes the discrepancy between the
actual values of y and the theoretical values obtained from the linear
function. Statisticians frequently measure this discrepancy by summing
the squares of the differences between the actual and the theoretical val-
ues of y for each data point. The best-fitting line or regression line is
the graph of the linear function which is optimal in this sense.

• Psychologists who study decision-making have found that some people
are “risk-averse”; they make their decisions primarily to avoid risks. If
we regard risk as a function of the various outcomes under considera-
tion (a bit like a utility function), such a person acts to minimize this
function.

The derivative is the key tool here. We will develop a general procedure
for using the derivative of a function to locate its extremes.

Language

Here is a graph of what we might consider a “generic” differentiable function.

x

y

a
b

c
d

The most distinctive features are the hill tops and valley bottoms, points
where the graph levels and the derivative is zero. We distinguish betweenLocal extremes and

global extremes local extremes, like those occurring at the points x = b, x = c, and x = d and
a global extreme, like the global maximum at the point x = a. The function
has a local minimum at x = b because f(x) ≥ f(b) for all x sufficiently near
b. The function has a global maximum at x = a because f(x) ≤ f(a) for
all x. Notice that this particular function does not have a global minimum.
What kinds of local extremes does the function have at x = c and x = d?
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The convention is to say that all extremes are local extremes, and a local
extreme may or may not also be a global extreme.

Examining the graph of as simple a function as f(x) = x3 shows us that A function may have
no extreme at a point

where its derivative
equals zero

a function need not have any extremes at all. Moreover, since f ′(0) = 0 for
this function, a zero derivative doesn’t necessarily identify a point where an
extreme occurs. y

x

y = x3

Can a function have an extreme at a point other than where the derivative An extreme can
occur at a cuspis zero? Consider the graph of f(x) = x2/3 below.

y

x

y = x2/3

This function is differentiable everywhere except at the point x = 0. And it
is at this very point, where

f ′(x) =
2

3
x−1/3 =

2

3 3
√

x

is undefined, that the function has its global minimum. For this reason,
points where the derivative fails to exist (or is infinite) are as important as
points where the derivative equals zero. All of these kinds of points are called
critical points for the function.

A critical point for a function f is a point on the
graph of f where f ′ equals zero or infinity or fails to exist.

How can we recognize, from looking at its graph, that a function fails to
be differentiable at a point? We know that when the graph has a sharp corner
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or cusp it isn’t locally linear at that point, and so has no derivative there.
Thus critical points occur at these places. When the graph is locally linear
but vertical, the slope cannot be given a finite numerical value. Critical
points also occur at these vertical places where the slope is infinite. The
graph below is an example of such a curve.

y

x

y = x1/3

A weaker condition than differentiability, but one that is useful, especiallyContinuous functions

in this context, is continuity. We say that a function f is continuous at
a point x = a if

• it is defined at the point, and

• we can achieve changes in the output that are arbitrarily small by
restricting changes in the input to be sufficiently small.

This second condition can also be expressed in the following form:

Given any positive number ǫ (the proposed limit on the change
in the output is traditionally designated by the Greek letter ǫ,
pronounced ‘epsilon’), there is always a positive number δ (the
Greek letter ‘delta’), such that whenever the change in the input
is less than δ, then the corresponding change in the output will
be less than ǫ.

A function is continuous on a set of real numbers if it is continuous at
each point of the set. A natural way to think of (and recognize) a functionGraphs of continuous

functions have
no gaps or jumps

which is continuous on an interval is by its graph on that interval, which is
continuous in the usual sense: it has no gaps or jumps in it. You can draw it
without picking up your pencil. Of the four functions whose graphs appear
on the next page, f is continuous (and differentiable); g is continuous, but
not differentiable (because of the cusp at x = a); h is not continuous, because
h is undefined at x = b; and k is not continuous, because of the “jump” at
x = c.
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Luckily, the functions that we are likely to encounter are continuous on
their natural domains. Among functions given by formulas, the only excep- A quotient isn’t

continuous where its
denominator is zero

tions we have to worry about are quotients, like f(x) = 1/x, which have gaps
in their natural domains at points where the denominator vanishes (at x = 0
in the case of f(x) = 1/x), so their domains are not single intervals. For
convenience, we usually confine our attention to functions continuous on an
interval.

y

x

y = f(x)

y

xa

y = g(x)

y

xb

y = h(x)

y

xc

y = k(x)

The Existence of Extremes

Not every function has extremes, as the example of f(x) = x3 shows. We
are, however, guaranteed extremes for certain functions.

Principle I. We are guaranteed that a function has a global maximum and A continuous function
on a finite closed

interval has extremes
a global minimum if we know:

• the domain of the function is a finite closed interval, and

• the function is continuous on this interval.

The domain restriction in most optimization problems is likely to come from
the physical constraints of the problem, not the mathematics. A finite
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closed interval, written [a, b], is the set of all real numbers between a and
b, including the endpoints a and b. Other kinds of finite intervals are (a, b],
(this excludes the endpoint a), [a, b), and (a, b). Infinite intervals include
open and closed “rays” like (a, +∞), [a, +∞), (−∞, b) and (−∞, b], and the
entire real line.

To illustrate Principle I, we note first that it does not apply to f(x) = 1/x
on the finite closed interval [−1, 2], because this function isn’t continuous at
every point on this interval—in fact, the function isn’t even defined for x = 0.

y

x

y = 1/x

1 2−1

y

x

y = 1/x

1 2 3

By contrast, Principle I does apply to the same function if we change its
domain to a finite closed interval that does not include x = 0. In the figure
above we use [1, 3].

A function hat fails to satisfy the first condition of Principle I can still
have global extremes. For any function continuous on an interval we can
apply the following principle.

Principle II. If a function f is continuous on an interval and has a localContinuous functions
have extremes
only at endpoints
or critical points

extreme at a point x = c of the interval, then either x = c is a critical point
for the function, or x = c is an endpoint of the interval. In other words, we
are guaranteed that one of the following three conditions holds:

• f ′(c) = 0,

• f ′(c) is undefined,

• x = c is an endpoint of the interval.
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The following graphs illustrate three local maxima, each satisfying one of
these three conditions.

y

xc

y

xc

y

xc

When we apply Principle II to optimization problems, an important part
of the task will be ascertaining which, if any, of the critical points or end-
points we find actually gives the extreme we’re looking for. We’ll examine
a variety of techniques, graphical and analytical, for locating critical points
and determining what kind of extreme point (if any) they are.

Finding Extremes

Using a graphical approach

If we can use a computer to examine the graph of the function of interest, we Computer graphing can
be easy if the general

location of the
extremes is known

can determine the existence and location of extremes by inspection. However,
every graphing utility requires the user to specify the interval on which the
function will be graphed, and careful analysis may be required in order to
choose an interval that contains all the extremes of interest.

For functions given by data, whose graphs have only finitely many points,
we can zoom in to find the exact coordinates of the extreme datapoints. For
a function given by a formula, we can estimate the coordinates of an extreme
to arbitrary accuracy by zooming in on the point as closely as desired. This
is the method we used in some of the exercises of Chapter 1, and it is quite
satisfactory in many situations.

Using the formula for the derivative.

In this chapter we are concentrating on functions given by formulas. For Formulas can give
exact answers and can

handle parameters
these functions we may want a method other than the approximation using
a graphing utility described above.

• For some functions, the determination of extremes using a formula for
the derivative is at least as easy as using the computer.

• Some functions are described in terms of a parameter , a constant whose
value may vary from one problem to another. For example, the rate
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equation from the S-I-R model for change in the number of infected,
I ′ = aSI − bI, involves two parameters a and b, the transmission and
recovery coefficients. For such a function, we cannot use the computer
unless we specify a numerical value for each parameter, thus limiting
the generality of our results.

• The computer gives only an approximation, while a precise answer may
convey important additional information.

We will assume that the function we are studying is continuous on the
domain of interest and that its domain is an interval. Our procedure for
finding extremes of a function given by a formula y = f(x) is thus a direct
application of Principle II.

The search for local extremes

1. Determine the domain of the function and identify its endpoints, if
any. Keep in mind that in an applied context, the domain may be
determined by physical or other restrictions.

2. Find a formula for f ′(x).

3. Find any roots of f ′(x) = 0 in the domain. An estimation procedure,
for example Newton’s Method (see the end of this chapter), may be
used for complicated equations.

4. Find any points in the domain where f ′(x) is undefined.

5. Determine the shape of the graph to locate any local extremes. Find
the shape either by looking directly at the graph of y = f(x) or by
analyzing the sign of f ′(x) on either side of each critical point x =
c. (Sometimes the second derivative f ′′(c) aids the analysis; see the
exercises for details.)

The search for global extremes

1. Find the local extremes, as above.

2. If the domain is a finite closed interval, it is only necessary to compare
the values of f at each of the critical points and at the endpoints
to determine which is the global maximum and which is the global
minimum.
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3. More generally, use the shape of the graph to ascertain whether the
desired global extreme exists and to identify it.

In the succeeding sections and in the exercises we will carry out these
search procedures in a variety of situations. Since there are often substantial
algebraic difficulties in analyzing the sign of the derivative, or even deter-
mining when it is equal to zero, in realistic problems, in section 5 we will
develop some numerical methods for handling such complications.

Exercises

Describing functions

1. For each of the following graphs, is the function continuous? Is the
function differentiable?

x

y
a)

x

y
c)

x

yb)

x

yd)

2. For each of the following graphs of a function y = f(x), is f ′ increasing
or decreasing? At the indicated point, what is the sign of f ′? Is f ′ (not f)
increasing or decreasing at the point? What does this then say about the
sign of f ′′ (the derivative of f ′) at the point?

y

x

a) y

x

b) y

x

c)

y

x

d) y

x

e) y

x

f)
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3. For each of the following, sketch a graph of y = f(x) that is consistent
with the given information. On each graph, mark any critical points or
extremes.

a) f ′(x) > 0 for x < 1; f ′(1) = 0; f ′(x) < 0 for 1 < x < 2; f ′(2) = 0;
f ′(x) > 0 for x > 2.

b) f ′(x) > 0 for x < 2; f ′(2) = 0; f ′(x) > 0 for x > 2.

c) f ′(x) > 0 for x < 2; f ′(2) = 0; f ′(x) < 0 for x > 2.

d) f ′(3) = 0; f ′′(3) > 0.

4. The geometric meaning of the second derivative If f is any func-
tion and if f ′′(x) is positive over some interval, then f ′ is increasing over
that interval, and we say the curve is concave upward over that interval.
If f ′′(x) is negative over some interval, then f ′ is decreasing over that inter-
val, and we say the curve is concave downward over that interval. You
should study the graphs in problem 2 until you are clear what this means
geometrically.

a) Suppose there were four functions f , g, h, and k, and that f(0) = g(0) =
h(0) = k(0) = 0, and f ′(0) = g′(0) = h′(0) = k′(0) = 1. Suppose, moreover,
that f ′′(0) = 1, g′′(0) = 5, h′′(0) = −1, and k′′(0) = −5. Sketch possible
graphs of these functions near the origin.

b) We know that the magnitude of the first derivative tells us how steep
the curve is—the greater the value of f ′, positive or negative, the steeper the
curve. What does the magnitude of the second derivative tell us geometrically
about the shape of the curve? Complete the sentence: “The greater the value
of f ′′, the .”

5. a) Here is the graph you saw back on page 302:

x

y

a
b

c
d

At which point is the second derivative greater, b or d, and why?
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b) Reproduce a sketch of this curve and indicate where the curve is concave
up and where it is concave down.

c) What must be true about the second derivative at the points where the
curve changes concavity from up to down, or vice versa? Give a clear justi-
fication for your answer.

d) What must be true about the second derivative near the right-hand end
of the graph, and why?

e) Put all this together to sketch the graph of the second derivative of this
function. Label the values a – d on your sketch.

6. Second derivative test for maxima and minima Explain why the
following test works.

• If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at x = c.

• If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at x = c.

(Hint: If f ′(c) = 0 and f ′′(c) > 0, what can you say about the value of
f ′(x)—and hence the geometry of the graph of f—on either side of c?)

Finding critical points

7. For each of the following functions, find the critical points, if any, without
using a computer or calculator. Can you sketch the graph of the function
near the critical point? Use the second derivative test if you can’t figure the
behavior out from a simpler inspection.

a) f(x) = x1/3

b) f(x) = x3 +
3

2
x2 − 6x + 5

c) f(x) =
2x + 1

x − 1
d) f(x) = sin x

e) f(x) =
√

1 − x2

f) f(x) =
ex

x
g) f(x) = x ln x

h) f(x) = xc +
1

xc
where c is some constant
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8. For each of the following graphs, mark any critical points or extremes.
Indicate which extremes are local and which are global. (Assume that at
their ends the curves continue in the direction they are headed.)

y

x

a)

y

x

b)

y

x

c)

Finding extremes

Except where indicated, you should not use a computer or calculator to solve
the following problems.

9. For what positive value of x does f(x) = x+
7

x
attain its minimum value?

Explain how you found this value.

10. For what value of x in the interval [1, 2] does f(x) = x +
7

x
attain its

minimum value? Explain how you found this value.

11. Use a graphing program to make a sketch of the function y = f(x) =
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x22−x on the interval 0 ≤ x ≤ 10. From the graph, estimate the value of x
which makes y largest, accurately to four decimal places. Then find where y
takes on its maximum by setting the derivative f ′(x) equal to 0. You should
find that the maximum occurs at x = 2/ ln 2. Finally, what is the numerical
value of this estimate of 2/ ln 2, accurate to seven decimal places?

12. Use a graphing program to sketch the graph of y =
1

x2
+ x on the

interval 0 < x < 4 and estimate the value of x that makes y smallest on this
interval. Then use the derivative of y to find the exact value of x that makes
y smallest on the same interval. Compare the estimated and exact values.

13. What is the smallest value y =
4

x2
+ x takes on when x is a positive

number? Explain how you found this value.

14. The function y = x4−42x2−80x has two local minima. Where are they
(that is, what are their x coordinates), and what are their values? Which
is the lower of the two minima? In this problem you will have to solve a
cubic equation. You can use an estimation procedure, but it is also possible
to solve by factoring the cubic. (The roots are integers.)

15. The function y = x4 − 6x2 + 7 has two local minima. Where are they,
and which of the two is lower? In this problem you will have to solve a cubic
equation. Do this by factoring and then approximating the x values to 4
decimal places.

16. Sketch the graph of y = x ln x on the interval 0 < x < 1. Where does
this function have its minimum, and what is the minimum value?

17. Let x be a positive number; if x > 1 then the cube of x is larger than
its square. However, if 0 < x < 1 then the square is larger than the cube.
How much larger can it be; that is, what is the greatest amount by which x2

can exceed x3? For which x does this happen?

18. By how much can xp exceed xq, when 0 < p < q and 0 < x? For which
x does this happen?
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5.4 Optimal Shapes

The Problem of the Optimal Tin Can

What is the minimum
surface area?

Suppose you are a tin can manufacturer.
You must make a can to hold a certain
volume V of canned tomatoes. Naturally,
the can will be a cylinder, but the propor-
tions, the height h and the radius r, can
vary. Your task is to choose the propor-
tions so that you use the least amount of
tin to make the can. In other words, you
want the surface area of that can to be as
small as possible.

h

r

The Solution

The surface area is the sum of the areas of the two circles at the top and
bottom of the can, plus the area of the rectangle that would be obtained if
the top and bottom were removed and the side cut vertically.

h

     r2π

Thus A depends on r and h:

A = 2πr2 + 2πrh.

However, r and h cannot vary independently. Because the volume V is fixed,Finding A as a
function of r r and h are related by

V = πr2h.

Solving the equation above for h in terms of r,

h =
V

πr2
,
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we may express A as a function of r alone:

A = f(r) = 2πr2 + 2πr
V

πr2
= 2πr2 +

2V

r

Notice that the formula for this function involves the parameter V . The V is a parameter

mathematical description of our task is to find the value of r that makes
A = f(r) a minimum.

Following the procedure of the previous section, we first determine the
domain of the function. Clearly this problem makes physical sense only for Finding the domain

of f(r)r > 0. Looking at the equation

h =
V

πr2
,

we see that although V is fixed, r can be arbitrarily large provided h is
sufficiently small (resulting in a can that looks like an elephant stepped on
it). Thus the domain of our function is r > 0, which is not a closed interval,
so we have no guarantee that a minimum exists.

Next we compute f ′(r), keeping in mind that the symbols V and π rep-
resent constants and that we are differentiating with respect to the variable
r.

f ′(r) = 4πr − 2V

r2
=

4πr3 − 2V

r2

The derivative is undefined at r = 0, which is outside the domain under
consideration. So now we set the derivative equal to zero and solve for any Looking for

critical pointspossible critical points.

f ′(r) =
4πr3 − 2V

r2

0 =
4πr3 − 2V

r2

0 = 4πr3 − 2V

r = 3

√

V/2π

Thus r = 3

√

V/2π is the only critical point.
We can actually sketch the shape of the graph of A versus r based on this Finding the shape

of the graph of Aanalysis of f ′(r). The sign of f ′(r) is determined by its numerator, since the
denominator r2 is always positive.
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• When r < 3

√

V/2π, the numerator is negative, so the graph of A is
falling.

• When r > 3

√

V/2π, the numerator is positive, so the graph is rising.

A

rrextreme

Obviously, A has a minimum at

rextreme = 3

√

V/2π.

It is also obvious that there is no maximum area, sinceA has a minimum
but no maximum

lim
r→0

A = ∞ and lim
r→∞

A = ∞.

Thus we see again that not every optimization problem has a solution.

The Mathematical Context: Optimal Shapes

It is interesting to find the value of the height h = hextreme when the area is
a minimum. Since

hextreme =
V

πr2
extreme

,

we can use rextreme = 3

√

V/2π to write V = 2πr3
extreme and thus find

hextreme =
2πr3

extreme

πr2
extreme

= 2rextreme.

In other words, the height of the optimal tin can exactly equals its diameter.
Campbell soup cans are far from optimal, but a can of Progresso plum toma-
toes has diameter 4 inches and height 4.5 inches. Does someone at Progresso
know calculus?
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Problems like the one above—as well as others that you will find in the
exercises—have been among the mainstays of calculus courses for generations.
However, if you really had to face the problem of optimizing the shape of a
tin can as a practical matter, you would probably have a numerical value for
V specified in advance. In that case, your first impulse might be to use a
graphing utility to approximate rextreme , as accurately as your needs warrant.
This is entirely appropriate. Using a graphing utility gives the answer as
quickly as taking derivatives, and you are less likely to make mistakes in
algebra. Moreover, the functions encountered in many other real problems
are often complicated and messy, and their derivatives are hard to analyze.
A graphing utility may provide the only practical course open to you.

So why insist that you use derivatives on these problems? It is because So why do things
the hard way?the actual context of these examples is not really saving money for food

canners. The real context is geometry. If we had used a graphing facility to
solve the can problem, we might have noticed that the optimal radius was
about half the height, but we wouldn’t have known the relationship is exact.
Nor would we have recognized that the relationship holds for cylinders of
arbitrary volume.

Using a graphing utility is essentially mindless, which is part of its virtue
if we just need a specific answer to a particular problem. Part of the pur-
pose of a calculus course, though, is to develop the concepts, tools, and the
geometric vocabulary for thinking about problems in general, to see the con-
necting threads between apparently disparate settings. The more clearly we
can think within a general framework, not just that of the specific problem
being addressed, the better intuitions we will develop that will help us see
unsuspected relationships in the problem at hand or think more creatively
about other problems in other settings. The ability to give precise expression
to our intuitions can lead to deeper insights. You should thus try to see the
exercises that follow as not just about fences and storage bins—they are op- Symmetric shapes

are often optimalportunities to observe that, often, the geometric regularity that pleases the
eye is also optimal.
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Exercises

For each of the following problems, find a function relating the variables and
use differentiation to find the optimal value specified. Some of the problems
(1, 3, 4, and 5) are expressed in terms of a general parameter—P , L, A, and
L again—rather than specific numerical values. If this gives you trouble, try
doing the problem using the specific parameter value given at the end of the
problem for computer verification. Use other specific values as needed until
you can do the problem in terms of the general parameter, which should
behave exactly like any of the specific values you tried.

1. Show that the rectangle of perimeter P whose area is a maximum is a
square. Use a graphing utility to check your answer for the special case when
P=100 feet.

2. An open rectangular box is to be made from a piece of cardboard 8 inches
wide and 15 inches long by cutting a square from each corner and bending up
the sides. Find the dimensions of the box of largest volume. Use a graphing
utility to check your answer.

3. One side of an open field is bounded by a straight river. A farmer has L
feet of fencing. How should the farmer proportion a rectangular plot along
the river in order to enclose as great an area as possible? Use a graphing
utility to check your answer for the special case when L = 100 feet.

4. An open storage bin with a square base and vertical sides is to be con-
structed from A square feet of wood. Determine the dimensions of the bin if
its volume is to be a maximum. (Neglect the thickness of the wood and any
waste in construction.) Use a graphing utility to check your answer for the
special case when A=100 square feet.

5. A roman window is shaped like a rectangle surmounted by a semicircle.
If the perimeter of the window is L feet, what are the dimensions of the
window of maximum area? Use a graphing utility to check your answer for
the special case when L = 100 feet.

6. Suppose the roman window of problem 5 has clear glass in its rectangular
part and colored glass in its semicircular part. If the colored glass transmits
only half as much light per square foot as the clear glass does, what are the
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dimensions of the window that transmits the most light? Use a graphing
utility to check your answer for the special case when L = 100 feet.

7. A cylindrical oil can with radius r inches and height h inches is made
with a steel top and bottom and cardboard sides. The steel costs 3 cents
per square inch, the cardboard costs 1 cent per square inch, and rolling
the crimp around the top and bottom edges costs 1/2 cent per linear inch.
(Both crimps are done at the same time, so only count the contribution of
one circumference.)

a) Express the cost C of the can as a function of r and h.

b) Find the dimensions of the cheapest can holding 100 cubic inches of
oil. (You’ll need to solve a cubic equation to find the critical point. Use a
graphing utility or an estimation procedure to approximate the critical point
to 3 decimal places.)

5.5 Newton’s Method

Finding Critical Points

When we solve optimization problems for functions given by formulas, we
begin by calculating the derivative and using the derivative formula to find
critical points. Almost always the derivative is defined for all elements of
the domain, and we find the critical points by determining the roots of the
equation obtained by setting the derivative equal to zero.

Finding the roots of this equation often requires an estimation procedure.
For example, consider the function

f(x) = x4 + x3 + x2 + x + 1.

The derivative of f is

f ′(x) = 4x3 + 3x2 + 2x + 1,

which is certainly defined for all x.
In order to use a graphing utility to find the roots of f ′(x) = 0, we need

to choose an interval that will contain the roots we seek. Since f ′(0) = 1 > 0 Solving f ′(x) = 0

and f ′(−1) = −2 < 0, we know f ′ has at least one root on [−1, 0]. (Why is
this?) But might there be other roots outside this interval?
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It is easy to see that f ′(x) is positive for all x > 0, so there are no roots
to the right of [−1, 0]. What about x < −1? Rewriting the derivative as

f ′(x) = (2x + 1)(2x2 + 1) + x2

lets us see that f ′(x) is negative for all x < −1 (check this for yourself), so
there are no roots to the left of [−1, 0] either.

Examining the graph of y = 4x3 + 3x2 + 2x + 1 on [−1, 0], we see that
it crosses the x-axis exactly once, so there is a unique critical point. Pro-
gressively shrinking the interval, we find that, to eight decimal places, this
critical point is

c = −.60582958 . . . .

Notice that it in this method it requires roughly the same amount of work
to get each additional digit in the answer.

There is, however, another approximation procedure we can use, called
Newton’s method. This has wide applicability and usually converges very
rapidly to solutions—additional digits are much easier to get than in theA good algorithm is

a convenient tool method we just looked at. It also has the virtue of being algorithmic, so
that we can write a single computer program which can then be used for any
root-finding problem we may encounter without a great deal of thought and
decision-making. Newton’s method is also an interesting application of both
local linearity and successive approximation, two important themes of this
course.

Local Linearity and the Tangent Line

Let’s give the derivative function the new name g to emphasize that we now
want to consider it as a function in its own right, out of the context of theThe root is an

x-intercept of the
graph

function f from which it was derived. Look at the following graph of the
function

y = g(x) = 4x3 + 3x2 + 2x + 1 .

We are seeking the number r such that g(r) = 0. The root r is the x-
coordinate of the point where the graph crosses the x-axis.

The basic plan of attack in Newton’s method is to replace the graph of
y = g(x) by a straight line that looks reasonably like the graph near the root
r.Then, the x-intercept of that line will be a reasonably good estimate for r.
The graph below includes such a line.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

5.5. NEWTON’S METHOD 321

y

xr

1

2

3

−3

−2

−1

−1

y

xr

1

2

3

−3

−2

−1

−1

(−1, −2)

The function g is locally linear at x = −1, and we have drawn an extension
of the local linear approximation of g at this point. This line is called the The tangent line

extends the local linear
approximation

tangent line to the graph of y = g(x) at x = −1, by analogy to the
tangent line to a circle. To find the x-intercept of the tangent line, we must
know its equation. Clearly the line passes through the point of tangency
(−1, g(−1)) = (−1,−2). What is its slope? It is the same as the slope of the
local linear approximation at (−1, g(−1)), namely

g′(−1) = 12(−1)2 + 6(−1) + 2 = 8.

Thus the equation of the tangent line is The equation of
the tangent line

y + 2 = 8(x + 1).

To find the x-intercept of this line, we must set y equal to zero and solve
for x: 0 + 2 = 8(x + 1) gives us x = −0.75. Of course, this x-intercept is Finding the x-intercept

of the tangent linenot equal to r, but it’s a better approximation than, say, –1. To get an even
better approximation, we repeat this process, starting with the line tangent
to the graph of g at x = −0.75 instead of at x = −1.

y

xr−1

(−1, −2)

(−.75, −.5)
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The slope of this new tangent line is g′(−0.75) = 4.25, and it passes
through (−0.75,−0.5), so its equation is

y + 0.5 = 4.25(x + 0.75).

Setting y = 0 and solving for x gives a new x-intercept whose value is equal
to −0.6323529, closer still to r.

It seems reasonable to repeat the process yet again, using the tangent
line at x = −0.6323529. Let’s first introduce some notation to keep track of
our computations. Call the original point of tangency x0, so x0 = −1. LetSuccessive

approximations get
closer to the root r

x1 be the x-intercept of the tangent line at x = x0. Draw the tangent line at
x = x1, and call its x-intercept x2. Continuing in this way, we get a sequence
of points x0, x1, x2, x3, . . . which appear to approach nearer and nearer to r.
That is, they appear to approach r as their limit.

The Algorithm

This process of using one number to determine the next number in the se-
quence is the heart of Newton’s method—it is an iterative method. Moreover,
it turns out to be quite simple to calculate each new estimate in terms of the
previous one. To see how this works, let’s compute x1 in terms of x0. We
know x1 is the x-intercept of the line tangent to the graph of g at (x0, g(x0)).
The slope of this line is g′(x0), so

The general equation
of the tangent line y − g(x0) = g′(x0)(x − x0)

is the equation of the tangent line. Since this line crosses the x-axis at
the point (x1, 0), we set x = x1 and y = 0 in the equation to obtain

0 − g(x0) = g′(x0)(x1 − x0).

Now it is easy to solve for x1:

g′(x0)(x1 − x0) = −g(x0)

x1 − x0 =
−g(x0)

g′(x0)

x1 = x0 −
g(x0)

g′(x0)
.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

5.5. NEWTON’S METHOD 323

In the same way we get

x2 = x1 −
g(x1)

g′(x1)
, x3 = x2 −

g(x2)

g′(x2)
,

and so on.
To summarize, suppose that x0 is given some value START. Then New-

ton’s method is the computation of the sequence of numbers determined by

x0 = START

xn+1 = xn − g(xn)

g′(xn)
, n = 0, 1, 2, 3, . . .

As we have seen many times, the sequence

x1, x2, x3, . . . , xn, . . .

is a list of numbers to which we can always add a new term—by iterating
our method yet again. For most functions, if we begin with an appropriate The limit of

the successive
approximations

is the root

starting value of x0, there is another number r that is the limit of this list of
numbers, in the sense that the difference between xn and r becomes as small
as we wish as n increases without bound,

r = lim
n→∞

xn.

The numbers x1, x2, x3, . . . , xn, . . . constitute a sequence of successive approx-
imations for the root r of the equation g(x) = 0. We can write a computer
program to carry out this algorithm for as many steps as we choose. The
program NEWTON does just that for g(x) = 4x3 + 3x2 + 2x + 1.

Program: NEWTON
Newton’s method for solving g(x) = 4x3 + 3x2 + 2x + 1 = 0

start = -1

numberofsteps = 8

x = start

FOR n = 0 to numberofsteps

print n, x

g = 4 * x^3 + 3 * x^2 + 2 * x + 1

gprime = 12 * x^2 + 6 * x + 2

x = x - g/gprime

NEXT n
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If we program a computer using this algorithm with START = –1, then
we get

x0 = −1.00000000000

x1 = −0.75000000000

x2 = −0.63235294118

x3 = −0.60687911790

x4 = −0.60583128240

x5 = −0.60582958619

x6 = −0.60582958619

x7 = −0.60582958619

x8 = −0.60582958619.

Thus we have found the root of g(x) = 0—the critical point we were
looking for. In fact, after only 6 steps we could see that the value of the
critical point was specified to at least ten decimal places. Also at the sixth
step, we had the eight decimal places obtained with the use of the graphing
utility. In fact, it turns out that the number of decimal places fixed roughly
doubles with each round. In the above list, for instance, x2 fixed one decimal,
x3 fixed two decimals, x4 fixed four, x5 fixed ten (the eleventh digit of the
root is really an 8, which gets rounded to a 9 in x6 – x8.), and x6 would have
fixed at least twenty if we had printed them all out! Moreover, by changing
only three lines of the program—the first, sixth, and seventh—we can use
NEWTON for any other function. With the use of the program NEWTON,
we will see that in most cases we can obtain results more quickly and to a
higher degree of accuracy with Newton’s method than by using a graphing
utility, although it is still sometimes helpful to use a graphing utility to get
a reasonable starting value.

Examples

Example 1. Start with cosx = x. The solution(s) to this equation (if
any) will be the x-coordinates of any points of intersection of the graphs of
y = cos x and y = x. Sketch these two graphs and convince yourself that
there is one solution, between 0 and π/2. The equation cosx = x is not in the
form g(x) = 0, so rewrite it as cosx − x = 0. Now we can apply Newton’s
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method with g(x) = cos x − x. Try starting with x0 = 1. This gives the
iteration scheme

x0 = 1

xn+1 = xn − cos xn − xn

− sin xn − 1
, n = 0, 1, 2, . . .

The numbers we get are

x0 = 1.000000000

x1 = .750363868 . . .

x2 = .739112891 . . .

x3 = .739085133 . . .

x4 = .739085133 . . .

We have the solution to 9 decimal places in only four steps. Not only does
Newton’s method work, it works fast!

Example 2. Suppose we continue with the equation cosx = x, but this time
choose x0 = 0. What will we find? The numbers we get are

x0 = 0.000000000

x1 = 1.000000000

x2 = 0.750363868

There is no need to continue; we can see that we will again obtain r =
0.739085133 . . . as in Example 1. Look again at your sketch and see why you
might have predicted this result.

Example 3. Next, let’s find the roots of the polynomial x5 − 3x + 1. This
means solving the equation x5 − 3x + 1 = 0. We know the necessary deriva-
tive, so we’re ready to apply Newton’s method, except for one thing: which Finding the starting

value x0 can be hardstarting value x0 do we pick? This is the part of Newton’s method that leaves
us on our own.

Assuming that some graphing software is available, the best thing to do
is graph the function. But for most graphing utilities, we need to choose an
interval. How do we choose one which is sure to include all the roots of the
polynomial? The derivative 5x4 − 3 of this polynomial is simple enough that
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we can use it to get an idea of the shape of the graph of y = x5−3x+1 before
we turn to the computer. Clearly the derivative is zero only for x = ± 4

√

3/5,
and the derivative is positive except between these two values of x. In otherUsing the derivative

to find the shape
of the graph

words, we know the shape of the graph of y = g(x)—it is increasing, then
decreases for a bit, then increases from there on out. This still is not enough
information to tell us how many roots g has, though; its graph might lie in any
one of the following configurations and so have 1, 2, or 3 roots (there are two
other possibilities not shown—one has 2 roots and one has 1 root). We can

x

y

x

y

x

y

thus say that g(x) = 0 has at least one and at most three real roots. However,
if we further observe that g(−2) = −25, g(−1) = 3, g(0) = 1, g(1) = −1, and
g(2) = 27, we see that the graph of g must cross the x–axis at some value of
x between -2 and -1, between 0 and 1, and again between 1 and 2. Therefore
the right–hand sketch above must be the correct one.

Or we can almost as easily turn to a graphing utility. If we try the interval
[−5, 5], we see again that the graph crosses the x-axis in exactly three points.

y

x1 2−2 −1

y = x 5 − 3x + 1

One of the roots is between −2 and −1, one is between 0 and 1, and theFinding the root
between
−2 and −1

third is between 1 and 2. To find the first, we apply Newton’s method with
x0 = −2. Then we get

x0 = −2.000000000

x1 = −1.675324675 . . .

x2 = −1.478238029 . . .

x3 = −1.400445373 . . .

x4 = −1.389019863 . . .

x5 = −1.388792073 . . .

x6 = −1.388791984 . . .

x7 = −1.388791984 . . .

This took a few more steps than the other examples, but not a lot. Notice
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again that once there are any decimals fixed at all, the number of decimals
fixed roughly doubles in the next approximation. In the exercises you will
be asked to compute the other two roots.

Example 4. Let’s use Newton’s method to find the obvious solution r = 0
of x3 − 5x = 0. If we choose x0 sufficiently close to 0, Newton’s method
should work just fine. But what does “sufficiently close” mean? Suppose we
try x0 = 1. Then we get

x0 = 1

x1 = −1

x2 = 1

x3 = −1

x4 = 1

...

The xn’s oscillate endlessly, never getting close to 0. Going back to the geo- Newton’s method
can failmetric interpretation of Newton’s method, this oscillation can be explained

by the graph below.
y

x

y = x3 − 5x

x0 = 1
x1 = −1

Using more advanced methods, it is possible to get precise estimates for
how close x0 needs to be to r in order for Newton’s method to succeed. For
now, we’ll just have to rely on common sense and trial and error.

One important thing to note is the relation between algebra and Newton’s
method. Although we can now solve many more equations than we could
earlier, this doesn’t mean that we can abandon algebra. In fact, given a new
equation, you should first try to solve it algebraically, for exact solutions are
often better. Only when this fails should you look for approximate solutions
using Newton’s method. So don’t forget algebra—you’ll still need it!
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Exercises

1. The Babylonian algorithm. Show that the Babylonian algorithm of
chapter 2 is the same as Newton’s method applied to the equation x2−a = 0.

2. When Newton introduced his method, he did so with the example x3 −
2x − 5 = 0. Show that this equation has only one root, and find it.

This example appeared in 1669 in an unpublished manuscript of Newton’s (a published version
came later, in 1711). The interesting fact is that Newton’s method differs from the one presented
here: his scheme was more complicated, requiring a different formula to get each approximation.
In 1690, Joseph Raphson transformed Newton’s scheme into the one used above. Thus, “New-
ton’s method” is more properly called the “Newton–Raphson method”, and many modern texts
use this more accurate name.

3. Use Newton’s method to find a solution of x3 + 2x2 + 10x = 20 near the
point x = 1.

The approximate solution 1;22,7,42,33,4,40 of this equation appears in a book written in 1228
by Leonardo of Pisa (also known as Fibonacci). This number looks odd because it’s written in
sexagesimal notation: it translates into

1 +
22

60
+

7

602
+

42

603
+

33

604
+

4

605
+

40

606
.

This solution is accurate to 10 decimal places, which is not bad for 750 years ago. In the Middle
Ages, there was a lot of interest in solving equations. There were even contests, with a prize going
to the person who could solve the most. The quadratic formula, which expresses algebraically
the roots of any second degree equation, had been known for thousands of years, but there were
no general methods for finding roots of higher degree equations in the 13th century. We don’t
know how Leonardo found his solution—why give away your secrets to your competitors!

4. Use Newton’s method to find a solution of x3 + 3x2 = 5.

In 1530, Nicolo Tartaglia was challenged to solve this equation algebraically. Five years later, in
1535, he found the solution

x =
3

√

3 +
√

5

2
+

3

√

3 −
√

5

2
− 1 .

Initially, Tartaglia could solve only certain types of cubic equations, but this was enough to let
him win some famous contests with other mathematicians of the time. By 1541, he knew the
general solution, but he made the mistake of telling Geronimo Cardano. Cardano published the
solution in 1545 and the resulting formulas are called “Cardan’s Formulas”.
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The above solution of x3 + 3x2 = 5 is called a solution by radicals
because it is obtained by extracting various roots or radicals. Similarly,
some time before 1545, Luigi Ferrari showed that any fourth degree equation
can be solved by radicals. This led to an intense interest in the fifth degree
equation. To see what happens in this case, read the next problem.

5. In Example 3, we saw that one root of x5 − 3x + 1 was –1.39887919. . . .
Use Newton’s method to find the other two roots.

In 1826, Niels Henrik Abel proved that the general polynomial of degree 5 or greater cannot be
solved by radicals. Using the work of Evariste Galois (done around 1830, but not understood
until many years later), it can be shown that the roots of the equation x5 − 3x + 1 = 0 cannot
be expressed by any combination of radicals. Thus algebra can’t solve this equation—some kind
of successive approximation technique is unavoidable!

6. One of the more surprising applications of Newton’s method is to com-
pute reciprocals. To make things more concrete, we will compute 1/3.4567 .
Note that this number is the root of the equation 1/x = 3.4567.

a) Show that the formula of Newton’s method gives us

xn+1 = 2xn − 3.4567x2
n.

b) Using x0 = .5 and the formula from (a), compute 1/3.4567 to a high
degree of accuracy.

c) Try starting with x0 = 1. What happens? Explain graphically what goes
wrong.

This method for computing reciprocals is important because it involves
only multiplication and subtraction. Since a/b = a · (1/b), this implies that
division can likewise be built from multiplication and subtraction. Thus,
when designing a computer, the division routine doesn’t need to be built
from scratch—the designer can use the method illustrated here. There are
some computers that do division this way.

7. In this problem we will determine the maximum value of the function

f(x) =
x + 1

x4 + 1
.

a) Graph f(x) and convince yourself that the maximum value occurs some-
where around x = .5. Of course, the exact location is where the slope of the
graph is zero, i.e., where f ′(x) = 0. So we need to solve this equation.
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b) Compute f ′(x).

c) Since the answer to (b) is a fraction, it vanishes when its numerator
does. Setting the numerator equal to 0 gives a fourth degree equation. Use
Newton’s method to find a solution near x = .5 .

d) Compute the maximum value of f(x).

8. Consider the hyperbola y = 1/x and the circle x2 − 4x + y2 + 3 = 0.

a) By graphing the circle and the hyperbola, convince yourself that there
are two points of intersection.

b) By substituting y = 1/x into the equation of the circle, obtain a fourth
degree equation satisfied by the x–coordinate of the points of intersection.

c) Solve the equation from (b) by Newton’s method, and then determine the
points of intersection.

9. Sometimes Newton’s method doesn’t work so nicely. For example, con-
sider the equation sin x = 0.

a) Compute x1 using Newton’s method for each of the four starting values
x0 = 1.55, 1.56, 1.57 and 1.58.

b) The answers you get are wildly different. Using the basic formula

xn+1 = xn − g(xn)

g′(xn)

explain why.

The epidemic runs its course

We return to the epidemiology example we have studied since chapter 1. Re-
call that our S-I-R model keeps track of three subgroups of the population:
the susceptible, the infected, and the recovered. One of the interesting fea-
tures of the model is that the larger the initial susceptible population, the
more rapidly the epidemic runs its course. We observe this by choosing fixed
values of R0 = R(0) and I0 = I(0) and looking at graphs of S(t) versus t for
various values of S0 = S(0).
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We see in each case that for sufficiently large t the graph of S levels off,
approaching a value we’ll call S∞:

S∞ = lim
t→∞

S(t).

What we mean by the epidemic “running its course” is that S(t) reaches
this limit value. We can see from the graphs that the value of S0 affects the
number S∞ of individuals who escape the disease entirely. It turns out that
we can actually find the value of S∞ if we know the values of S0, I0, and the
parameters a and b.

Recall that a is the transmission coefficient, and b is the recovery coeffi-
cient for the disease. The differential equations of the S-I-R model are

S ′ = −aSI,

I ′ = aSI − bI,

R′ = bI.

10. Use the differentiation rules together with these differential equations
to show that

(I + S − (b/a) · ln S)′ = 0.

11. Explain why the result of problem 10 means that I + S − (b/a) · ln S
has the same value—call it C—for every value of t.
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12. Look at the graphs of the solutions I(t) for various values of S(0) below.

I

t

In every case:
R(0) = 0
I(0) = 100
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n
S(0) = 45000

S(0) = 40000

S(0) = 35000

S(0) = 30000

S(0) = 25000
S(0) = 20000

S(0) = 15000
S(0) = 10000

S(0) = 5000

Write limt→∞ I(t) = I∞ . What is the value of I∞ for all values of S(0)?

13. Use the results of problems 11 and 12 to explain why

S∞ − b

a
ln(S∞) = I0 + S0 −

b

a
ln(S0).

This equation determines S∞ implicitly as a function of I0 and S0. For
particular values of I0 and S0 (and of the parameters), you can use Newton’s
method to find S∞.

14. Use the values

a = .00001 (person-days)−1

b = .08 day−1

I0 = 100 persons

S0 = 35, 000 persons

Writing x instead of S∞ gives

x − 8000 ln(x) = −48, 605.

Apply Newton’s method to find x = S∞. Judging from the graph for S0 =
35000, it looks like a reasonable first estimate for S∞ might be 100.
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15. Using the same values of a, b, and I0 as in problem 14, determine the
value of S∞ for each of the following initial population sizes:

a) S0 = 45, 000.

b) S0 = 25, 000.

c) S0 = 5, 000.

5.6 Chapter Summary

The Main Ideas

• Formulas for derivatives can be calculated for functions given by
formulas using the definition of the derivative as the limit of difference
quotients

lim
∆x→0

f(x + ∆x) − f(x)

∆x
.

• Each particular difference quotient is an approximation to the deriva-
tive. Successive approximations, for smaller and smaller ∆x, approach
the derivative as a limit. The formula for the derivative gives its exact
value.

• Formulas for partial derivatives are obtained using the formulas for
derivatives of functions of a single variable by simply treating all vari-
ables other than the one of interest as if they were constants.

• Optimization problems occur in many different contexts. For in-
stance, we seek to maximize benefits, minimize energy, and minimize
error.

• The sign of the derivative indicates where a graph rises and where it
falls.

• Functions which are continuous on a finite closed interval have
global extremes.

• For a function continuous on an interval, its local extremes occur
at critical points—points where the derivative equals zero or fails to
exist—or at endpoints.
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• Local linearity permits us to replace the graph of a function y = g(x)
by its tangent line at a point near a root of g(x) = 0, and then the
x-intercept of the tangent line is a better approximation to the root.
Successive approximations, obtained by iterating this procedure, yield
Newton’s method for solving the equation g(x) = 0.

Expectations

• You should be able to differentiate a function given by a formula.

• You should be able to use differentiation formulas to calculate partial
derivatives.

• In most cases, you should be able to determine from a graph of a
function on an interval whether that function is continuous and/or
differentiable on that interval.

• You should be able to find critical points for a function of one or
several variables given by a formula.

• You should be able to use the formula for the derivative of a function
of a single variable to find local and global extremes.

• You should be able to use Newton’s method to solve an equation of
the form g(x) = 0.

Chapter Exercises

Prices, demand and profit

Suppose the demand D (in units sold) for a particular product is determined
by its price p (in dollars), D = f(p). It is reasonable to assume that when
the price is low, the demand will be high, but as the price rises, the demand
will fall. In other words, we assume that the slope of the demand function is
negative. If the manufacturing cost for each unit of the product is c dollars,
then the profit per unit at price p is p − c. Finally the total profit T gained
at the unit price p will be the number of units sold at the price p (that is,
the demand D(p)) multiplied by the profit per unit p − c.

T = g(p) = D(p) units × (p − c)
dollars

unit
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In this series of problems we will determine the effect of the demand function
and of the unit manufacturing cost on the maximum total profit.

1. Suppose the demand function is linear

D = f(p) = 1000 − 500p units,

and the unit manufacturing cost is .20, so the total profit is

T = g(p) = (1000 − 500p)(p − .20) dollars.

Find the “best” price – that is, find the price that yields the maximum total
profit.

2. Suppose the demand function is the same as in problem 1, but the unit
manufacturing cost rises to .30. What is the “best” price now? How much
of the rise in the unit manufacturing cost is passed on to the consumer if the
manufacturer charges this best price?

3. Suppose the demand function for a particular product is D(p) = 2000−
500p, and that the unit manufacturing cost is .30. What price should the
manufacturer charge to maximize her profit? Suppose the unit manufacturing
cost rises to .50. What price should she charge to maximize her profit now?
How much of the rise in the unit manufacturing cost should she pass on to
the consumer?

4. If the demand function for a product is D(p) = 1500 − 100p, compare
the “best” price for unit manufacturing costs of .30 and .50. How much of
the rise in cost should the manufacturer pass on to the consumer?

5. As you may have noticed, problems 2–4 illustrate an interesting phe-
nomenon. In each case, exactly half of the rise in the unit manufacturing
cost should be passed on to the consumer. Is this a coincidence?

a) Consider the most general case of a linear demand function

D = f(p) = a − mp.

and unit cost c. What is the “best” price? Is exactly half the unit manufac-
turing cost passed on to the consumer? Explain your answer.
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b) Now consider a non-linear demand function

D = f(p) =
1000

1 + p2
.

Find the “best” price for unit costs
i) .50 dollar per unit;
ii) 1.00 dollar per unit;
iii) 1.50 dollars per unit.

How much of the price increase is passed on to the consumer in cases (ii)
and (iii)?
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Chapter 6

The Integral

There are many contexts—work, energy, area, volume, distance travelled, and
profit and loss are just a few—where the quantity in which we are interested
is a product of known quantities. For example, the electrical energy needed
to burn three 100 watt light bulbs for ∆t hours is 300 · ∆t watt-hours. In
this example, though, the calculation becomes more complicated if lights are
turned off and on during the time interval ∆t. We face the same complication
in any context in which one of the factors in a product varies. To describe
such a product we will introduce the integral.

As you will see, the integral itself can be viewed as a variable quantity.
By analyzing the rate at which that quantity changes, we will find that every
integral can be expressed as the solution to a particular differential equation.
We will thus be able to use all our tools for solving differential equations to
determine integrals.

6.1 Measuring Work

Human Work

Let’s measure the work done by the staff of an office that processes catalog Processing
catalog ordersorders. Suppose a typical worker in the office can process 10 orders an hour.

Then we would expect 6 people to process 60 orders an hour; in two hours,
they could process 120 orders.

10
orders per hour

person
× 6 persons × 2 hours = 120 orders.

337



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

338 CHAPTER 6. THE INTEGRAL

Notice that a staff of 4 people working 3 hours could process the same number
of orders:

10
orders per hour

person
× 4 persons × 3 hours = 120 orders.

It is natural to say that 6 persons working two hours do the same amount
of work as 4 persons working three hours. This suggests that we use theHuman work is

measured as a product product
number of workers × elapsed time

to measure human work. In these terms, it takes 12 “person-hours” of
human work to process 120 orders.

Another name that has been used in the past for this unit of work is
the “man-hour.” If the task is large, work can even be measured in “man-
months” or “man-years.” The term we will use most of the time is “staff-
hour.”

Measuring the work in terms of person-hours or staff-hours may seem a
little strange at first – after all, a typical manager of our catalog order office
would be most interested in the number of orders processed; that is, the
production of the office. Notice, however, that we can re-phrase the rate
at which orders are processed as 10 orders per staff-hour. This is sometimesProductivity rate

called the productivity rate. The productivity rate allows us to translate
human work into production:

production = productivity rate × human work

120 orders = 10
orders

staff-hour
× 12 staff-hours.

As this equation shows, production varies linearly with work and the produc-
tivity rate serves as multiplier (see our discussion of the multiplier on pages
31–33).

If we modify the productivity ratein a suitable way, we can use this equa-
tion for other kinds of jobs. For example, we can use it to predict how muchMowing lawns

mowing a lawn mowing crew will do. Suppose the productivity rate is .7 acres
per staff-hour. Then we expect that a staff of S working for H hours can
mow

.7
acres

staff-hour
× SH staff-hours = .7 SH acres

of lawn altogether.
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Production is measured differently in different jobs—as orders processed, Staff-hours provides a
common measure of

work in different jobs
or acres mowed, or houses painted. However, in all these jobs human work
is measured in the same way, as staff-hours, which gives us a common unit
that can be translated from one job to another.

A staff of S working steadily for H hours does SH staff-hours of work.
Suppose, though, the staffing level S is not constant, as in the graph below. Non-constant staffing

Can we still find the total amount of work done?
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The basic formula works only when the staffing level is constant. But staffing
is constant over certain time intervals. Thus, to find the total amount of work
done, we should simply use the basic formula on each of those intervals, and The work done

is a sum

of products
then add up the individual contributions. These calculations are done in the
following table. The total work is 42.5 staff-hours. So if the productivity
rate is 10 orders per staff-hour, 425 orders can be processed.

2 staff ×1.5 hours = 3.0 staff-hours

5 ×5.5 = 27.5

3 ×4.0 = 12.0

total = 42.5 staff-hours

Accumulated work

The last calculation tells us how much work got done over an entire day.
What can we tell an office manager who wants to know how work is pro-
gressing during the day?

At the beginning of the day, only two people are working, so after the
first T hours (where 0 ≤ T ≤ 1.5)

work done up to time T = 2 staff × T hours = 2 T staff-hours.
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Even before we consider what happens after 1.5 hours, this expression calls
our attention to the fact that accumulated work is a function—let’s denote
it W (T ). According to the formula, for the first 1.5 hours W (T ) is a linear
function whose multiplier is

W ′ = 2
staff-hours

hour
.

This multiplier is the rate at which work is being accumulated. It is alsoWork accumulates

at a rate equal to
the number of staff

the slope of the graph of W (T ) over the interval 0 ≤ T ≤ 1.5. With this
insight, we can determine the rest of the graph of W (T ).

What must W (T ) look like on the next time interval 1.5 ≤ T ≤ 7? Here
5 members of staff are working, so work is accumulating at the rate of 5
staff-hours per hour. Therefore, on this interval the graph of W is a straight
line segment whose slope is 5 staff-hours per hour. On the third interval, the
graph is another straight line segment whose slope is 3 staff-hours per hour.
The complete graph of W (T ) is shown below.

As the graphs show, the slope of the accumulated work function W (T ) isS is the derivative
of W , so . . . the height of the staffing function S(T ). In other words, S is the derivative

of W :
W ′(T ) = S(T ).
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Notice that the units for W ′ and for S are compatible: the units for W ′ are
“staff-hours per hour”, which we can think of as “staff”, the units for S.

We can describe the relation between S and W another way. At the
moment, we have explained S in terms of W . However, since we started with
S, it is really more appropriate to reverse the roles, and explain W in terms
of S. Chapter 4.5 gives us the language to do this: W is an antiderivative . . . W is an

antiderivative of Sof S. In other words, y = W (T ) is a solution to the differential equation

dy

dT
= S(T ).

As we find accumulation functions in other contexts, this relation will give
us crucial information.

Before leaving this example we note some special features of S and W .
The staffing function S is said to be piecewise constant, or a step func- The derivative of a

piecewise linear
function

tion. The graphs illustrate the general fact that the derivative of a piecewise
linear function (W , in this case) is piecewise constant.

Summary

The example of human work illustrates the key ideas we will meet, again
and again, in different contexts in this chapter. Essentially, we have two
functions W (t) and S(t) and two different ways of expressing the relation
between them: On the one hand,

W (t) is an accumulation function for S(t),

while on the other hand,

S(t) is the derivative of W (t).

Exploring the far-reaching implications of functions connected by such a two-
fold relationship will occupy the rest of this chapter.
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Electrical Energy

Just as humans do work, so does electricity. A power company charges
customers for the work done by the electricity it supplies, and it measures
that work in a way that is strictly analogous to the way we measure human
work. The work done by electricity is usually referred to as (electrical)
energy.

For example, suppose we illuminate two light bulbs—one rated at 100
watts, the other at 60 watts. It will take the same amount of electrical
energy to burn the 100-watt bulb for 3 hours as it will to burn the 60-watt
bulb for 5 hours. Both will use 300 watt-hours of electricity. The powerThe analogy between

electrical energy and
human work

of the light bulb—measured in watts—is analogous to the number of staff
working (and, in fact, workers have sometimes been called manpower). The
time the bulb burns is analogous to the time the staff work. Finally, the
product

energy = power × elapsed time

for electricity is analogous to the product

work = number of staff × elapsed time

for human effort.
Electric power is measured in watts, in kilowatts (= 1,000 watts), and in

megawatts (= 1,000,000 watts). Electric energy is measured in watt-hours,
in kilowatt-hours (abbreviated ‘kwh’) and in megawatt-hours (abbreviated
‘mwh’). Since an individual electrical appliance has a power demand of
about one kilowatt, kwh are suitable units to use for describing the energy
consumption of a house, while mwh are more natural for a whole town.

Suppose the power demand of a town over a 24 hour period is described
by the following graph:
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Since this graph decribes power, its vertical height over any point t on the Power is analogous to
staffing leveltime axis tells us the total wattage of the light bulbs, dishwashers, computers,

etc. that are turned on in the town at that instant. This demand fluctuates
between 30 and 90 megawatts, roughly. The problem is to determine the
total amount of energy used in a day—how many megawatt-hours are there
in this graph? Although the equation

energy = power × elapsed time,

gives the basic relation between energy and power, we can’t use it directly
because the power demand isn’t constant.

The staffing function S(t) we considered earlier wasn’t constant, either,
but we were still able to compute staff-hours because S(t) was piecewise con-
stant. This suggests that we should replace the power graph by a piecewise A piecewise constant

approximationconstant graph that approximates it. Here is one such approximation:
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As you can see, the step function has five steps, so our approximation to
the total energy consumption of the town will be a sum of five individual
products:

energy ≈ 28.5 × 6 + 47 × 3.5 + · · · + 57 × 3 = 1447 mwh.

This value is only an estimate, though. How can we get a better estimate?
The answer is clear: start with a step function that approximates the power
graph more closely. In principle, we can get as good an approximation as Better estimates

we might desire this way. We are limited only by the precision of the power
graph itself. As our approximation to the power graph improves, so does the
accuracy of the calculation that estimates energy consumption.
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In summary, we determine the energy consumption of the town by a
sequence of successive approximations. The steps in the sequence are listed
in the box below.

1. Approximate the power demand by a step function.
2. Estimate energy consumption from this approximation.
3. Improve the energy estimate by choosing a new step

function that follows power demand more closely.

Accumulated energy consumption

Energy is being consumed steadily over the entire day; can we determine
how much energy has been used through the first T hours of the day? We’llEnergy accumulation

denote this quantity E(T ) and call it the energy accumulation function.
For example, we already have the estimate E(24) = 1447 mwh; can we
estimate E(3) or E(17.6)?

Once again, the earlier example of human effort can guide us. We saw
that work accumulates at a rate equal to the number of staff present:

W ′(T ) = S(T ).

Since S(T ) was piecewise constant, this rate equation allowed us to determine
W (T ) as a piecewise linear function.

We claim that there is an analogous relation between accumulated energy
consumption and power demand—namely

E ′(T ) = p(T ).

Unlike S(T ), the function p(T ) is not piecewise constant. Therefore, the
argument we used to show that W ′(T ) = S(T ) will not work here. We need
another argument.

To explain why the differential equation E ′(T ) = p(T ) should be true, we
will start by analyzingEstimating E′(T )

E ′(T ) ≈ ∆E

∆T
=

E(T + ∆T ) − E(T )

∆T
.

Assume we have made ∆T so small that, to the level of precision we require,
the approximation ∆E/∆T agrees with E ′(T ). The numerator ∆E is, by
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definition, the total energy used up to time T + ∆T , minus the total energy
used up to time T . This is just the energy used during the time interval ∆T
that runs from time T to time T + ∆T :

∆E = energy used between times T and T + ∆T .

Since the elapsed time ∆T is small, the power demand should be nearly
constant, so we can get a good estimate for energy consumption from the
basic equation

energy used = power × elapsed time.

In particular, if we represent the power by p(T ), which is the power demand
at the beginning of the time period from T to T + ∆T , then we have

∆E ≈ p(T ) · ∆T.

Using this value in our approximation for the derivative E ′(T ), we get

E ′(T ) ≈ ∆E

∆T
≈ p(T ) · ∆T

∆T
= p(T ).

That is, E ′(T ) ≈ p(T ), and the approximation becomes more and more exact
as the time interval ∆T shrinks to 0. Thus,

E ′(T ) = lim
∆T→0

∆E

∆T
= p(T ).

Here is another way to arrive at the same conclusion. Our starting point A second way
to see that E′ = pis the basic formula

∆E ≈ p(T ) · ∆T,

which holds over a small time interval ∆T . This formula tells us how E
responds to small changes in T . But that is exactly what the microscope
equation tells us:

∆E ≈ E ′(T ) · ∆T.

Since these equations give the same information, their multipliers must be
the same:

p(T ) = E ′(T ).

In words, the differential equation E ′ = p says that power is the rate at
which energy is consumed. In purely mathematical terms:
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The energy accumulation function y = E(t)

is a solution to the differential equation dy/dt = p(t).

In fact, y = E(t) is the solution to the initial value problem

dy

dt
= p(t) y(0) = 0.

We can use all the methods described in chapter 4.5 to solve this problem.
The relation we have explored between power and energy can be found

in an analogous form in many other contexts, as we will see in the next
two sections. In section 4 we will turn back to accumulation functions and
investigate them as solutions to differential equations. Then, in chapter 11,
we will look at some special methods for solving the particular differential
equations that arise in accumulation problems.

Exercises

Human work

1. House-painting is a job that can be done by several people working si-
multaneously, so we can measure the amount of work done in “staff-hours.”
Consider a house-painting business run by some students. Because of class
schedules, different numbers of students will be painting at different times
of the day. Let S(T ) be the number of staff present at time T , measured in
hours from 8 am, and suppose that during an 8-hour work day, we have

S(T ) =







3, 0 ≤ T < 2,

2, 2 ≤ T < 4.5,

4, 4.5 ≤ T ≤ 8.

a) Draw the graph of the step function defined here, and compute the total
number of staff hours.

b) Draw the graph that shows how staff-hours accumulate on this job. This
is the graph of the accumulated work function W (T ). (Compare the
graphs of staff and staff-hours on page 340.)

c) Determine the derivative W ′(T ). Is W ′(T ) = S(T )?
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2. Suppose that there is a house-painting job to be done, and by past ex-
perience the students know that four of them could finish it in 6 hours. But
for the first 3.5 hours, only two students can show up, and after that, five
will be available.

a) How long will the whole job take? [Answer: 6.9 hours.]

b) Draw a graph of the staffing function for this problem. Mark on the
graph the time that the job is finished.

c) Draw the graph of the accumulated work function W (T ).

d) Determine the derivative W ′(T ). Is W ′(T ) = S(T )?

Average staffing. Suppose a job can be done in three hours when 6 people
work the first hour and 9 work during the last two hours. Then the job takes
24 staff-hours of work, and the average staffing is

average staffing =
24 staff-hours

3 hours
= 8 staff.

This means that a constant staffing level of 8 persons can accomplish the
job in the same time that the given variable staffing level did. Note that the
average staffing level (8 persons) is not the average of the two numbers 9 and
6!

3. What is the average staffing of the jobs considered in exercises 1 and 2,
above?

4. a) Draw the graph that shows how work would accumulate in the job
described in exercise 1 if the work-force was kept at the average staffing level
instead of the varying level described in the exercise. Compare this graph to
the graph you drew in exercise 1 b.

b) What is the derivative W ′(T ) of the work accumulation function whose
graph you drew in part (a)?

5. What is the average staffing for the job described by the graph on
page 339?

Electrical energy

6. On Monday evening, a 1500 watt space heater is left on from 7 until 11
pm. How many kilowatt-hours of electricity does it consume?



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

348 CHAPTER 6. THE INTEGRAL

7. a) That same heater also has settings for 500 and 1000 watts. Suppose
that on Tuesday we put it on the 1000 watt setting from 6 to 8 pm, then
switch to 1500 watts from 8 till 11 pm, and then on the 500 watt setting
through the night until 8 am, Wednesday. How much energy is consumed (in
kwh)?

b) Sketch the graphs of power demand p(T ) and accumulated energy con-
sumption E(T ) for the space heater from Tuesday evening to Wednesday
morning. Determine whether E ′(T ) = p(T ) in this case.

c) The average power demand of the space heater is defined by:

average power demand =
energy consumption

elapsed time
.

If energy consumption is measured in kilowatt-hours, and time in hours, then
we can measure average power demand in kilowatts—the same as power
itself. (Notice the similarity with average staffing.) What is the average
power demand from Tuesday evening to Wednesday morning? If the heater
could be set at this average power level, how would the energy consumption
compare to the actual energy consumption you determined in part (a)?

8. The graphs on pages 342 and 343 describe the power demand of a town
over a 24-hour period. Give an estimate of the average power demand of the
town during that period. Explain what you did to produce your estimate.
[Answer: 60.29 megawatts is one estimate.]

Work as force × distance

The effort it takes to move an object is also called work. Since it takes twice
as much effort to move the object twice as far, or to move another object
that is twice as heavy, we can see that the work done in moving an object
is proportional to both the force applied and to the distance moved. The
simplest way to express this fact is to define

work = force × distance.

For example, to lift a weight of 20 pounds straight up it takes 20 pounds of
force. If the vertical distance is 3 feet then

20 pounds × 3 feet = 60 foot-pounds
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of work is done. Thus, once again the quantity we are interested in has the
form of a product. The foot-pound is one of the standard units for measuring
work.

9. Suppose a tractor pulls a loaded wagon over a road whose steepness
varies. If the first 150 feet of road are relatively level and the tractor has to
exert only 200 pounds of force while the next 400 feet are inclined and the
tractor has to exert 550 pounds of force, how much work does the tractor do
altogether?

10. A motor on a large ship is lifting a 2000 pound anchor that is already
out of the water at the end of a 30 foot chain. The chain weighs 40 pounds
per foot. As the motor lifts the anchor, the part of the chain that is hanging
gets shorter and shorter, thereby reducing the weight the motor must lift.

a) What is the combined weight of anchor and hanging chain when the
anchor has been lifted x feet above its initial position?

b) Divide the 30-foot distance that the anchor must move into 3 equal in-
tervals of 10 feet each. Estimate how much work the motor does lifting the
anchor and chain over each 10-foot interval by multiplying the combined
weight at the bottom of the interval by the 10-foot height. What is your es-
timate for the total work done by the motor in raising the anchor and chain
30 feet?

c) Repeat all the steps of part (b), but this time use 30 equal intervals of
1 foot each. Is your new estimate of the work done larger or smaller than
your estimate in part (b)? Which estimate is likely to be more accurate? On
what do you base your judgment?

d) If you ignore the weight of the chain entirely, what is your estimate of
the work done? How much extra work do you therefore estimate the motor
must do to raise the heavy chain along with the anchor?



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

350 CHAPTER 6. THE INTEGRAL

6.2 Riemann Sums

In the last section we estimated energy consumption in a town by replacing
the power function p(t) by a step function. Let’s pause to describe that
process in somewhat more general terms that we can adapt to other contexts.
The power graph, the approximating step function, and the energy estimate
are shown below.

hours

time

30

60

90

power

m
eg

aw
at

ts

t1 t2 t3 t4 t5

28.5
47

75
88

57

∆ t1 ∆ t2 ∆ t3 ∆ t4 ∆ t5
6 3.5 5.5 6 3

energy ≈ 28.5 × 6 + 47 × 3.5 + · · ·+ 57 × 3 = 1447 mwh.

The height of the first step is 28.5 megawatts. This is the actual power
level at the time t1 indicated on the graph. That is, p(t1) = 28.5 megawatts.
We found a power level of 28.5 megawatts by sampling the power functionSampling the

power function at the time t1. The height of the first step could have been different if we
had sampled the power function at a different time. In general, if we sample
the power function p(t) at the time t1 in the interval ∆t1, then we would
estimate the energy used during that time to be

energy ≈ p(t1) · ∆t1 mwh.

Notice that t1 is not in the middle, or at either end, of the first interval.
It is simply a time when the power demand is representative of what’s hap-
pening over the entire interval. Furthermore, t1 is not even unique; there is
another sampling time (near t = 5 hours) when the power level is again 28.5
megawatts.

We can describe what happens in the other time intervals the same way.
If we sample the k-th interval at the point tk, then the height of the k-th
power step will be p(tk) and our estimate for the energy used during that
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time will be
energy ≈ p(tk) · ∆tk mwh.

We now have a general way to construct an approximation for the power A procedure for
approximating power
level and energy use

function and an estimate for the energy consumed over a 24-hour period. It
involves these steps.

1. Choose any number n of subintervals, and let them have arbitrary
positive widths ∆t1, ∆t2, . . . , ∆tn, subject only to the condition

∆t1 + · · · + ∆tn = 24 hours.

2. Sample the k-th subinterval at any point tk, and let p(tk) represent the
power level over this subinterval.

3. Estimate the energy used over the 24 hours by the sum

energy ≈ p(t1) · ∆t1 + p(t2) · ∆t2 + · · ·+ p(tn) · ∆tn mwh.

The expression on the right is called a Riemann sum for the power function
p(t) on the interval 0 ≤ t ≤ 24 hours.

The work of Bernhard Riemann (1826–1866) has had a profound influence on contemporary
mathematicians and physicists. His revolutionary ideas about the geometry of space, for example,
are the basis for Einstein’s theory of general relativity.

The enormous range of choices in this process means there are innu-
merable ways to construct a Riemann sum for p(t). However, we are not
really interested in arbitrary Riemanns sums. On the contrary, we want to Choices that lead

to good estimatesbuild Riemann sums that will give us good estimates for energy consump-
tion. Therefore, we will choose each subinterval ∆tk so small that the power
demand over that subinterval differs only very little from the sampled value
p(tk). A Riemann sum constructed with these choices will then differ only
very little from the total energy used during the 24-hour time interval.

Essentially, we use a Riemann sum to resolve a dilemma. We know the
basic formula

energy = power × time

works when power is constant, but in general power isn’t constant—that’s
the dilemma. We resolve the dilemma by using instead a sum of terms of The dilemma

the form power × time . With this sum we get an estimate for the energy.
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In this section we will explore some other problems that present the same
dilemma. In each case we will start with a basic formula that involves a
product of two constant factors, and we will need to adapt the formula to
the situation where one of the factors varies. The solution will be to construct
a Riemann sum of such products, producing an estimate for the quantity we
were after in the first place. As we work through each of these problems, you
should pause to compare it to the problem of energy consumption.

Calculating Distance Travelled

It is easy to tell how far a car has travelled by reading its odometer. The
problem is more complicated for a ship, particularly a sailing ship in the days
before electronic navigation was common. The crew always had instrumentsEstimating velocity

and distance that could measure—or at least estimate—the velocity of the ship at any
time. Then, during any time interval in which the ship’s velocity is constant,
the distance travelled is given by the familiar formula

distance = velocity × elapsed time.

If the velocity is not constant, then this formula does not work. The
remedy is to break up the long time period into several short ones. Suppose
their lengths are ∆t1, ∆t2, . . . , ∆tn. By assumption, the velocity is a function
of time t; let’s denote it v(t). At some time tk during each time period ∆tkSampling the

velocity function measure the velocity: vk = v(tk). Then the Riemann sum

v(t1) · ∆t1 + v(t2) · ∆t2 + · · ·+ v(tn) · ∆tn

is an estimate for the total distance travelled.
For example, suppose the velocity is measured five times during a 15 hour

trip—once every three hours—as shown in the table below. Then the basic
formula

distance = velocity × elapsed time.

gives us an estimate for the distance travelled during each three-hour period,
and the sum of these distances is an estimate of the total distance travelled
during the fifteen hours. These calculations appear in the right-hand column
of the table. (Note that the first measurement is used to calculate the distance
travelled between hours 0 and 3, while the last measurement, taken 12 hours
after the start, is used to calculate the distance travelled between hours 12
and 15.)
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sampling elapsed
time time velocity distance travelled

(hours) (hours) (miles/hour) (miles)

0
3
6
9

12

3
3
3
3
3

1.4
5.25
4.3
4.6
5.0

3 × 1.4 = 4.20
3 × 5.25 = 15.75
3 × 4.3 = 12.90
3 × 4.6 = 13.80
3 × 5.0 = 15.00

61.65

Thus we estimate the ship has travelled 61.65 miles during the fifteen hours. The estimated distance
is a Riemann sum for
the velocity function

The number 61.65, obtained by adding the numbers in the right-most column,
is a Riemann sum for the velocity function.

Consider the specific choices that we made to construct this Riemann
sum:

∆t1 = ∆t2 = ∆t3 = ∆t4 = ∆t5 = 3

t1 = 0, t2 = 3, t3 = 6, t4 = 9, t5 = 12.

These choices differ from the choices we made in the energy example in
two notable ways. First, all the subintervals here are the same size. This Intervals and sampling

times are chosen in
a systematic way

is because it is natural to take velocity readings at regular time intervals.
By contrast, in the energy example the subintervals were of different widths.
Those widths were chosen in order to make a piecewise constont function that
followed the power demand graph closely. Second, all the sampling times lie
at the beginning of the subintervals in which they appear. Again, this is
natural and convenient for velocity measurements. In the energy example,
the sampling times were chosen with an eye to the power graph. Even though
we can make arbitrary choices in constructing a Riemann sum, we will do it
systematically whenever possible. This means choosing subintervals of equal
size and sampling points at the “same” place within each interval.

Let’s turn back to our estimate for the total distance. Since the velocity
of the ship could have fluctuated significantly during each of the three-hour
periods we used, our estimate is rather rough. To improve the estimate we Improving the

distance estimatecould measure the velocity more frequently—for example, every 15 minutes.
If we did, the Riemann sum would have 60 terms (four distances per hour
for 15 hours). The individual terms in the sum would all be much smaller,
though, because they would be estimates for the distance travelled in 15
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minutes instead of in 3 hours. For instance, the first of the 60 terms would
be

1.4
miles

hour
× .25 hours = .35 miles.

Of course it may not make practical sense to do such a precise calculation.
Other factors, such as water currents or the inaccuracy of the velocity mea-
surements themselves, may keep us from getting a good estimate for the
distance. Essentially, the Riemann sum is only a model for the distance
covered by a ship.

Calculating Areas

The area of a rectangle is just the product of its
length and its width. How can we measure the
area of a region that has an irregular boundary,
like the one at the left? We would like to use the
basic formula

area = length × width.

However, since the region doesn’t have straight
sides, there is nothing we can call a “length” or a
“width” to work with.

We can begin to deal with this problem by
breaking up the region into smaller regions that
do have straight sides—with, at most, only one
curved side. This can be done many different
ways. The lower figure shows one possibility. The
sum of the areas of all the little regions will be
the area we are looking for. Although we haven’t
yet solved the original problem, we have at least
reduced it to another problem that looks simpler
and may be easier to solve. Let’s now work on the
reduced problem for the shaded region.
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Here is the shaded region, turned so that it sits
flat on one of its straight sides. We would like to
calculate its area using the formula

width × height,

but this formula applies only to rectangles. We
can, however, approximate the region by a col-
lection of rectangles, as shown at the right. The
formula does apply to the individual rectangles
and the sum of their areas will approximate the
area of the whole region.

To get the area of a rectangle, we must measure
its width and height. Their heights vary with the
height of the curved top of the shaded region. To
describe that height in a systematic way, we have
placed the shaded region in a coordinate plane so
that it sits on the x-axis. The other two straight
sides lie on the vertical lines x = a and x = b.

a x b x

y

f(x)

The curved side defines the graph of a function y = f(x). Therefore, at
each point x, the vertical height from the axis to the curve is f(x). By
introducing a coordinate plane we gain access to mathematical tools—such
as the language of functions—to describe the various areas.

The k-th rectangle has been singled out on the left, below. We let ∆xk Calculating the areas
of the rectanglesdenote the width of its base. By sampling the function f at a properly

chosen point xk in the base, we get the height f(xk) of the rectangle. Its
area is therefore f(xk) · ∆xk. If we do the same thing for all n rectangles
shown on the right, we can write their total area as

f(x1) · ∆x1 + f(x2) · ∆x2 + · · ·+ f(xn) · ∆xn.

a b x

y

f(xk)

xk

∆xk

a b x

y
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Notice that our estimate for the area has the form of a Riemann sumThe area estimate is
a Riemann sum for the height function f(x) over the interval a ≤ x ≤ b. To get a better

estimate, we should use narrower rectangles, and more of them. In other
words, we should construct another Riemann sum in which the number of
terms, n, is larger and the width ∆xk of every subinterval is smaller. Putting
it yet another way, we should sample the height more often.

Consider what happens if we apply this procedure to a region whose area
we know already. The semicircle of radius r = 1 has an area of πr2/2 =
π/2 = 1.5707963 . . . . The semicircle is the graph of the function

f(x) =
√

1 − x2,

which lies over the interval −1 ≤ x ≤ 1. To get the figure on the left, we
sampled the height f(x) at 20 evenly spaced points, starting with x = −1.
In the better approximation on the right, we increased the number of sample
points to 50. The values of the shaded areas were calculated with the program
RIEMANN, which we will develop later in this section. Note that with 50
rectangles the Riemann sum is within .005 of π/2, the exact value of the
area.

x

y

-1 1

shaded area = 1.552259

x

y

-1 1

shaded area = 1.566098

Calculating Lengths

It is to be expected that products—and ultimately, Riemann sums—will be
involved in calculating areas. It is more surprising to find that we can use
them to calculate lengths, too. In fact, when we are working in a coordinate
plane, using a product to describe the length of a straight line is even quite
natural.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

6.2. RIEMANN SUMS 357

To see how this can happen, consider a line segment in the x, y-plane The length of
a straight linethat has a known slope m. If we also know the horizontal separation between

the two ends, we can find the length of the seg-
ment. Suppose the horizontal separation is ∆x and
the vertical separation ∆y. Then the length of the
segment is √

∆x2 + ∆y2
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by the Pythagorean theorem (see page 90). Since ∆y = m · ∆x, we can
rewrite this as √

∆x2 + (m · ∆x)2 = ∆x ·
√

1 + m2.

In other words, if a line has slope m and it is ∆x units wide, then its length
is the product √

1 + m2 · ∆x.

Suppose the line is curved, instead of straight. Can we describe its length The length of
a curved linethe same way? We’ll assume that the curve is the graph y = g(x). The

complication is that the slope m = g′(x) now varies with x.
If g′(x) doesn’t vary too much over an interval of
length ∆x, then the curve is nearly straight. Pick
a point x∗ in that interval and sample the slope
g′(x∗) there; we expect the length of the curve to
be approximately

√

1 + (g′(x∗))2 · ∆x.
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As the figure shows, this is the exact length of the straight line segment that
lies over the same interval ∆x and is tangent to the curve at the point x = x∗.

If the slope g′(x) varies appreciably over the interval, we should subdivide
the interval into small pieces ∆x1, ∆x2, . . . , ∆xn, over which the curve is
nearly straight. Then, if we sample the slope at the point xk in the k-th
subinterval, the sum

√

1 + (g′(x1))2 · ∆x1 + · · · +
√

1 + (g′(xn))2 · ∆xn

will give us an estimate for the total length of the curve.
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Once again, we find an expression that has the form of a Riemann sum.The length of a curve
is estimated by
a Riemann sum

There is, however, a new ingredient worth noting. The estimate is a Riemann
sum not for the original function g(x) but for another function

f(x) =
√

1 + (g′(x))2

that we constructed using g. The important thing is that the length is
estimated by a Riemann sum for some function.

x

y

π
4-segment length = 3.8199

x

y

π
20-segment length = 3.8202

The figure above shows two estimates for the length of the graph of y =
sin x between 0 and π. In each case, we used subintervals of equal length and
we sampled the slope at the left end of each subinterval. As you can see, the
four segments approximate the graph of y = sin x only very roughly. When
we increase the number of segments to 20, on the right, the approximation
to the shape of the graph becomes quite good. Notice that the graph itself
is not shown on the right; only the 20 segments.

To calculate the two lengths, we constructed Riemann sums for the func-
tion f(x) =

√
1 + cos2 x. We used the fact that the derivative of g(x) = sin x

is g′(x) = cos x, and we did the calculations using the program RIEMANN.
By using the program with still smaller subintervals you can show that

the exact length = 3.820197789 . . . .

Thus, the 20-segment estimate is already accurate to four decimal places.

We have already constructed estimates for the length of a curve, in chapter 2 (pages 89–91).
Those estimates were sums, too, but they were not Riemann sums. The terms had the form√

∆x2 + ∆y2; they were not products of the form
√

1 + m2 · ∆x. The sums in chapter 2 may
seem more straightforward. However, we are developing Riemann sums as a powerful general
tool for dealing with many different questions. By expressing lengths as Riemann sums we gain
access to that power.
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Definition

The Riemann sums that appear in the calculation of power, distance, and
length are instances of a general mathematical object that can be constructed
for any function whatsoever. We pause now to describe that construction
apart from any particular context. In what follows it will be convenient for
us to write an interval of the form a ≤ x ≤ b more compactly as [a, b]. Notation: [a, b]

Definition. Suppose the function f(x) is defined for x in the
interval [a, b]. Then a Riemann sum for f(x) on [a, b] is an
expression of the form

f(x1) · ∆x1 + f(x2) · ∆x2 + · · ·+ f(xn) · ∆xn.

The interval [a, b] has been divided into n subintervals whose
lengths are ∆x1, . . . , ∆xn, respectively, and for each k from 1
to n, xk is some point in the k-th subinterval.

Notice that once the function and the interval have been specified, a Data for a
Riemann sumRiemann sum is determined by the following data:

• A decomposition of the original interval into subintervals (which de-
termines the lengths of the subintervals).

• A sampling point chosen from each subinterval (which determines a
value of the function on each subinterval).

A Riemann sum for f(x) is a sum of products of values of ∆x and values
of y = f(x). If x and y have units, then so does the Riemann sum; its Units

units are the units for x times the units for y. When a Riemann sum arises
in a particular context, the notation may look different from what appears
in the definition just given: the variable might not be x, and the function
might not be f(x). For example, the energy approximation we considered
at the beginning of the section is a Riemann sum for the power demand
function p(t) on [0, 24]. The length approximation for the graph y = sin x is
a Riemann sum for the function

√
1 + cos2 x on [0, π].

It is important to note that, from a mathematical point of view, a Rie- A Riemann sum
is just a numbermann sum is just a number. It’s the context that provides the meaning:

Riemann sums for a power demand that varies over time approximate total
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energy consumption; Riemann sums for a velocity that varies over time ap-
proximate total distance; and Riemann sums for a height that varies over
distance approximate total area.

To illustrate the generality of a Riemann sum, and to stress that it is
just a number arrived at through arbitrary choices, let’s work through an
example without a context. Consider the function

f(x) =
√

1 + x3 on [1, 3].

We will break up the full interval [1, 3] into three subintervals [1, 1.6], [1.6, 2.3]The data

and [2.3, 3]. Thus
∆x1 = .6 ∆x2 = ∆x3 = .7.

Next we’ll pick a point in each subinterval, say x1 = 1.3, x2 = 2 and x3 = 2.8.
Here is the data laid out on the x-axis.

-
-� -� -�

∆x1 = .6 ∆x2 = .7 ∆x2 = .7

1 1.6 2.3 3

r r r

1.3 2 2.8 x

With this data we get the following Riemann sum for
√

1 + x3 on [1, 3]:

f(x1) · ∆x1 + f(x2) · ∆x2 + f(x3) · ∆x3

=
√

1 + 1.33 × .6 +
√

1 + 23 × .7 +
√

1 + 2.83 × .7

= 6.5263866

In this case, the choice of the subintervals, as well as the choice of the point xk

in each subinterval, was haphazard. Different data would produce a different
value for the Riemann sum.

Keep in mind that an individual Riemann sum is not especially significant.
Ultimately, we are interested in seeing what happens when we recalculate
Riemann sums with smaller and smaller subintervals. For that reason, it is
helpful to do the calculations systematically.

Calculating a Riemann sum algorithmically. As we have seen with ourSystematic data

contextual problems, the data for a Riemann sum is not usually chosen in a
haphazard fashion. In fact, when dealing with functions given by formulas,
such as the function f(x) =

√
1 − x2 whose graph is a semicircle, it pays to

be systematic. We use subintervals of equal size and pick the “same” point
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from each subinterval (e.g., always pick the midpoint or always pick the left
endpoint). The benefit of systematic choices is that we can write down the
computations involved in a Riemann sum in a simple algorithmic form that
can be carried out on a computer.

Let’s illustrate how this strategy applies to the function
√

1 + x3 on [1, 3].
Since the whole interval is 3−1 = 2 units long, if we construct n subintervals
of equal length ∆x, then ∆x = 2/n. For every k = 1, . . . , n, we choose the
sampling point xk to be the left endpoint of the k-th subinterval. Here is a
picture of the data:

. . . -r r r r r r

-� -� -� -�∆x ∆x ∆x ∆x

3x1 x2 x3 xn

6 6 6 6
1 1 + ∆x 1 + 2∆x 1 + (n − 1)∆x

x

In this systematic approach, the space between one sampling point and the
next is ∆x, the same as the width of a subinterval. This puts the k-th
sampling point at x = 1 + (k − 1)∆x.

In the following table, we add up the terms in a Riemann sum S for
f(x) =

√
1 + x3 on the interval [1, 3]. We used n = 4 subintervals and

always sampled f at the left endpoint. Each row shows the following:

1. the current sampling point;

2. the value of f at that point;

3. the current term ∆S = f · ∆x in the sum;

4. the accumulated value of S.

left current current accumulated
endpoint

√
1 + x3 ∆S S

1
1.5
2
2.5

1.4142
2.0917
3
4.0774

.7071
1.0458
1.5
2.0387

.7071
1.7529
3.2529
5.2916

The Riemann sum S appears as the final value 5.2916 in the fourth column.

The program RIEMANN, below, will generate the last two columns in the
above table. The statement x = a on the sixth line determines the position
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of the first sampling point. Within the FOR–NEXT loop, the statement x

= x + deltax moves the sampling point to its next position.

Program: RIEMANN
Left endpoint Riemann sums

DEF fnf (x) = SQR(1 + x ^ 3)

a = 1

b = 3

numberofsteps = 4

deltax = (b - a) / numberofsteps

x = a

accumulation = 0

FOR k = 1 TO numberofsteps

deltaS = fnf(x) * deltax

accumulation = accumulation + deltaS

x = x + deltax

PRINT deltaS, accumulation

NEXT k

By modifying RIEMANN, you can calculate Riemann sums for other sam-
pling points and for other functions. For example, to sample at midpoints,
you must start at the midpoint of the first subinterval. Since the subinterval
is ∆x units wide, its midpoint is ∆x/2 units from the left endpoint, which is
x = a. Thus, to have the program generate midpoint sums, just change the
statement that “initializes” x (line 6) to x = a + deltax / 2.

Summation Notation

Because Riemann sums arise frequently and because they are unwieldy to
write out in full, we now introduce a method—called summation notation—
that allows us to write them more compactly. To see how it works, look first
at the sum

12 + 22 + 32 + · · ·+ 502.

Using summation notation, we can express this as

50∑

k=1

k2.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

6.2. RIEMANN SUMS 363

For a somewhat more abstract example, consider the sum

a1 + a2 + a3 + · · · + an,

which we can express as
n∑

k=1

ak.

We use the capital letter sigma
∑

from the Greek alphabet to denote a
sum. For this reason, summation notation is sometimes referred to as sigma
notation. You should regard

∑
as an instruction telling you to sum the Sigma notation

numbers of the indicated form as the index k runs through the integers,
starting at the integer displayed below the

∑
and ending at the integer

displayed above it. Notice that changing the index k to some other letter has
no effect on the sum. For example,

20∑

k=1

k3 =
20∑

j=1

j3,

since both expressions give the sum of the cubes of the first twenty posi-
tive integers. Other aspects of summation notation will be covered in the
exercises.

Summation notation allows us to write the Riemann sum

f(x1) · ∆x1 + · · · + f(xn) · ∆xn

more efficiently as
n∑

k=1

f(xk) · ∆xk.

Be sure not to get tied into one particular way of using these symbols. For
example, you should instantly recognize

m∑

i=1

∆ti g(ti)

as a Riemann sum. In what follows we will commonly use summation nota-
tion when working with Riemann sums. The important thing to remember
is that summation notation is only a “shorthand” to express a Riemann sum
in a more compact form.
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Exercises

Making approximations

1. Estimate the average velocity of the ship whose motion is described on
page 352. The voyage lasts 15 hours.

2. The aim of this question is to determine how much electrical energy was
consumed in a house over a 24-hour period, when the power demand p was
measured at different times to have these values:

time power
(24-hour clock) (watts)

1:30
5:00
8:00
9:30

11:00
15:00
18:30
20:00
22:30
23:00

275
240
730
300
150
225

1880
950
700
350

Notice that the time interval is from t = 0 hours to t = 24 hours, but the
power demand was not sampled at either of those times.

a) Set up an estimate for the energy consumption in the form of a Riemann
sum p(t1)∆t1 + · · · + p(tn)∆tn for the power function p(t). To do this, you
must identify explicitly the value of n, the sampling times tk, and the time
intervals ∆tk that you used in constructing your estimate. [Note: the sam-
pling times come from the table, but there is wide latitude in how you choose
the subintervals ∆tk.]

b) What is the estimated energy consumption, using your choice of data?
There is no single “correct” answer to this question. Your estimate depends
on the choices you made in setting up the Riemann sum.

c) Plot the data given in the table in part (a) on a (t, p)-coordinate plane.
Then draw on the same coordinate plane the step function that represents
your estimate of the power function p(t). The width of the k-th step should
be the time interval ∆tk that you specified in part (a); is it?
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d) Estimate the average power demand in the house during the 24-hour
period.

Waste production. A colony of living yeast cells in a vat of fermenting
grape juice produces waste products—mainly alcohol and carbon dioxide—
as it consumes the sugar in the grape juice. It is reasonable to expect that
another yeast colony, twice as large as this one, would produce twice as much
waste over the same time period. Moreover, since waste accumulates over
time, if we double the time period we would expect our colony to produce
twice as much waste.

These observations suggest that waste production is proportional to both
the size of the colony and the amount of time that passes. If P is the size
of the colony, in grams, and ∆t is a short time interval, then we can express
waste production W as a function of P and ∆t:

W = k · P · ∆t grams.

If ∆t is measured in hours, then the multiplier k has to be measured in units
of grams of waste per hour per gram of yeast.

The preceding formula is useful only over a time interval ∆t in which the
population size P does not vary significantly. If the time interval is large, and
the population size can be expressed as a function P (t) of the time t, then we
can estimate waste production by breaking up the whole time interval into
a succession of smaller intervals ∆t1, ∆t2, . . . , ∆tn and forming a Riemann
sum

k P (t1) ∆t1 + · · ·+ k P (tn) ∆tn ≈ W grams.

The time tk must lie within the time interval ∆tk, and P (tk) must be a good
approximation to the population size P (t) throughout that time interval.

3. Suppose the colony starts with 300 grams of yeast (i.e., at time t = 0
hours) and it grows exponentially according to the formula

P (t) = 300 e0.2 t .

If the waste production constant k is 0.1 grams per hour per gram of yeast,
estimate how much waste is produced in the first four hours. Use a Riemann
sum with four hour-long time intervals and measure the population size of
the yeast in the middle of each interval—that is, “on the half-hour.”
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Using RIEMANN

4. a) Calculate left endpoint Riemann sums for the function
√

1 + x3 on
the interval [1, 3] using 40, 400, 4000, and 40000 equally-spaced subintervals.
How many ddecimal points in this sequence have stabilized?

b) The left endpoint Riemann sums for
√

1 + x3 on the interval [1, 3] seem
to be approaching a limit as the number of subintervals increases without
bound. Give the numerical value of that limit, accurate to four decimal
places.

c) Calculate left endpoint Riemann sums for the function
√

1 + x3 on the
interval [3, 7]. Construct a sequence of Riemann sums using more and more
subintervals, until you can determine the limiting value of these sums, accu-
rate to three decimal places. What is that limit?

d) Calculate left endpoint Riemann sums for the function
√

1 + x3 on the
interval [1, 7] in order to determine the limiting value of the sums to three
decimal place accuracy. What is that value? How are the limiting values in
parts (b), (c), and (d) related? How are the corresponding intervals related?

5. Modify RIEMANN so it will calculate a Riemann sum by sampling the
given function at the midpoint of each subinterval, instead of the left end-
point. Describe exactly how you changed the program to do this.

6. a) Calculate midpoint Riemann sums for the function
√

1 + x3 on the
interval [1, 3] using 40, 400, 4000, and 40000 equally-spaced subintervals.
How many decimal points in this sequence have stabilized?

b) Roughly how many subintervals are needed to make the midpoint Rie-
mann sums for

√
1 + x3 on the interval [1, 3] stabilize out to the first four

digits? What is the stable value? Compare this to the limiting value you
found earlier for left endpoint Riemann sums. Is one value larger than the
other; could they be the same?

c) Comment on the relative “efficiency” of midpoint Riemann sums versus
left endpoint Riemann sums (at least for the function

√
1 + x3 on the interval

[1, 3]). To get the same level of accuracy, an efficient calculation will take
fewer steps than an inefficient one.

7. a) Modify RIEMANN to calculate right endpoint Riemann sums, and
use it to calculate right endpoint Riemann sums for the function

√
1 + x3 on
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the interval [1, 3] using 40, 400, 4000, and 40000 equally-spaced subintervals.
How many digits in this sequence have stabilized?

b) Comment on the efficiency of right endpoint Riemann sums as compared
to left endpoint and to midpoint Riemann sums—at least as far as the func-
tion

√
1 + x3 is concerned.

8. Calculate left endpoint Riemann sums for the function

f(x) =
√

1 − x2 on the interval [−1, 1].

Use 20 and 50 equally-spaced subintervals. Compare your values with the
estimates for the area of a semicircle given on page 356.

9. a) Calculate left endpoint Riemann sums for the function

f(x) =
√

1 + cos2 x on the interval [0, π].

Use 4 and 20 equally-spaced subintervals. Compare your values with the
estimates for the length of the graph of y = sin x between 0 and π, given on
page 358.

b) What is the limiting value of the Riemann sums, as the number of subin-
tervals becomes infinite? Find the limit to 11 decimal places accuracy.

10. Calculate left endpoint Riemann sums for the function

f(x) = cos(x2) on the interval [0, 4],

using 100, 1000, and 10000 equally-spaced subintervals.

[Answer: With 10000 equally-spaced intervals, the left endpoint Riemann
sum has the value .59485189.]

11. Calculate left endpoint Riemann sums for the function

f(x) =
cos x

1 + x2
on the interval [2, 3],

using 10, 100, and 1000 equally-spaced subintervals. The Riemann sums are
all negative; why? (A suggestion: sketch the graph of f . What does that tell
you about the signs of the terms in a Riemann sum for f?)
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12. a) Calculate midpoint Riemann sums for the function

H(z) = z3 on the interval [−2, 2],

using 10, 100, and 1000 equally-spaced subintervals. The Riemann sums are
all zero; why? (On some computers and calculators, you may find that there
will be a nonzero digit in the fourteenth or fifteenth decimal place – this is
due to “round-off error”.)

b) Repeat part (a) using left endpoint Riemann sums. Are the results still
zero? Can you explain the difference, if any, between these two results?

Volume as a Riemann sum

If you slice a rectangular parallelepiped (e.g., a brick or a shoebox) parallel
to a face, the area A of a cross-section does not vary. The same is true
for a cylinder (e.g., a can of spinach or a coin). For any solid that has a
constant cross-section (e.g., the object on the right, below), its volume is
just the product of its cross-sectional area with its thickness.

A

∆x

A

∆x

A

∆x

volume = area of cross-section × thickness = A · ∆x

Most solids don’t have such a regular shape. They are more like the one
shown below. If you take cross-sectional slices perpendicular to some fixed
line (which will become our x-axis), the slices will not generally have a regular
shape. They may be roughly oval, as shown below, but they will generally
vary in area. Suppose the area of the cross-section x inches along the axis
is A(x) square inches. Because A(x) varies with x, you cannot calculate
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the volume of this solid using the simple formula above. However, you can
estimate the volume as a Riemann sum for A.

x
x

A(x)

x

x1 x2
∆x1 ∆x2

The procedure should now be familiar to you. Subdivide the x-axis into
segments of length ∆x1, ∆x2, . . . , ∆xn inches, respectively. The solid piece
that lies over the first segment has a thickness of ∆x1 inches. If you slice
this piece at a point x1 inches along the x-axis, the area of the slice is A(x1)
square inches, and the volume of the piece is approximately A(x1) ·∆x1 cubic
inches. The second piece is ∆x2 inches thick. If you slice it x2 inches along
the x-axis, the slice has an area of A(x2) square inches, so the second piece
has an approximate volume of A(x2) · ∆x2 cubic inches. If you continue in
this way and add up the n volumes, you get an estimate for the total volume
that has the form of a Riemann sum for the area function A(x):

volume ≈ A(x1) ∆x1 + A(x2) ∆x2 + · · ·+ A(xn) ∆xn cubic inches.

One place where this approach can be used is in medical diagnosis. The
X-ray technique known as a CAT scan provides a sequence of precisely-spaced
cross-sectional views of a patient. From these views much information about
the state of the patient’s internal organs can be gained without invasive
surgery. In particular, the volume of a specific piece of tissue can be esti-
mated, as a Riemann sum, from the areas of individual slices and the spacing
between them. The next exercise gives an example.

13. A CAT scan of a human liver shows us X-ray “slices” spaced 2 centime-
ters apart. If the areas of the slices are 72, 145, 139, 127, 111, 89, 63, and 22
square centimeters, estimate the volume of the liver.

14. The volume of a sphere whose radius is r is exactly V = 4πr3/3.
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a) Using the formula, determine the volume of the sphere whose radius is 3.
Give the numerical value to four decimal places accuracy.

One way to get a sphere of radius 3 is to rotate the graph of the semi-circle

r(x) =
√

9 − x2 − 3 ≤ x ≤ 3

around the x-axis. Every cross-section perpendicular to the x-axis is a circle.
At the point x, the radius of the circle is r(x), and its area is

A = πr2 = π(r(x))2 = A(x).

You can thus get estimates for the volume of the sphere by constructing
Riemann sums for A(x) on the interval [−3, 3].

b) Calculate a sequence of estimates for the volume of the sphere that use
more and more slices, until the value of the estimate stabilizes out to four
decimal places. Does this value agree with the value given by the formula in
part (a)?

15. a) Rotate the graph of r(x) = .5 x, with 0 ≤ x ≤ 6 around the x-axis.
What shape do you get? Describe it precisely, and find its volume using an
appropriate geometric formula.

b) Calculate a sequence of estimates for the volume of the same object by
constructing Riemann sums for the area function A(x) = π(r(x))2. Continue
until your estimates stabilize out to four decimal places. What value do you
get?

Summation notation

16. Determine the numerical value of each of the following:

a)
10∑

k=1

k b)
5∑

k=1

k2 c)
4∑

j=0

2j + 1

[Answer:

5∑

k=1

k2 = 55.]

17. Write “the sum of the first five positive even integers” in summation
notation.
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18. Determine the numerical value of

a)
5∑

n=1

(
1

n
− 1

n + 1

)

b)
500∑

n=1

(
1

n
− 1

n + 1

)

19. Express the following sums using summation notation.

a) 12 + 22 + 32 + · · ·+ n2.

b) 21 + 22 + 23 + · · · + 2m.

c) f(s1)∆s + f(s2)∆s + · · · + f(s12)∆s.

d) y2
1 ∆y1 + y2

2 ∆y2 + · · ·+ y2
n ∆yn.

20. Express each of the following as a sum written out term-by-term. (There
is no need to calculate the numerical value, even when that can be done.)

a)
n−1∑

l=3

al b)
4∑

j=0

j + 1

j2 + 1
c)

5∑

k=1

H(xk) ∆xk.

21. Acquire experimental evidence for the claim

(
n∑

k=1

k

)2

=
n∑

k=1

k3

by determining the numerical values of both sides of the equation for n = 2,
3, 4, 5, and 6.

22. Let g(u) = 25 − u2 and suppose the interval [0, 2] has been divided
into 4 equal subintervals ∆u and uj is the left endpoint of the j-th interval.
Determine the numerical value of the Riemann sum

4∑

j=1

g(uj) ∆u .

Length and area

23. Using Riemann sums with equal subintervals, estimate the length of the
parabola y = x2 over the interval 0 ≤ x ≤ 1. Obtain a sequence of estimates
that stabilize to four decimal places. How many subintervals did you need?
(Compare your result here with the earlier result on page 96.)
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24. Using Riemann sums, obtain a sequence of estimates for the area under
each of the following curves. Continue until the first four decimal places
stabilize in your estimates.

a) y = x2 over [0, 1] b) y = x2 over [0, 3] c) y = x sin x over [0, π]

25. What is the area under the curve y = exp(−x2) over the interval [0, 1]?
Give an estimate that is accurate to four decimal places. Sketch the curve
and shade the area.

26. a) Estimate, to four decimal place accuracy, the length of the graph of
the natural logarithm function y = ln x over the interval [1, e].

b) Estimate, to four decimal place accuracy, the length of the graph of the
exponential function y = exp(x) over the interval [0, 1].

27. a) What is the length of the hyperbola y = 1/x over the interval [1, 4]?
Obtain an estimate that is accurate to four decimal places.

b) What is the area under the hyperbola over the same interval? Obtain an
estimate that is accurate to four decimal places.

28. The graph of y =
√

4 − x2 is a semicircle whose radius is 2. The cir-
cumference of the whole circle is 4π, so the length of the part of the circle in
the first quadrant is exactly π.

a) Using left endpoint Riemann sums, estimate the length of the graph y =√
4 − x2 over the interval [0, 2] in the first quadrant. How many subintervals

did you need in order to get an estimate that has the value 3.14159. . . ?

b) There is a technical problem that makes it impossible to use right end-
point Riemann sums. What is the problem?
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6.3 The Integral

Refining Riemann Sums

In the last section, we estimated the electrical energy a town consumed by
constructing a Riemann sum for the power demand function p(t). Because
we sampled the power function only five times in a 24-hour period, our es-
timate was fairly rough. We would get a better estimate by sampling more
frequently—that is, by constructing a Riemann sum with more terms and
shorter subintervals. The process of refining Riemann sums in this way leads
to the mathematical object called the integral.

To see what an integral is—and how it emerges from this process of
refining Riemann sums—let’s return to the function

√
1 + x3 on [1, 3]

we analyzed at the end of the last section. What happens when we refine Refining Riemann sums
with equal subintervalsRiemann sums for this function by using smaller subintervals? If we system-

atically choose n equal subintervals and evaluate
√

1 + x3 at the left endpoint
of each subinterval, then we can use the program RIEMANN (page 362) to
produce the values in the following table. For future reference we record the
size of the subinterval ∆x = 2/n as well.

Left endpoint Riemann sums for
√

1 + x3 on [1, 3]

n ∆x Riemann sum

100
1 000

10 000
100 000

.02

.002

.0002

.00002

6.191 236 2
6.226 082 6
6.229 571 7
6.229 920 6

The first four digits have stabilized, suggesting that these Riemann sums, at
least, approach the limit 6.229. . . .

It’s too soon to say that all the Riemann sums for
√

1 + x3 on the interval
[1, 3] approach this limit, though. There is such an enormous diversity of
choices at our disposal when we construct a Riemann sum. We haven’t seen
what happens, for instance, if we choose midpoints instead of left endpoints,
or if we choose subintervals that are not all of the same size. Let’s explore
the first possibility.
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To modify RIEMANN to choose midpoints, we need only change the lineMidpoints versus
left endpoints

x = a

that determines the position of the first sampling point to

x = a + deltax / 2.

With this modification, RIEMANN produces the following data.

Midpoint Riemann sums for
√

1 + x3 on [1, 3]

n ∆x Riemann sum

10
100

1 000
10 000

.2

.02

.002

.0002

6.227 476 5
6.229 934 5
6.229 959 1
6.229 959 4

This time, the first seven digits have stabilized, even though we used only
10,000 subintervals—ten times fewer than we needed to get four digits to
stabilize using left endpoints! This is further evidence that the Riemann
sums converge to a limit, and we can even specify the limit more precisely
as 6.229959. . . .

These tables also suggest that midpoints are more “efficient” than left endpoints in revealing the
limiting value of successive Riemann sums. This is indeed true. In Chapter 11, we will look into
this further.

We still have another possibility to consider: what happens if we choose
subintervals of different sizes—as we did in calculating the energy consump-
tion of a town? By allowing variable subintervals, we make the problem
messier to deal with, but it does not become conceptually more difficult. In
fact, we can still get all the information we really need in order to understand
what happens when we refine Riemann sums.

To see what form this information will take, look back at the two tables
for midpoints and left endpoints, and compare the values of the Riemann
sums that they report for the same size subinterval. When the subinterval
was fairly large, the values differed by a relatively large amount. For example,
when ∆x = .02 we got two sums (namely 6.2299345 and 6.1912362) that differ
by more than .038. As the subinterval got smaller, the difference between
the Riemann sums got smaller too. (When ∆x = .0002, the sums differ by
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less than .0004.) This is the general pattern. That is to say, for subintervals
with a given maximum size, the various Riemann sums that can be produced
will still differ from one another, but those sums will all lie within a certain
range that gets smaller as the size of the largest subinterval gets smaller.

The connection between the range of Riemann sums and the size of the Refining Riemann sums
with unequal

subintervals
largest subinterval is subtle and technically complex; this course will not ex-
plore it in detail. However, we can at least see what happens concretely to
Riemann sums for the function

√
1 + x3 over the interval [1, 3]. The follow-

ing table shows the smallest and largest possible Riemann sum that can be
produced when no subinterval is larger than the maximum size ∆xk given in
the first column.

maximum Riemann sums range difference
size of ∆xk from to between extremes

.02

.002

.000 2

.000 02

.000 002

6.113 690
6.218 328
6.228 796
6.229 843
6.229 948

6.346 328
6.241 592
6.231 122
6.230 076
6.229 971

.232 638

.023 264

.002 326

.000 233

.000 023

-
6.218328 6.2415926

6.2299. . .

p
p
p
p
p
p

p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

- �

-�

-� range when largest ∆xk ≤ .002

range when largest ∆xk ≤ .0002

range when largest ∆xk ≤ .00002

The range of Riemann sums for
√

1 + x3 on [1, 3]

This table provides the most compelling evidence that there is a single
number 6.2299. . . that all Riemann sums will be arbitrarily close to, if they
are constructed with sufficiently small subintervals ∆xk. This number is The integral

called the integral of
√

1 + x3 on the interval [1, 3], and we will express this
by writing

∫ 3

1

√
1 + x3 dx = 6.2299 . . . .

Each Riemann sum approximates this integral, and in general the approx-
imations get better as the size of the largest subinterval is made smaller.
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Moreover, as the subintervals get smaller, the location of the sampling points
matters less and less.

The unusual symbol
∫

that appears here reflects the historical origins of
the integral. We’ll have more to say about it after we consider the definition.

Definition

The purpose of the following definition is to give a name to the number to
which the Riemann sums for a function converge, when those sums do indeed
converge.

Definition. Suppose all the Riemann sums for a function f(x)
on an interval [a, b] get arbitrarily close to a single number when
the lengths ∆x1, . . . , ∆xn are made small enough. Then this
number is called the integral of f(x) on [a, b] and it is denoted

∫ b

a

f(x) dx.

The function f is called the integrand. The definition begins with a Sup-
pose . . . because there are functions whose Riemann sums don’t converge.
We’ll look at an example on page 378. However, that example is quite special.
All the functions that typically arise in context, and nearly all the functionsA typical function

has an integral we study in calculus, do have integrals. In particular, every continuous func-
tion has an integral, and so do many non-continuous functions—such as the
step functions with which we began this chapter. (Continuous functions are
discussed on pages 304–307).

Notice that the definition doesn’t speak about the choice of sampling
points. The condition that the Riemann sums be close to a single number
involves only the subintervals ∆x1, ∆x2, . . . , ∆xn. This is important; it says
once the subintervals are small enough, it doesn’t matter which sampling
points xk we choose—all of the Riemann sums will be close to the value of
the integral. (Of course, some will still be closer to the value of the integral
than others.)

The integral allows us to resolve the dilemma we stated at the beginning
of the chapter. Here is the dilemma: how can we describe the product of twoHow an integral

expresses a product quantities when one of them varies? Consider, for example, how we expressed
the energy consumption of a town over a 24-hour period. The basic relation
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energy = power × elapsed time

cannot be used directly, because power demand varies. Indirectly, though,
we can use the relation to build a Riemann sum for power demand p over
time. This gives us an approximation:

energy ≈
n∑

k=1

p(tk) ∆tk megawatt-hours.

As these sums are refined, two things happen. First, they converge to the
true level of energy consumption. Second, they converge to the integral—by
the definition of the integral. Thus, energy consumption is described exactly
by the integral

energy =

∫ 24

0

p(t) dt megawatt-hours

of the power demand p. In other words, energy is the integral of power over
time.

On page 352 we asked how far a ship would travel in 15 hours if we knew
its velocity was v(t) miles per hour at time t. We saw the distance could be
estimated by a Riemann sum for the v. Therefore, reasoning just as we did
for energy, we conclude that the exact distance is given by the integral

distance =

∫ 15

0

v(t) dt miles.

The energy integral has the same units as the Riemann sums that ap- The units for
an integralproximate it. Its units are the product of the megawatts used to measure p

and the hours used to measure dt (or t). The units for the distance integral
are the product of the miles per hour used to measure velocity and the hours
used to measure time. In general, the units for the integral

∫ b

a

f(x) dx

are the product of the units for f and the units for x.
Because the integral is approximated by its Riemann sums, we can use Why

∫
is used

to denote an integralsummation notation (introduced in the previous section) to write

∫ 3

1

√
1 + x3 dx ≈

n∑

k=1

√

1 + x3
k ∆xk.
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This expression helps reveal where the rather unusual-looking notation for
the integral comes from. In seventeenth century Europe (when calculus was
being created), the letter ‘s’ was written two ways: as ‘s’ and as ‘

∫
’. The

∫
that appears in the integral and the

∑
that appears in the Riemann sum

both serve as abbreviations for the word sum. While we think of the Riemann
sum as a sum of products of the form

√

1 + x3
k · ∆xk, in which the various

∆xk are small quantities, some of the early users of calculus thought of the
integral as a sum of products of the form

√
1 + x3 · dx, in which dx is an

“infinitesimally” small quantity.
Now we do not use infinitesimals or regard the integral as a sum directly.

On the contrary, for us the integral is a limit of Riemann sums as the subin-
terval lengths ∆xk all shrink to 0. In fact, we can express the integral directly
as a limit:

∫ b

a

f(x) dx = lim
∆xk→0

n∑

k=1

f(xk) ∆xk.

The process of calculating an integral is called integration. IntegrationIntegration
“puts together”
products of the form
f(x)∆x

means “putting together.” To see why this name is appropriate, notice that
we determine energy consumption over a long time interval by putting to-
gether a lot of energy computations p ·∆t over a succession of short periods.

A function that does not have an integral

Riemann sums converge to a single number for many functions—but not all.
For example, Riemann sums for

J(x) =

{
0 if x rational
1 if x is irrational

do not converge. Let’s see why.

A rational number is the quotient p/q of one integer p by another q. An irrational number is
one that is not such a quotient; for example,

√
2 is irrational. The values of J are continually

jumping between 0 and 1.

Suppose we construct a Riemann sum for J on the interval [0, 1] using theWhy Riemann sums for
J(x) do not converge subintervals ∆x1, ∆x2, . . . , ∆xn. Every subinterval contains both rational

and irrational numbers. Thus, we could choose all the sampling points to be
rational numbers r1, r2, . . . , rn. In that case,

J(r1) = J(r2) = · · · = J(rn) = 0,
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so the Riemann sum has the value

n∑

k=1

J(rk) ∆xk =
n∑

k=1

0 · ∆xk = 0.

But we could also choose all the sampling points to be irrational numbers s1,
s2, . . . , sn. In that case,

J(s1) = J(s2) = · · · = J(sn) = 1,

and the Riemann sum would have the value

n∑

k=1

J(sk) ∆xk =

n∑

k=1

1 · ∆xk =

n∑

k=1

∆xk = 1.

(For any subdivision ∆xk, ∆x1+∆x2+· · ·+∆xn = 1 because the subintervals
together form the interval [0, 1].) If some sampling points are rational and
others irrational, the value of the Riemann sum will lie somewhere between 0
and 1. Thus, the Riemann sums range from 0 to 1, no matter how small the
subintervals ∆xk are chosen. They cannot converge to any single number.

The function J shows us that not every function has an integral. The
definition of the integral (page 376) takes this into account. It doesn’t guar-
antee that an arbitrary function will have an integral. It simply says that
if the Riemann sums converge to a single number, then we can give that
number a name—the integral.

Can you imagine what the graph of y = J(x) would look like? It would consist of two horizontal
lines with gaps; in the upper line, the gaps would be at all the rational points, in the lower at
the irrational points. This is impossible to draw! Roughly speaking, any graph you can draw you
can integrate.

Visualizing the Integral

The eye plays an important role in our thinking. We visualize concepts
whenever we can. Given a function y = f(x), we visualize it as a graph in
the x, y-coordinate plane. We visualize the derivative of f as the slope of its
graph at any point. We can visualize the integral of f , too. We will view it
as the area under that graph. Let’s see why we can.

We have already made a connection between areas and Riemann sums,
in the last section. Our starting point was the basic formula
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area = height × width.

Since the height of the graph y = f(x) at any point x is just f(x), we were
tempted to say that

area = f(x) · (b − a).

Of course we couldn’t do this, because the height f(x) is variable. The
remedy was to slice up the interval [a, b] into small pieces ∆xk, and assemble
a collection of products f(xk) ∆xk:

n∑

k=1

f(xk) ∆xk = f(x1) ∆x1 + f(x2) ∆x2 + · · ·+ f(xn) ∆xn.

This is a Riemann sum. It represents the total area of a row of side-by-sideRiemann sums
converge to the
area . . .

rectangles whose tops approximate the graph of f . As the Riemann sums
are refined, the tops of the rectangles approach the shape of the graph, and
their areas approach the area under the graph. But the process of refining
Riemann sums leads to the integral, so the integral must be the area under. . . and to the integral

the graph.

a b x

y
y = f(x)

a b x

y
y = f(x)

shaded area =

n∑

k=1

f(xk)∆xk shaded area =

∫ b

a
f(x) dx

Every integral we have encountered can be visualized as the area under
a graph. For instance, since

energy use =

∫ 24

0

p(t) dt,

we can now say that the energy used by a town is just the area under its
power demand graph.
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Energy used is the area
under the power graph

0 6 12 18 24 hours

time
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Although we can always visualize an integral as an area, it may not The area interpretation
is not always helpful!be very enlightening in particular circumstances. For example, in the last

section (page 358) we estimated the length of the graph y = sin x from
x = 0 to x = π. Our estimates came from Riemann sums for the function
f(x) =

√
1 + cos2 x over the interval [0, π]. These Riemann sums converge

to the integral
∫ π

0

√
1 + cos2 x dx,

which we can now view as the area under the graph of
√

1 + cos2 x.

x

y

π x

y

π

√

1

2
y = sin x

y =
√

1 + cos2 x

length of graph = 3.82019. . . shaded area = 3.82019. . .

More generally, the length of y = g(x) will always equal the area under
y =

√

1 + (g′(x))2.

The integral of a negative function

Up to this point, we have been dealing with a function f(x) that is never
negative on the interval [a, b]: f(x) ≥ 0. Its graph therefore lies entirely
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above the x-axis. What happens if f(x) does take on negative values? We’ll
first consider an example.

x

y

y = x cosx

−3

−2

−1

1 2 3 4

The graph of f(x) = x cos x is shown above. On the interval [2, 3], it lies
entirely below the x-axis. As you can check,

∫ 3

2

x cos x dx = −1.969080.

The integral is negative, but areas are positive. Therefore, it seems we can’t
interpret this integral as an area. But there is more to the story. The shaded
region is 1 unit wide and varies in height from 1 to 3 units. If we say theThe integral is the

negative of the area average height is about 2 units, then the area is about 2 square units. Except
for the negative sign, our rough estimate for the area is almost exactly the
value of the integral.

In fact, the integral of a negative function is always the negative of the
area between its graph and the x-axis. To see why this is always true,
we’ll look first at the simplest possibility—a constant function. The integral

2 4

−2

−4

−6

−8

xy

y = f(x) = −7

of a constant function is just the product
of that constant value by the width of the
interval. For example, suppose f(x) = −7
on the interval [1, 3]. The region between
the graph and the x-axis is a rectangle whose
area is 7 × 2 = 14. However,

f(x) · ∆x = −7 × 2 = −14.

This is the negative of the area of the region.
Let’s turn now to an arbitrary function f(x) whose values vary but remainA function that takes

only negative values negative over the interval [a, b]. Each term in the Riemann sum on the left
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is the negative of one of the shaded rectangles. In the process of refinement,
the total area of the rectangles approaches the shaded area on the right. At
the same time, the Riemann sums approach the integral. Thus, the integral
must be the negative of the shaded area.

a b x
y

y = f (x)

a b x
y

y = f (x)

n∑

k=1

f(xk)∆xk = −(shaded area)
∫ b

a
f(x) dx = −(shaded area)

Functions with both positive and negative values

The final possibility to consider is that f(x) takes both positive and negative
values on the interval [a, b]. In that case its graph lies partly above the x-axis
and partly below. By considering these two parts separately we can see that

a b x

y

y = f (x)upper region

lower region

∫ b

a

f(x) dx = (area of upper region) − (area of lower region).

The graph of y = sin x on the interval [0, π] is the mirror image of the
graph on the interval [π, 2π]. The first half lies above the x-axis, the second
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half below. Since the upper and lower areas are equal, it follows that

∫ 2π

0

sin x dx = 0.

x

y
y = sin x

2π
π

Signed area

There is a way to simplify the geometric interpretation of an integral as an
area. It involves introducing the notion of signed area, by analogy with the
notion of signed length.

6
y

−2

0

2

c

6

?

length +2

length −2

Consider the two points 2 and −2 on the y-axis
at the left. Although the line that goes up from
0 to 2 has the same length as the line that goes
down from 0 to −2 we customarily attach a sign to
those lengths to take into account the direction of
the line. Specifically, we assign a positive length
to a line that goes up and a negative length to a
line that goes down. Thus the line from 0 to −2
has signed length −2.

To adapt this pattern to areas, just assign to any area that goes up from
the x-axis a positive value and to any area that goes down from the x-axis aA region below the

x-axis has negative
area

negative value. Then the signed area of a region that is partly above and
partly below the x-axis is just the sum of the areas of the parts—taking the
signs of the different parts into account.

Consider, for example, the graph of y = x
over the interval [−2, 3]. The upper region is a
triangle whose area is 4.5. The lower region is
another triangle; its area 2, and its signed area
is −2. Thus, the total signed area is +2.5, and
it follows that

∫ 3

−2

x dx = 2.5.

x

y

y =
 x

−2

3
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You should confirm that Riemann sums for f(x) = x over the interval [−2, 3]
converge to the value 2.5 (see exercise 13).

Now that we can describe the signed area of a region in the x, y-plane,
we have a simple and uniform way to visualize the integral of any function:

∫ b

a

f(x) dx = the signed area

between the graph of f(x) and the x-axis.

Error Bounds

A Riemann sum determines the value of an integral only approximately. For The error in
a Riemann sumexample,

∫ 3

1

√
1 + x3 dx = 6.229959 . . . ,

but a left endpoint Riemann sum with 100 equal subintervals ∆x gives

100∑

k=1

√
1 + x3 ∆x = 6.191236.

If we use this sum as an estimate for the value of the integral, we make an
error of

6.229959− 6.191236 = .038723.

By increasing the number of subintervals, we can reduce the size of the error.
For example, with 100,000 subintervals, the error is only .000038. (This
information comes from pages 373–375.) The fact that the first four digits
in the error are now 0 means, roughly speaking, that the first four digits in
the new estimate are correct.

In this example, we could measure the error in a Riemann sum because we Finding the error
without knowing
the exact value

knew the value of the integral. Usually, though, we don’t know the value of
the integral—that’s why we’re calculating Riemann sums! We will describe
here a method to decide how inaccurate a Riemann sum is without first
knowing the value of the integral. For example, suppose we estimate the
value of ∫ 1

0

e−x2

dx
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using a left endpoint Riemann sum with 1000 equal subintervals. The value
we get is .747140. Our method will tell us that this differs from the true
value of the integral by no more than .000633. So the method does not tell
us the exact size of the error. It says only that the error is not larger than
.000633. Such a number is called an error bound. The actual error—thatError bounds

is, the true difference between the value of the integral and the value of the
Riemann sum—may be a lot less than .000633. (That is indeed the case. In
the exercises you are asked to show that the actual error is about half this
number.)

We have two ways to indicate that .747140 is an estimate for the value of
the integral, with an error bound of .000633. One is to use a “plus-minus”
sign (±):

∫ 1

0

e−x2

dx = .747140± .000633.

Since .747140 − .000633 = .746507 and .747140 + .000633 = .747773, this is
the same as

.746507 ≤
∫ 1

0

e−x2

dx ≤ .747773.

The number .746507 is called a lower bound for the integral, and .747773Upper and
lower bounds is called an upper bound. Thus, the true value of the integral is .74. . . ,

and the third digit is either a 6 or a 7.
Our method will tell us even more. In this case, it will tell us that the

original Riemann sum is already larger than the integral. In other words, we
can drop the upper bound from .747773 to .747140:

.746507 ≤
∫ 1

0

e−x2

dx ≤ .747140.

The method

We want to get a bound on the difference between the integral of a function
and a Riemann sum for that function. By visualizing both the integral andVisualize the error

as an area the Riemann sum as areas, we can visualize their difference as an area, too.
We’ll assume that all subintervals in the Riemann sum have the same width
∆x. This will help keep the details simple. Thus

error =

∣
∣
∣
∣
∣

∫ b

a

f(x) dx −
n∑

k=1

f(xk) ∆x

∣
∣
∣
∣
∣
.
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(The absolute value |u − v| of the difference tells us how far apart u and v
are.)

We’ll also assume that the function f(x) is positive and increasing on an
interval [a, b]. We say f(x) is increasing if its graph rises as x goes from left
to right.

Let’s start with left endpoints for the Riemann sum. Because f(x) is
increasing, the rectangles lie entirely below the graph of the function:

a b x

y y = f (x)

∆x

f (b) − f (a)

f (b)

f (a)

The integral is the area under the graph, and the Riemann sum is the
area of the rectangles. Therefore, the error is the area of the shaded region
that lies above the rectangles and below the graph. This region consists of a
number of separate pieces that sit on top of the individual rectangles. Slide Slide the

little errors
into a stack

them to the right and stack them on top of one another, as shown in the
figure. They fit together inside a single rectangle of width ∆x and height
f(b) − f(a). Thus the error (which is the area of the shaded region) is no
greater than the area of this rectangle:

error ≤ ∆x (f(b) − f(a)) .

The number ∆x (f(b) − f(a)) is our error bound. It is clear from the
figure that this is not the exact value of the error. The error is smaller, but
it is difficult to say exactly how much smaller. Notice also that we need very
little information to find the error bound—just ∆x and the function values
f(a) and f(b). We do not need to know the exact value of the integral!

The error bound is proportional to ∆x. If we cut ∆x in half, that will cut The error bound is
proportional to ∆xthe error bound in half. If we make ∆x a tenth of what it had been, that will

make the error bound a tenth of what it had been. In the figure below, ∆x is
1/5-th its value in the previous figure. The rectangle on the right shows how
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much smaller the error bound has become as a result. It demonstrates how
Riemann sums converge as the size of the subinterval ∆x shrinks to zero.

a b x

y y = f (x)

∆x

f (b) − f (a)

f (b)

f (a)

Let’s go back to the original ∆x, but switch to right endpoints. Then theRight endpoints

tops of the rectangles lie above the graph. The error is the vertically hatched
region between the graph and the tops of the rectangles. Once again, we can
slide the little errors to the right and stack them on top of one anther.

a b x

y y = f (x)

∆x

f (b) − f (a)

f (b)

f (a)

They fit inside the same rectangle we had before. Thus, whether the Riemann
sum is constructed with left endpoints or right endpoints, we find the same
error bound:

error ≤ ∆x (f(b) − f(a)).

Because f(x) is increasing, the left endpoint Riemann sum is smaller than
the integral, while the right endpoint Riemann sum is larger. On a number
line, these three values are arranged as follows:

� -� -

� -
shaded area hatched area

∆x (f(b) − f(a))

∫ b

a

f(x) dx
left endpoint right endpoint
Riemann sum Riemann sum
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The distance from the left endpoint Riemann sum to the integral is repre-
sented by the shaded area, and the distance from the right endpoint by the
hatched area. Notice that these two areas exactly fill the rectangle that gives
us the error bound. Thus the distance between the two Riemann sums on
the number line is exactly ∆x (f(b) − f(a)), as shown.

Finally, suppose that the Riemann sum has arbitrary sampling points xk: Arbitrary
sampling points

n∑

k=1

f(xk) ∆x.

Since f is increasing on the interval [a, b], its values get larger as x goes from
left to right. Therefore, on the k-th subinterval,

f(left endpoint) ≤ f(xk) ≤ f(right endpoint).

In other words, the rectangle built over the left endpoint is the shortest, and
the one built over the right endpoint is the tallest. The one built over the
sampling point xk lies somewhere in between.

The areas of these three rectangles are arranged in the same order:

f(left endpoint) ∆x ≤ f(xk) ∆x ≤ f(right endpoint) ∆x.

If we add up these areas, we get Riemann sums. The Riemann sums are
arranged in the same order as their individual terms:

{
left endpoint
Riemann sum

}

≤
n∑

k=1

f(xk) ∆x ≤
{

right endpoint
Riemann sum

}

.

Thus, the left endpoint and the right endpoint Riemann sums are extremes:
every Riemann sum for f that uses a subinterval size of ∆x lies between
these two.

� -

all Riemann sums using ∆x lie in here
︷ ︸︸ ︷

∆x (f(b) − f(a))

∫ b

a

f(x) dx
left endpoint right endpoint
Riemann sum Riemann sum
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It follows that ∆x (f(b)−f(a)) is an error bound for all Riemann sums whose
subintervals are ∆x units wide.

If f(x) is a positive function but is decreasing on the interval [a, b], we getError bounds for a
decreasing function essentially the same result. Any Riemann sum for f that uses a subinterval

of size ∆x differs from the integral by no more than ∆x (f(a)− f(b)). When
f is decreasing, however, f(a) is larger than f(b), so we write the height
of the rectangle as f(a) − f(b). To avoid having to pay attention to this
distinction, we can use absolute values to describe the error bound:

error ≤ ∆x |f(b) − f(a)| .

Furthermore, when f is decreasing, the left endpoint Riemann sum is larger
than the integral, while the right endpoint Riemann sum is smaller. The
difference between the right and the left endpoint Riemann sums is still
∆x |f(b) − f(a)|.

a b x

y
y = f (x)

∆x

f (a) − f (b)

f (a)

f (b)

Up to this point, we have assumed f(x) was either always increasing, orMonotonic functions

else always decreasing, on the interval [a, b]. Such a function is said to be
monotonic. If f(x) is not monotonic, the process of getting an error bound
for Riemann sums is only slightly more complicated.

Here is how to get an error bound for the Riemann sums constructed for aError bounds for
non-monotonic
functions

non-monotonic function. First break up the interval [a, b] into smaller pieces
on which the function is monotonic.

a c b x

y

f (b)

f (a)

f (c)
y = f (x)
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In this figure, there are two such intervals: [a, c] and [c, b]. Suppose we The monotonic pieces

construct a Riemann sum for f by using rectangles of width ∆x1 on the first
interval, and ∆x2 on the second. Then the total error for this sum will be
no larger than the sum of the error bounds on the two intervals:

total error ≤ ∆x1 |f(c) − f(a)| + ∆x2 |f(b) − f(c)|.

By making ∆x1 and ∆x2 sufficiently small, we can make the error as small
as we wish.

This method can be applied to any non-monotonic function that can be
broken up into monotonic pieces. For other functions, more than two pieces
may be needed.

Using the method

Earlier we said that when we use a left endpoint Riemann sum with 1000 An example

equal subintervals to estimate the value of the integral

∫ 1

0

e−x2

dx,

the error is no larger than .000633. Let’s see how our method would lead to
this conclusion.

0 1

1

x

y

e−1

1 − e−1

y = e−x2

On the interval [0, 1], f(x) = e−x2

is a decreasing function. Furthermore,

f(0) = 1 f(1) = e−1 ≈ .3679.

If we divide [0, 1] into 1000 equal subintervals ∆x, then ∆x = 1/1000 = .001.
The error bound is therefore

.001 × |.3679 − 1| = .001 × .6321 = .0006321.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

392 CHAPTER 6. THE INTEGRAL

Any number larger than this one will also be an error bound. By “rounding
up,” we get .000633. This is slightly shorter to write, and it is the bound we
claimed earlier. An even shorter bound is .00064.

Furthermore, since f(x) = e−x2

is decreasing, any Riemann sum con-
structed with left endpoints is larger than the actual value of the integral.
Since the left endpoint Riemann sum with 1000 equal subdivisions has the
value .747140, upper and lower bounds for the integral are

.746507 = .747140 − .000633 ≤
∫ 1

0

e−x2

dx ≤ .747140.

Integration Rules

Just as there are rules that tell us how to find the derivative of various
combinations of functions, there are other rules that tell us how to find the
integral. Here are three that are exactly analogous to differentiation rules.

∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx +

∫ b

a

g(x) dx

∫ b

a

f(x) − g(x) dx =

∫ b

a

f(x) dx −
∫ b

a

g(x) dx

∫ b

a

c f(x) dx = c

∫ b

a

f(x) dx

Let’s see why the third rule is true. A Riemann sum for the integral onCompare
Riemann sums the left looks like

n∑

k=1

c f(xk) ∆xk = c f(x1) ∆x1 + · · ·+ c f(xn) ∆xn.

Since the factor c appears in every term in the sum, we can move it outside
the summation:

c (f(x1) ∆x1 + · · ·+ f(xn) ∆xn) = c

(
n∑

k=1

f(xk) ∆xk

)

.

The new expression is c times a Riemann sum for

∫ b

a

f(x) dx.
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Since the Riemann sum expressions are equal, the integral expressions they
converge to must be equal, as well. You can use similar arguments to show
why the other two rules are true.

Here is one example of the way we can use these rules: Using the rules

∫ 3

1

4
√

1 + x3 dx = 4

∫ 3

1

√
1 + x3 dx = 4 × 6.229959 = 24.919836.

(The value of the second integral is given on page 385.) Here is another
example:

∫ 9

2

5x7 − 2x3 + 24x dx = 5

∫ 9

2

x7 dx − 2

∫ 9

2

x3 dx + 24

∫ 9

2

x dx.

Of course, we must still determine the value of various integrals of the form

∫ b

a

xn dx.

However, the example shows us that, once we know the value of these special
integrals, we can determine the value of the integral of any polynomial.

Here are two more rules that have no direct analogue in differentiation. Two more rules

The first says that if f(x) ≤ g(x) for every x in the interval [a, b], then

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

In the second, c is a point somewhere in the interval [a, b]:

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx.

If you visualize an integral as an area, it is clear why these rules are true.

a b x

y
y = g (x)

y = f (x)

a c b x

y

y = f (x)
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The second rule can be used to understand the results of exercise 4 on
page 366. It concerns the three integrals

∫ 3

1

√
1 + x3 dx = 6.229959,

∫ 7

3

√
1 + x3 dx = 45.820012,

and
∫ 7

1

√
1 + x3 dx = 52.049971.

Since the third interval [1, 7] is just the first [1, 3] combined with the second
[3, 7], the third integral is the sum of the first and the second. The numerical
values confirm this.

Exercises

1. Determine the values of the following integrals.

a)

∫ 15

2

3 dx c)

∫ −3

−5

7 dx e)

∫ 9

−4

−2 dz

b)

∫ 2

15

3 dx d)

∫ −5

−3

7 dx f)

∫ −4

9

−2 dz

2. a) Sketch the graph of

g(x) =

{
7 if 1 ≤ x < 5,

−3 if 5 ≤ x ≤ 10

b) Determine

∫ 7

1

g(x) dx,

∫ 10

7

g(x) dx, and

∫ 10

1

g(x) dx.

Refining Riemann sums

3. a) By refining Riemann sums, find the value of the following integral to
four decimal places accuracy. Do the computations twice: first, using left
endpoints; second, using midpoints.

∫ 1

0

1

1 + x3
dx.
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b) How many subintervals did you need to get four decimal places accuracy
when you used left endpoints and when you used midpoints? Which sampling
points gave more efficient computations—left endpoints or midpoints?

4. By refining appropriate Riemann sums, determine the value of each of the
following integrals, accurate to four decimal places. Use whatever sampling
points you wish, but justify your claim that your answer is accurate to four
decimal places.

a)

∫ 4

1

√
1 + x3 dx b)

∫ 7

4

√
1 + x3 dx c)

∫ 3

0

cos x

1 + x2
dx

[Answer:

∫ 3

0

cos x

1 + x2
dx = .6244 . . . .]

5. Determine the value of the following integrals to four decimal places
accuracy.

a)

∫ 2

1

e−x2

dx

b)

∫ 4

0

cos(x2) dx

c)

∫ 4

0

sin(x2) dx

d)

∫ 1

0

4

1 + x2
dx

6. a) What is the length of the graph of y =
√

x from x = 1 to x = 4?

b) What is the length of the graph of y = x2 from x = 1 to x = 2?

c) Why are the answers in parts (a) and (b) the same?

7. Both of the curves y = 2x and y = 1+x3/2 pass through (0, 1) and (1, 2).
Which is the shorter one? Can you decide simply by looking at the graphs?

8. A pyramid is 30 feet tall. The area of a horizontal cross-section x feet
from the top of the pyramid measures 2x2 square feet. What is the area of
the base? What is the volume of the pyramid, to the nearest cubic foot?

Error bounds

9. A left endpoint Riemann sum with 1000 equally spaced subintervals gives
the estimate .135432 for the value of the integral

∫ 2

1

e−x2

dx.
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a) Is the true value of the integral larger or smaller than this estimate?
Explain.

b) Find an error bound for this estimate.

c) Using the information you have already assembled, find lower and upper
bounds A and B:

A ≤
∫ 2

1

e−x2

dx ≤ B.

d) The lower and upper bounds allow you to determine a certain number of
digits in the exact value of the integral. How many digits do you know, and
what are they?

10. A left endpoint Riemann sum with 100 equally spaced subintervals gives
the estimate .342652 for the value of the integral

∫ π/4

0

tan x dx.

a) Is the true value of the integral larger or smaller than this estimate?
Explain.

b) Find an error bound for this estimate.

c) Using the information you have already assembled, find lower and upper
bounds A and B:

A ≤
∫ π/4

0

tan x dx ≤ B.

d) The lower and upper bounds allow you to determine a certain number of
digits in the exact value of the integral. How many digits do you know, and
what are they?

11. a) In the next section you will see that

∫ π/2

0

sin x dx = 1

exactly. Here, estimate the value by a Riemann sum using the left endpoints
of 100 equal subintervals.
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b) Find an error bound for this estimate, and use it to construct the best
possible lower and upper bounds

A ≤
∫ π/2

0

sin x dx ≤ B.

12. In the text (page 373), a Riemann sum using left endpoints on 1000
equal subintervals produces an estimate of 6.226083 for the value of

∫ 3

1

√
1 + x3 dx.

a) Is the true value of the integral larger or smaller than this estimate?
Explain your answer, and do so without referring to the fact that the true
value of the integral is known to be 6.229959. . . .

b) Find an error bound for this estimate.

c) Find the upper and lower bounds for the value of the integral that are
determined by this estimate.

d) According to these bounds, how many digits of the value of the integral
are now known for certain?

The average value of a function

In the exercises for section 1 we saw that the average staffing level for a job
is

average staffing =
total staff-hours

hours worked
.

If S(t) represents the number of staff working at time t, then the total staff-
hours accumulated between t = a and t = b hours is

total staff-hours =

∫ b

a

S(t) dt staff-hours.

Therefore the average staffing is

average staffing =
1

b − a

∫ b

a

S(t) dt staff.
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Likewise, if a town’s power demand was p(t) megawatts at t hours, then its
average power demand between t = a and t = b hours is

average power demand =
1

b − a

∫ b

a

p(t) dt megawatts.

We can define the average value of an arbitrary function f(x) over anGeometric meaning of
the average interval a ≤ x ≤ b by following this pattern:

average value of f =
1

b − a

∫ b

a

f(x) dx.

The average value of f is sometimes denoted f . Since

f · (b − a) =

∫ b

a

f(x) dx,

the area under the horizontal line y = f between x = a and x = b is the
same as the area under the graph y = f(x). See the graph below.

13. a) What is the average value of f(x) = 5 on the interval [1, 7]?

b) What is the average value of f(x) = sin x on the interval [0, 2π]? On
[0, 100π]?

c) What is the average value of f(x) = sin2 x on the interval [0, 2π]? On
[0, 100π]?

x

y

a b

y = f

y = f (x)
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14. a) What is the average value of the function

H(x) =







1 if 0 ≤ x < 4,

12 if 4 ≤ x < 6,

1 if 6 ≤ x ≤ 20,

on the interval [0, 20]?

b) Is the average H larger or smaller than the average of the two numbers
12 and 1 that represent the largest and smallest values of the function?

c) Sketch the graph y = H(x) along with the horizontal line y = H, and
show directly that the same area lies under each of these two graphs over the
interval [0, 20].

15. a) What are the maximum and minimum values of f(x) = x2e−x on
the interval [0, 20]? What is the average of the maximum and the minimum?

b) What is the average f of f(x) on the interval [0, 20]?

c) Why aren’t these two averages the same?

The integral as a signed area

16. By refining Riemann sums, confirm that

∫ 3

−2

x dx = 2.5.

17. a) Sketch the graphs of y = cos x and y = 5 + cosx over the interval
[0, 4π].

b) Find

∫ 4π

0

cos x dx by visualizing the integral as a signed area.

c) Find

∫ 4π

0

5 + cos x dx. Why does

∫ 4π

0

5 dx have the same value?

18. a) By refining appropriate Riemann sums, determine the value of the

integral

∫ π

0

sin2 x dx to four decimal places accuracy.

b) Sketch the graph of y = sin2 x on the interval 0 ≤ x ≤ π. Note that your
graph lies inside the rectangle formed by the lines y = 0, y = 1, x = 0 and
x = π. (Sketch this rectangle.)
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c) Explain why the area under the graph of y = sin2 x is exactly half of
the area of the rectangle you sketched in part (b). What is the area of that
rectangle?

d) Using your observations in part (c), explain why

∫ π

0

sin2 x dx is exactly

π/2.

19. a) On what interval a < x < b does the graph of the function y = 4−x2

lie above the x-axis?

b) Sketch the graph of y = 4− x2 on the interval a ≤ x ≤ b you determined
in part (a).

c) What is the area of the region that lies above the x-axis and below the
graph of y = 4 − x2?

20. a) What is the signed area (see page 384 in the text) between the graph
of y = x3 − x and the x-axis on the interval −1 ≤ x ≤ 2?

b) Sketch the graph of y = x3 − x on the interval −1 ≤ x ≤ 2. On the
basis of your sketch, support or refute the following claim: the signed area
between the graph of y = x3−x and the x-axis on the interval −1 ≤ x ≤ 2 is
exactly the same as the area between the graph of y = x3 − x and the x-axis
on the interval +1 ≤ x ≤ 2.
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6.4 The Fundamental Theorem of Calculus

Two Views of Power and Energy

In section 1 we considered how much energy a town consumed over 24
hours when it was using p(t) megawatts of power at time t. Suppose E(T )
megawatt-hours of energy were consumed during the first T hours. Then the Energy is the

integral of power. . .integral, introduced in section 3, gave us the language to describe how E
depends on p:

E(T ) =

∫ T

0

p(t) dt.

Because E is the integral of p, we can visualize E(T ) as the area under the
power graph y = p(t) as the time t sweeps from 0 hours to T hours:

0 6 12 18 24 hours

time

30

60

90

power

m
eg

aw
at

ts

power = p (t)
area = E(T )

height = p (T )

T

As T increases, so does E(T ). The exact relation between E and T is shown
in the graph below. The height of the graph of E at any point T is equal to
the area under the graph of p from 0 out to the point T .

0 6 12 18 24 hours

time

360

720

1080

1440

energy

m
eg

aw
at

t-
ho

ur
s

height = E(T )

T

slope = p (T )

energy = E(t)
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The microscope window on the graph of E reminds us that the slope of
the graph at any point T is just p(T ):

. . . and power is the
derivative of energy p(T ) = E ′(T ).

We discovered this fact in section 1, where we stated it in the following form:
power is the rate at which energy is consumed.

Pause now to study the graphs of power and energy. You should convince
yourself that the height of the E graph at any time equals the area under the
p graph up to that time. For example, when T = 0 no area has accumulated,
so E(0) = 0. Furthermore, up to T = 6 hours, power demand was almost
constant at about 30 megawatts. Therefore, E(6) should be about

30 megawatts × 6 hours = 180 megawatt-hours.

It is. You should also convince yourself that the slope of the E graph at any
point equals the height of the p graph at that point. Thus, for example, the
graph of E will be steepest where the graph of p is tallest.

Notice that when we write the energy accumulation function E(T ) as an
integral,

E(T ) =

∫ T

0

p(t) dt,

we have introduced a new ingredient. The time variable T appears as oneA new ingredient:
variable limits
of integration

of the “limits of integration.” By definition, the integral is a single number.
However, that number depends on the interval of integration [0, T ]. As soon
as we treat T as a variable, the integral itself becomes a variable, too. Here
the value of the integral varies with T .

We now have two ways of viewing the relation between power and energy.
According to the first view, the energy accumulation function E is the integral
of power demand:

E(T ) =

∫ T

0

p(t) dt.

According to the second view, the energy accumulation function is the solu-This integral is
a solution to a
differential equation

tion y = E(t) to an initial value problem defined by power demand:

y′ = p(t); y(0) = 0.

If we take the first view, then we find E by refining Riemann sums—because
that is the way to determine the value of an integral. If we take the second
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view, then we can find E by using any of the methods for solving initial
value problems that we studied in chapter 4. Thus, the energy integral is a
solution to a certain differential equation.

This is unexpected. Differential equations involve derivatives. At first
glance, they have nothing to do with integrals. Nevertheless, the relation
between power and energy shows us that there is a deep connection between
derivatives and integrals. As we shall see, the connection holds for the integral The fundamental

theorem of calculusof any function. The connection is so important—because it links together
the two basic processes of calculus—that it has been called the fundamental
theorem of calculus.

The fundamental theorem gives us a powerful new tool to calculate inte-
grals. Our aim in this section is to see why the theorem is true, and to begin
to explore its use as a tool. In Calculus II we will consider many specific
integration techniques that are based on the fundamental theorem.

Integrals and Differential Equations

We begin with a statement of the fundamental theorem for a typical function
f(x).

The Fundamental Theorem of Calculus

The solution y = A(x) to the initial value problem

y′ = f(x) y(a) = 0

is the accumulation function A(X) =

∫ X

a

f(x) dx.

We have always been able to find the value of the integral

∫ b

a

f(x) dx

by refining Riemann sums. The fundamental theorem gives us a new way. It
says: First, find the solution y = A(x) to the initial value problem y′ = f(x),
y(a) = 0 using any suitable method for solving the differential equation.
Then, once we have A(x), we get the value of the integral by evaluating A
at x = b.
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To see how all this works, let’s find the value of the integralA test case

∫ 4

0

cos(x2) dx

two ways: by refining Riemann sums and by solving the initial value problem

y′ = cos(x2); y(0) = 0

using Euler’s method.
To estimate the value of the integral, we use the program RIEMANNRIEMANN versus. . .

from page 362. It produces the sequence of left endpoint sums shown in the
table below on the left. Since the first three digits have stabilized, the value
of the integral is .594 . . . . The integral was deliberately chosen to lead to
the initial value problem we first considered on page 267. We solved that
problem by Euler’s method, using the program TABLE, and produced the. . . TABLE

table of estimates for the value of y(4) that appear in the table on the right.
We see y(4) = .594 . . . .

Program: RIEMANN
Left endpoint Riemann sums

DEF fnf (x) = COS(x ^ 2)

a = 0

b = 4

numberofsteps = 2 ^ 3

deltax = (b - a) / numberofsteps

x = a

accumulation = 0

FOR k = 1 TO numberofsteps

deltaS = fnf(x) * deltax

accumulation = accumulation + deltaS

x = x + deltax

NEXT k

PRINT accumulation

number estimated value
of steps of the integral

23

26

29

212

215

218

1.13304
.65639
.60212
.59542
.59458
.59448

Program: TABLE
Euler’s method

DEF fnf (t) = COS(t ^ 2)

tinitial = 0

tfinal = 4

numberofsteps = 2 ^ 3

deltat = (tfinal - tinitial) / numberofsteps

t = tinitial

accumulation = 0

FOR k = 1 TO numberofsteps

deltay = fnf(t) * deltat

accumulation = accumulation + deltay

t = t + deltat

NEXT k

PRINT accumulation

number estimated value
of steps of y(4)

23

26

29

212

215

218

1.13304
.65639
.60212
.59542
.59458
.59448
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RIEMANN estimates the value of an integral by calculating Riemann
sums. TABLE solves a differential equation by constructing estimates using
Euler’s method. These appear to be quite different tasks, but they lead to
exactly the same results! But this is no accident. Compare the programs.
(In both, the PRINT statement has been put outside the loop. This speeds The two programs

are the sameup the calculations but still gives us the final outcome.) Once you make
necessary modifications (e.g., change x to t, a to tinitial, et cetera), you
can see the two programs are the same.

The very fact that these two programs do the same thing gives us one
proof of the fundamental theorem of calculus.

Graphing accumulation functions

Let’s take a closer look at the solution y = A(x) to the initial value problem

y′ = cos(x2); y(0) = 0.

We can write it as the accumulation function

A(X) =

∫ X

0

cos(x2) dx.

By switching to the graphing version of TABLE (this is the program PLOT—
see page 269), we can graph A. Here is the result.

x

y

y = cos(x2 )
1

−1

X

y

y = A(X ) = ⌡0

⌠ X
cos(x2 ) dx

1

1 2 3 4
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The relation between y = cos(x2) and y = A(x) is the same as the relation
between power and energy.

• The height of the graph y = A(x) at any point x = X is equal to
the signed area between the graph y = cos(x2) and the x-axis over the
interval 0 ≤ x ≤ X.

• On the intervals where cos(x2) is positive, A(x) is increasing. On the
intervals where cos(x2) is negative, A(x) is decreasing.

• When cos(x2) = 0, A(x) has a maximum or a minimum.

• The slope of the graph of y = A(x) at any point x = X is equal to the
height of the graph y = cos(x2) at that point.

In summary, the lower curve is the integral of the upper one, and the upper
curve is the derivative of the lower one.

x

y

X

y = ln x1

1 2 3

area = A(X ) = ⌡1

⌠ X
ln x dx

x

y

X

y = A(x)

height = A(X )

1

1 2 3

To get a better idea of the simplicity
and power of this approach to integrals,
let’s look at another example:

A(X) =

∫ X

1

ln x dx.

The function A is the solution to the initial
value problem

y′ = ln x, y(1) = 0;

we find it, as usual, by Euler’s method.
The graphs y = lnx and y = A(x) are
shown at the left. Notice once again that
the height of the graph of A(x) at any point
x = X equals the area under the graph of
y = ln x from x = 1 to x = X. Also, the
graph of A becomes steeper as the height
of ln x increases. In particular, the graph
of A is horizontal (at x = 1) when ln x = 0.
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Antiderivatives

We have developed a novel approach to integration in this section. We start Find an integral. . .

by replacing a given integral by an accumulation function:

∫ b

a

f(x) dx  A(X) =

∫ X

a

f(x) dx.

Then we try to find A(X). If we do, then the original integral is just the
value of A at X = b.

At first glance, this doesn’t seem to be a sensible approach. We appear to
be making the problem harder: instead of searching for a single number, we
must now find an entire function. However, we know that y = A(x) solves
the initial value problem

y′ = f(x), y(a) = 0.

This means we can use the complete ‘bag of tools’ we have for solving dif- . . . by solving
a differential
equation . . .

ferential equations to find A. The real advantage of the new approach is
that it reduces integration to the fundamental activity of calculus—solving
differential equations.

The differential equation y′ = f(x) that arises in integration problems
is special. The right hand side depends only on the input variable x. We
studied this differential equation in chapter 4.5, where we developed a special . . . using

antidifferentiationmethod to solve it—antidifferentiation.
We say that F (x) is an antiderivative of f(x) if f is the derivative of

F : F ′(x) = f(x). Here are some examples (from page 264):

function antiderivative

5x4 − 2x3 x5 − 1
2
x4

5x4 − 2x3 + 17x x5 − 1
2
x4 + 17

2
x2

6 · 10z + 17/z5 6 · 10z/ ln 10 − 17/4z4

3 sin t − 2t3 −3 cos t − 1
2
t4

π cos x + π2 π sin x + π2x

Since y = A(x) solves the differential equation y′ = f(x), we have A′(x) = A is an antiderivative
of ff(x). Thus, A(x) is an antiderivative of f(x), so we can try to find A by

antidifferentiating f .
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Here is an example. Suppose we want to find

A(X) =

∫ X

2

5x4 − 2x3 dx.

Notice that f(x) = 5x4−2x3 is the first function in the previous table. Since
A must be an antiderivative of f , let’s try the antiderivative for f that we
find in the table:

F (x) = x5 − 1
2
x4.

The problem is that F must also satisfy the initial condition F (2) = 0.Check the condition
A(2) = 0 However,

F (2) = 25 − 1
2
· 24 = 32 − 1

2
· 16 = 24 6= 0,

so the initial condition does not hold for this particular choice of antideriva-
tive. But this problem is easy to fix. Let

A(x) = F (x) − 24.

Since A(x) differs from F (x) only by a constant, it has the same derivative—
namely, 5x4 − 2x3. So A(x) is still an antiderivative of 5x4 − 2x3. But it also
satisfies the initial condition:

A(2) = F (2) − 24 = 24 − 24 = 0.

Therefore A(x) solves the problem; it has the right derivative and the right
value at x = 2. Thus we have a formula for the accumulation function

∫ X

2

5x4 − 2x3 dx = X5 − 1
2
X4 − 24.

The key step in finding the correct accumulation function A was to rec-
ognize that a given function f has infinitely many antiderivatives: if F is an
antiderivative, then so is F + C, for any constant C. The general procedure
for finding an accumulation function involves these two steps:

To find A(X) =

∫ X

a

f(x) dx:

1. first find an antiderivative F (x) of f(x),

2. then set A(x) = F (x) − F (a).



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

6.4. THE FUNDAMENTAL THEOREM OF CALCULUS 409

Comment: Recall that some functions f simply cannot be integrated—the A caution

Riemann sums they define may not converge. Although we have not stated it
explicitly, you should keep in mind that the procedure just described applies
only to functions that can be integrated.

Example. To illustrate the procedure, let’s find the accumulation function

A(X) =

∫ X

0

sin x dx.

The first step is to find an antiderivative for f(x) = sin x. A natural choice
is F (x) = − cos x. To carry out the second step, note that a = 0. Since
F (0) = − cos 0 = −1, we set

A(x) = F (x) − F (0) = − cos x − (−1) = 1 − cos x.

The graphs y = sin x and y = 1 − cos x are shown below.

x

y

X

signed area = 1 − cos X

−1

1

π 2π

y = sin x

x

y

X

2

1

π 2π

y = 1 − cos x

1 − cos X

Now that we have a formula for A(x) we can find the exact value of integrals Evaluating
specific integralsinvolving sin x. For instance,

∫ π

0

sin x dx = A(π) = 1 − cos π = 1 − (−1) = 2.

Also,
∫ π/2

0

sin x dx = A(π/2) = 1 − cos π/2 = 1 − (0) = 1,
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and ∫ 2π

0

sin x dx = A(2π) = 1 − cos 2π = 1 − (1) = 0.

These values are exact, and we got them without calculating Riemann
sums. However, we have already found the value of the third integral. On
page 383 we argued from the shape of the graph y = sin x that the signed
area between x = 0 and x = 2π must be 0. That argument is no help in
finding the area to x = π or to x = π/2, though. Before the fundamental
theorem showed us we could evaluate integrals by finding antiderivatives,
we could only make estimates using Riemann sums. Here, for example, are
midpoint Riemann sums for

∫ π/2

0

sin x dx :

subintervals Riemann sum

10
100

1000
10000

1.001 028 868
1.000 010 325
1.000 000 147
1.000 000 045

According to the table, the value of the integral is 1.000000. . . , to six deci-
mal places accuracy. That is valuable information, and is often as accurateThe fundamental

theorem makes
absolute precision
possible

as we need. However, the fundamental theorem tells us that the value of
the integral is 1 exactly ! With the new approach, we can achieve absolute
precision.

Precision is the result of having a formula for the antiderivative. Notice
how we used that formula to express the value of the integral. Starting with
an arbitrary antiderivative F (x) of f(x), we get

A(X) =

∫ X

a

f(x) dx = F (X) − F (a).

If we set X = b we find
∫ b

a

f(x) dx = F (b) − F (a).

In other words,

If F (x) is any antiderivative of f(x),

then

∫ b

a

f(x) dx = F (b) − F (a).
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Example. Evaluate

∫ ln 2

0

e−u du.

For the antiderivative, we can choose F (u) = −e−u. Then

∫ ln 2

0

e−u du = F (ln 2) − F (0)

= −e− ln 2 − (−e0) = −(1/2) − (−1) = 1/2

Example. Evaluate

∫ 3

2

ln t dt.

For the antiderivative, we can choose F (t) = t ln t − t. Using the product
rule, we can show that this is indeed an antiderivative:

F ′(t) = t · 1

t
+ 1 · ln t − 1 = 1 + ln t − 1 = ln t

Thus,

∫ 3

2

ln t dt = F (3) − F (2)

= 3 · ln 3 − 3 − (2 · ln 2 − 2)

= ln 33 − ln 22 − 1 = ln 27 − ln 4 − 1 = ln(27/4) − 1

While formulas make it possible to get exact values, they do present us
with problems of their own. For instance, we need to know that t ln t−t is an
antiderivative of ln t. This is not obvious. In fact, there is no guarantee that
the antiderivative of a function given by a formula will have a formula! The
antiderivatives of cos(x2) and sin(x)/x do not have formulas, for instance.
Many techniques have been devised to find the formula for an antiderivative.
In chapter 11 of Calculus II we will survey some of those that are most
frequently used.

Parameters

In chapter 4.2 we considered differential equations that involved parameters
(see pages 214–218). It also happens that integrals can involve parameters. When integrals depend

on parameters . . .However, parameters complicate numerical work. If we calculate the value of
an integral numerically, by making estimates with Riemann sums, we must
first fix the value of any parameters that appear. This makes it difficult to
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see how the value of the integral depends on the parameters. We would have
to give new values to the parameters and then recalculate the Riemann sums.

The outcome is much simpler and more transparent if we are able to use. . . the fundamental
theorem can help make
the relation clearer

the fundamental theorem to get a formula for the integral. The parameters
just appear in the formula, so it is immediately clear how the integral depends
on the parameters.

Here is an example that we shall explore further later. We want to see
how the integrals

∫ b

a

sin(αx) dx and

∫ b

a

cos(αx) dx

depend on the parameter α 6= 0, and also on the parameters a and b. To
begin, you should check that F (x) = − cos(αx)/α is an antiderivative of
sin(αx). Therefore,

∫ b

a

sin(αx) dx =
− cos(αb)

α
− − cos(αa)

α
=

cos(αa) − cos(αb)

α
.

In a similar way, you should be able to show that
∫ b

a

cos(αx) dx =
sin(αb) − sin(αa)

α
.

Suppose the interval [a, b] is exactly one-half of a full period: [0, π/α]. Then
∫ π/α

0

sin(αx) dx =
cos(α · 0) − cos(απ/α)

α

=
cos 0 − cos π

α
=

1 − (−1)

α
=

2

α
.

Exercises

Constructing accumulation functions

1. a) Obtain a formula for the accumulation function

A(X) =

∫ X

2

5 dx

and sketch its graph on the interval 2 ≤ X ≤ 6.

b) Is A′(X) = 5?
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2. Let f(x) = 2 + x on the interval 0 ≤ x ≤ 5.

a) Sketch the graph of y = f(x).

b) Obtain a formula for the accumulation function

A(X) =

∫ X

0

f(x) dx

and sketch its graph on the interval 0 ≤ X ≤ 5.

c) Verify that A′(X) = f(X) for every X in 0 ≤ X ≤ 5.

d) By comparing the graphs of f and A, verify that, at any point X, the
slope of the graph of A is the same as the height of the graph of f .

3. a) Consider the accumulation function

A(X) =

∫ X

0

x3 dx .

Using the fact that A′(X) = X3, obtain a formula that expresses A in terms
of X.

b) Modify A so that accumulation begins at the value x = 1 instead of x = 0
as in part (a). Thus

A(X) =

∫ X

1

x3 dx .

It is still true that A′(X) = X3, but now A(1) = 0. Obtain a formula that
expresses this modified A in terms of X. How do the formulas For A in parts
(a) and (b) differ?

Using the fundamental theorem

4. Find A′(X) when

a) A(X) =

∫ X

0

cos(x) dx

b) A(X) =

∫ X

0

sin(x) dx

c) A(X) =

∫ X

0

cos(x2) dx

d) A(X) =

∫ X

0

cos(t2) dt

e) A(X) =

∫ X

0

sin(x2) dx

f) A(X) =

∫ X

0

sin2 x dx

g) A(X) =

∫ X

1

ln t dt

h) A(X) =

∫ X

0

x2 − 4x3 dx
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5. Find all critical points of the function

A(X) =

∫ X

0

cos(x2) dx

on the interval 0 ≤ X ≤ 4. Indicate which critical points are local maxima
and which are local minima. (Critical points and local maxima and minima
are discussed on pages 303–309.)

[Answer: There are five critical points in the interval [0, 4]. The first is a
local maximum at

√

π/2.]

6. Find all critical points of the function

A(X) =

∫ X

0

sin(x2) dx

on the interval 0 ≤ X ≤ 4. Indicate which critical points are local maxima
and which are local minima.

7. Find all critical points of the function

A(X) =

∫ X

0

x2 − 4x3 dx.

Indicate which critical points are local maxima and which are local minima.

8. Express the solution to each of the following initial value problems as an
accumulation function (that is, as an integral with a variable upper limit of
integration).

a) y′ = cos(x2), y(
√

π) = 0

b) y′ = sin(x2), y(0) = 0

c) y′ = sin(x2), y(0) = 5

d) y′ = e−x2

, y(0) = 0

9. Sketch the graphs of the following accumulation functions over the indi-
cated intervals.

a)

∫ X

0

sin(x2) dx, 0 ≤ X ≤ 4

b)

∫ X

0

sin(x)

x
dx, 0 ≤ X ≤ 4
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Formulas for integrals

10. Determine the exact value of each of the following integrals.

a)

∫ 7

3

2 − 3x + 5x2 dx

b)

∫ 5π

0

sin x dx

c)

∫ 5π

0

sin(2x) dx

d)

∫ 1

0

et dt

e)

∫ 6

1

dx/x

f)

∫ 4

0

7u − 12u5du

g)

∫ 1

0

2t dt

h)

∫ 1

−1

s2 ds

11. Express the values of the following integrals in terms of the parameters
they contain.

a)

∫ 7

3

kx dx

b)

∫ π

0

sin(αx) dx

c)

∫ 4

1

px2 − x3 dx

d)

∫ 1

0

ect dt

e)

∫ ln 3

ln 2

ect dt

f)

∫ b

1

5 − x dx

g)

∫ 1

0

at dt

h)

∫ 2

1

uc du

12. Find a formula for the solution of each of the following initial value
problems.

a) y′ = x2 − 4x3, y(0) = 0

b) y′ = x2 − 4x3, y(3) = 0

c) y′ = x2 − 4x3, y(3) = 10

d) y′ = cos(3x), y(π) = 0

13. Find the average value of each of the following functions over the indi-
cated interval.

a) x2 − x3 over [0, 1]

b) ln x over [1, e]

c) sin x over [0, π]
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14. a) What is the average value of the function px − x2 on the interval
[0, 1]? The average depends on the parameter p.

b) For which value of p will that average be zero?

6.5 Chapter Summary

The Main Ideas

• A Riemann sum for the function f(x) on the interval [a, b] is a sum
of the form

f(x1) · ∆x1 + f(x2) · ∆x2 + · · · + f(xn) · ∆xn,

where the interval [a, b] has been subdivided into n subintervals whose
lengths are ∆x1, ∆x2, . . . , ∆xn, and each xk is a sampling point in the
k-th subinterval (for each k from 1 to n).

• Riemann sums can be used to approximate a variety of quantities ex-
pressed as products where one factor varies with the other.

• Riemann sums give more accurate approximations as the lengths
∆x1, ∆x2, . . . , ∆xn are made small.

• If the Riemann sums for a function f(x) on an interval [a, b] converge,
the limit is called the integral of f(x) on [a, b], and it is denoted

∫ b

a

f(x) dx.

• The units of
∫ b

a
f(x) dx equal the product of the units of f(x) and the

units of x.

• The Fundamental Theorem of Calculus.
The solution y = A(x) of the initial value problem

y′ = f(x) y(a) = 0

is the accumulation function

A(X) =

∫ X

a

f(x) dx.
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• If F (x) is an antiderivative of f(x), then

∫ b

a

f(x) dx = F (b) − F (a).

• The integral
∫ b

a
f(x) dx equals the signed area between the graph of

f(x) and the x-axis.

• If f(x) is monotonic on [a, b] and if
∫ b

a
f(x) dx is approximated by a

Riemann sum with subintervals of width ∆x, then the error in the
approximation is at most ∆x · |f(b) − f(a)|.

Expectations

• You should be able to write down (by hand) a Riemann sum to approx-
imate a quantity expressed as a product (e.g., human effort, electrical
energy, work, distance travelled, area).

• You should be able to write down an integral giving the exact value of
a quantity approximated by a Riemann sum.

• You should be able to use sigma notation to abbreviate a sum, and
you should be able to read sigma notation to calculate a sum.

• You should be able to use a computer program to compute the value
of a Riemann sum.

• You should be able to find an error bound when approximating an
integral by a Riemann sum.

• You should know and be able to use the integration rules.

• You should be able to use the fundamental theorem of calculus to find
the value of an integral.

• You should be able to use an antiderivative to find the value of an
integral.
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Chapter 7

Periodicity

In seeking to describe and understand natural processes, we search for pat-
terns. Patterns that repeat are particularly useful, because we can predict
what they will do in the future. The sun rises every day and the seasons Many patterns

are periodicrepeat every year. These are the most obvious examples of cyclic, or peri-
odic, patterns, but there are many more of scientific interest, too. Periodic
behavior is the subject of this chapter. We shall take up the questions of de-
scribing and measuring it. To begin, let’s look at some intriguing examples
of periodic or near-periodic behavior.

7.1 Periodic Behavior

Example 1: Populations. In chapter 4 we studied several models that
describe how interacting populations might change over time. Two of those
models—one devised by May and the other by Lotka and Volterra—predict
that when one species preys on another, both predator and prey populations
will fluctuate periodically over time. How can we tell if that actually happens
in nature? Ecologists have examined data for a number of species. Some of Predator and

prey populations
fluctuate periodically

the best evidence is found in the records of Hudson’s Bay Company, which
trapped fur-bearing animals in Canada for almost 200 years. The graph on
the next page gives the data for the numbers of lynx pelts harvested in the
Mackenzie River region of Canada during the years 1821 to 1934 (Finerty,
1980). (The lynx is a predator; its main prey is the snowshoe hare.) Clearly
the numbers go up and down every 10 years in something like a periodic
pattern. There is even a more complex pattern, with one large bulge and

419
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three smaller ones, that repeats about every 40 years. Data sets like this
appear frequently in scientific inquiries, and they raise important questions.
Here is one: If a quantity we are studying really does fluctuate in a periodic
way, why might that happen? Here is another: If there appear to be several
periodic influences, what are they, and how strong are they? To explore
these questions we will develop a language to describe and analyze periodic
functions.

1820 1840 1860 1880 1900 1920

2000

4000

6000

year

Annual harvest of lynx pelts

pe
lts

Example 2: The earth’s orbit. The earth orbits the sun, returning to itsThe position and the
shape of the earth’s
orbit both fluctuate
periodically

original position after one year. This is the most obvious periodic behavior; it
explains the cycle of seasons, for example. But there are other, more subtle,
periodicities in the earth’s orbital motion. The orbit is an ellipse which turns
slowly in space, returning to its original position after about 23,000 years.
This movement is called precession. The orbit fluctuates in other ways that
have periods of 41,000 years (the obliquity cycle) and 95,000, 123,000, and
413,000 years (the eccentricity cycles).

Example 3: The climate. In 1941 the Serbian geophysicist Milutin Mi-
lankovitch proposed that all the different periodicities in the earth’s orbitFluctuations in the

climate appear in the
geological record

affect the climate—that is, the long-term weather patterns over the entire
planet. Therefore, he concluded, there should also be periodic fluctuations in
the climate, with the same periods as the earth’s orbit. In fact, it is possible
to test this hypothesis, because there are features of the geological record
that tell us about long-term weather patterns. For example, in a year when
the weather is warm and wet, rains will fill streams and rivers with mud that
is eventually carried to lake bottoms. The result is a thick sediment layer. In
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a dry year, the sediment layer will be thinner. Over geological time, lakes dry
out and their beds turn to clay or shale. By measuring the annual layers over
thousands of years, we can see how the climate has varied. Other features
that have been analyzed the same way are the thickness of annual ice layers
in the Antarctic ice cap, the fluctuations of CO2 concentrations in the ice
caps, changes in the O18/O16 ratio in deep-sea sediments and ice caps. In
chapter 12 we will look at the results of one such study.

1820 1840 1860 1880 1900 1920

25

50

75

100

125

year

Daily average number of sunspots

su
ns

po
ts

Example 4: Sunspot cycles. The number of sunspots fluctuates, reaching
a peak every 11 years or so. The graph above shows the average daily number
of sunspots during each year from 1821 to 1934. Compare this with the lynx
graph which covers the same years. Some earthbound events (e.g., auroras,
television interference) seem to follow the same 11-year pattern. According
to some scientists, other meteorological phenomena—such as rainfall, average
temperature, and CO2 concentrations in the atmosphere—are also “sunspot
cycles,” fluctuating with the same 11-year period. It is difficult to get firm Data can have

both periodic and
random influences

evidence, though, because many fluctuations with different possible causes
can be found in the data. Even if there is an 11-year cycle, it may be
“drowned out” by the effects of these other causes.

The problem of detecting periodic fluctuations in “noisy” data is one
that scientists often face. In chapter 12 we will introduce a mathematical
tool called the power spectrum, and we will use it to detect and measure
periodic behavior—even when it is swamped by random fluctuations.
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7.2 Period, Frequency, and

the Circular Functions

We are familiar with the notions of period and frequency from everyday
experience. For example, a full moon occurs every 28 days, which means
that a lunar cycle has a period of 28 days and a frequency of once per 28
days. Moreover, whatever phase the moon is in today, it will be in the same
phase 28 days from now. Let’s see how to extend these notions to functions.

The function y = g(x) whose graph is sketched below has a patternDefining a
periodic function that repeats. The space T between one high point and the next tells us the

period of this repeating pattern. There is nothing special about the high
point, though. If we take any two points x and x + T that are spaced one
period apart, we find that g has the same value at those point.

x x + T

g(x) g(x + T)

x

y

y = g(x)

T

(This is analogous to saying that the moon is in the same phase on any two
days that are 28 days apart.) The condition g(x + T ) = g(x) for every x
guarantees that g will be periodic. We make it the basis of our definition.

Definition. We say that a function g(x) is periodic
if there is a positive or negative number T for which

g(x + T ) = g(x) for all x.

We call T a period of g(x).



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

7.2. PERIOD, FREQUENCY, AND THE CIRCULAR FUNCTIONS 423

Since the graph of g repeats after x increases by T , it also repeats after A periodic function
has many periods. . .x increases by 2T , or −3T , or any integer multiple (positive or negative) of

T . This means that a periodic function always has many periods. (That’s
why the definition refers to “a period” rather than “the period.”) The same
is true of the moon; its phases also repeat after 2× 28 days, or 3× 28, days. . . . but we call the

smallest positive one
the period

Nevertheless, we think of 28 days as the period of the lunar cycle, because we
see the entire pattern precisely once. We can say the same for any periodic
function:

Definition. The period of a periodic function is its
smallest positive period. It is the size of a single cycle.

Another measure of a periodic function is its frequency. Consider first the Frequency

lunar cycle. Its frequency is the number of cycles—or fractions of a cycle—
that occur in unit time. If we measure time in days, then the frequency is
1/28-th of a cycle per day. If we measure time in years, though, then the
frequency is about 13 cycles per year. Here is the calculation:

365 days/year

28 days/cycle
≈ 13 cycles/year.

Using this example as a pattern, we make the following definition.

Definition. If the function g(x) is periodic, then its
frequency is the number of cycles per unit x.

Notice that the period and the frequency of the lunar cycle are reciprocals: The frequency of
a cycle is the

reciprocal of its period
the period is 28 days—the time needed to complete one cycle—while the
frequency is 1/28-th of a cycle per day. In the example below, t is measured
in seconds and g has a period of .2 seconds. Its frequency is therefore 5 cycles
per second.

0 1 2 3

seconds
t

y
y = g(t)

Period:  .2  seconds per cycle Frequency:  5  cycles per second

.2 seconds
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In general, if f is the frequency of a periodic function g(x) and T is its
period, then we have

f =
1

T
and T =

1

f
.

The units are also related in a reciprocal fashion: if the period is measured
in seconds, then the frequency is measured in cycles per second.

Because many quantities fluctuate periodically over time, the input vari-
able of a periodic function will often be time. If time is measured in seconds,The units for

measuring frequency
over time

then frequency is measured in “cycles per second.” The term Hertz is a
special unit used to measure time frequencies; it equals one cycle per sec-
ond. Hertz is abbreviated Hz; thus a kilohertz (kHz) and a megahertz
(MHz) are 1,000 and 1,000,000 cycles per second, respectively. This unit is
commonly used to describe sound, light, radio, and television waves. For
example, an orchestra tunes to an A at 440 Hz. If an FM radio station
broadcasts at 88.5 MHz, this means its carrier frequency is 88,500,000 cycles
per second.

Quantities may also be periodic in other dimensions. For instance, a
scientist studying the phenomenon of ripple formation in a river bed mightFunctions can be

periodic over other
units as well

be interested in the function h(x) measuring the height of a ripple as a
function of its distance x along the river bed. This would lead to a function
of period, say, 10 inches and corresponding frequency of .1 cycle per inch.

x

y
t

(cos t , sin t )

1

Circular functions. While there are innumerable
examples of periodic functions, two in particular are
considered basic: the sine and the cosine. They are called
circular functions because they are defined by means of a
circle. To be specific, take the circle of radius 1 centered
at the origin in the x, y-plane. Given any real number t,
measure a distance of t units around the circumference
of the circle. Start on the positive x-axis, and measure

counterclockwise if t is positive, clockwise if t is negative. The coordinates
of the point you reach this way are, by definition, the cosine and the sine
functions of t, respectively:

x = cos(t),

y = sin(t).
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The whole circumference of the circle measures 2π units. Therefore, if we Why cos t and sin t
are periodicadd 2π units to the t units we have already measured, we will arrive back

at the same point on the circle. That is, we get to the same point on the
circle by measuring either t or t + 2π units around the circumference. We
can describe the coordinates of this point two ways:

(cos(t), sin(t)) or (cos(t + 2π), sin(t + 2π)).

Thus
cos(t + 2π) = cos(t) sin(t + 2π) = sin(t),

so cos(t) and sin(t) are both periodic, and they have the same period, 2π.
Here are their graphs. By reading their slopes we can see (sin t)′ = cos t and
(cos t)′ = − sin t.

t

x
x = cos( t)

−π π 2π 3π 4π
−1

1

t

y
y = sin( t)

−π π
2π

3π
4π

−1

1

t

1

The circular functions are constructed without reference to angles; the Radian measure

variable t is measured around the circumference of a circle (of radius 1).
Nevertheless, we can think of t as measuring an angle, as shown at the right.
In this case, t is called the radian measure of the angle. The units are very
different from the degree measurement of an angle: an angle of 1 radian is
much larger than an angle of 1 degree. The radian measure of a 90◦ angle is
π/2 ≈ 1.57, for instance. If we thought of t as an angle measured in degrees,
the slope of sin(t) would equal .017 cos t! (See the exercises.) Only when we
measure t in radians do we get a simple result: (sin t)′ = cos t. This is why
we always measure angles in radians in calculus.

Compare the graph of y = sin(t) above with that of y = sin(4t), below. Changing the
frequency

t

yy = sin(4t)

−π π 2π 3π 4π
−1

1
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Their scales are identical, so it is clear that the frequency of sin(4t) is four
times the frequency of sin(t). The general pattern is described in the following
table.

function period frequency

sin(t) cos(t) 2π 1/2π
sin(4t) cos(4t) 2π/4 4/2π
sin(bt) cos(bt) 2π/b b/2π

Notice that it is the frequency—not the period—that is increased by a factor
of b when we multiply the input variable by b.

By using the information in the table, we can construct circular functionsConstructing a
circular function with
a given frequency

with any period or frequency whatsoever. For instance, suppose we wanted
a cosine function x = cos(bt) with a frequency of 5 cycles per unit t. This
means

5 = frequency =
b

2π
,

which implies that we should set b = 10π and x = cos(10πt). In order to see
the high-frequency behavior of this function better, we magnify the graph a
bit. In the figure below, you can compare the graphs of x = cos(10πt) and
x = cos(t) directly. We still have equal scales on the horizontal and vertical
axes. Finally, notice that cos(10πt) has exactly 5 cycles on the interval
0 ≤ t ≤ 1.

t

x

x = cos(10πt)

x = cos(t)

1 2

−1

1
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We will denote the frequency by ω, the lower case letter omega from the Frequency ω

Greek alphabet. If

ω = frequency =
b

2π
,

then b = 2πω. Therefore, the basic circular functions of frequency ω are
cos(2πωt) and sin(2πωt).

Suppose we take the basic sine function sin(2πωt) of frequency ω and Amplitude

multiply it by a factor A:

y = A sin(2πωt).

The graph of this function oscillates between y = −A and y = +A. The
number A is called the amplitude of the function.

t

y
y = Asin(2πωt)

amplitude

−1/ω 1/ω 2/ω 3/ω

−A

A

The sine function of amplitude  A  and frequency  ω

Physical interpretations. Sounds are transmitted to our ears as fluctu-
ations in air pressure. Light is transmitted to our eyes as fluctuations in a
more abstract medium—the electromagnetic field. Both kinds of fluctuations
can be described using circular functions of time t. The amplitude and the
frequency of these functions have the physical interpretations given in the
following table.

frequency
amplitude frequency range

sound loudness pitch 10–15000 Hz

light intensity color 4 × 1014 – 7.5 × 1014 Hz
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Exercises

Circular functions

1. Choose ω so that the function cos(2πωt) has each of the following periods.

a) 1 b) 5 c) 2π d) π e) 1/3

2. Determine the period and the frequency of the following functions.

a) sin(x), sin(2x), sin(x) + sin(2x)

b) sin(2x), sin(3x), sin(2x) + sin(3x)

c) sin(6x), sin(9x), sin(6x) + sin(9x)

3. Suppose a and b are positive integers. Describe how the periods of
sin(ax), sin(bx), sin(ax) + sin(bx) are related. (As the previous exercise
shows, the relation between the periods depends on the relation between a
and b. Make this clear in your explanation.)

4. a) What are the amplitude and frequency of g(x) = 5 cos(3x)?

b) What are the amplitude and frequency of g′(x)?

5. a) Is the antiderivative

∫ x

0

5 cos(3t) dt periodic?

b) If so, what are its amplitude and frequency?

6. Use the definition of the circular functions to explain why

sin(−t) = − sin(t), sin
(π

2
− t
)

= cos(t),

cos(−t) = + cos(t), sin(π − t) = sin(t),

hold for all values of t. Describe how these properties are reflected in the
graphs of the sine and cosine functions.

7. a) What is the average value of the function sin(s) over the interval
0 ≤ s ≤ π? (This is a half-period.)

b) What is the average value of sin(s) over π/2 ≤ s ≤ 3π/2? (This is also a
half-period.)

c) What is the average value of sin(s) over 0 ≤ s ≤ 2π? (This is a full
period.)
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d) Let c be any number. Find the average value of sin(s) over the full period
c ≤ s ≤ c + 2π.

e) Your work should demonstrate that the average value of sin(s) over a full
period does not depend on the point c where you begin the period. Does it?
Is the same true for the average value over a half period? Explain.

8. a) What is the period T of P (t) = A sin(bt)?

b) Let c be any number. Find the average value of P (t) over the full period
c ≤ t ≤ c + T . Does this value depend on the choice of c?

c) What is the average value of P (t) over the half-period 0 ≤ t ≤ T/2?

Phase

There is still another aspect of circular functions to consider besides am-
plitude and frequency. It is called phase difference. We can illustrate this
with the two functions graphed below. They have the same amplitude and
frequency, but differ in phase.

t

y

y = Asin(bt − ϕ)

y = Asin(bt )

ϕ/b

ϕ/b : phase shift

Specifically, the variable u in the expression sin(u) is called the phase. In
the dotted graph the phase is u = bt, while in the solid graph it is u = bt−ϕ.
They differ in phase by bt − (bt − ϕ) = ϕ. In the exercises you will see why
a phase difference of ϕ produces a shift—which we call a phase shift—of
ϕ/b in the graphs. (ϕ is the Greek letter phi.)

9. The functions sin(x) and cos(x) have the same amplitude and frequency;
they differ only in phase. In other words,

cos(x) = sin(x − ϕ)
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for an appropriately chosen phase difference ϕ. What is the value of ϕ?

10. The functions sin(x) and − sin(x) also differ only in phase. What is
their phase difference? In other words, find ϕ so that

sin(x − ϕ) = − sin(x).

[Note: A circular function and its negative are sometimes said to be “180
degrees out of phase.” The value of ϕ you found here should explain this
phrase.]

11. What is the phase difference between sin(x) and − cos(x)?

12. a) Graph y = sin(t) and y = sin(t − π/3) on the same plane.

b) What is the phase difference between these two functions?

c) What is the phase shift between their graphs?

13. a) Graph together on the same coordinate plane y = cos(t) and y =
cos(t + π/4).

b) What is the phase difference between these two functions?

c) What is the phase shift between their graphs?

14. We know y = cos(t) has a maximum at the origin. Determine the
point closest to the origin where y = cos(t + π/4) has its maximum. Is the
second maximum shifted from the first by the amount of the phase shift you
identified in the previous question?

15. Repeat the last two exercises for the pair of functions y = cos(2t) and
cos(2t + π/4). Is the phase difference equal to the phase shift in this case?

16. Verify that the graph of y = A sin(bt−ϕ) crosses the t-axis at the point
t = ϕ/b. This shows that A sin(bt−ϕ) is “phase-shifted” by the amount ϕ/b
in relation to A sin(bt). (Refer to the graph on page 429.)

17. a) At what point nearest the origin does the function A cos(bt − ϕ)
reach its maximum value?

b) Explain why this shows A cos(bt − ϕ) is “phase-shifted” by the amount
ϕ/b in relation to A cos(bt).
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18. a) Let f(x) = sin(x) − .7 cos(x). Using a graphing utility, sketch the
graph of f(x).

b) The function f(x) is periodic. What is its period? From your graph,
estimate its amplitude.

c) In fact, f(x) can be viewed as a “phase-shifted” sine function:

f(x) = A sin(bx − ϕ).

From your graph, estimate the phase difference ϕ and the amplitude A.

19. a) For each of the values ϕ = 0, π/4, π/2, 3π/4, π, sketch the graph
y = sin(x) · sin(x − ϕ) over the interval 0 ≤ x ≤ 2π. Put the five graphs on
the same coordinate plane.

b) For which graphs is the average value positive, for which is it negative,
and for which is it 0? Estimate by eye.

20. The purpose of this exercise is to determine the average value

F (ϕ) =
1

2π

∫ 2π

0

sin(x) sin(x − ϕ) dx

for an arbitrary value of the parameter ϕ. To stress that the average value
is actually a function of ϕ, we have written it as F (ϕ). Here is one way
to determine a formula for F (ϕ) in terms of ϕ. First, using a “sum of two
angles” formula and exercise 6, above, write

sin(x − ϕ) = cos(ϕ) sin(x) − sin(ϕ) cos(x)

Then consider

1

2π

[

cos(ϕ)

∫ 2π

0

(sin(x))2dx − sin(ϕ)

∫ 2π

0

sin(x) cos(x) dx

]

,

and determine the values of the two integrals separately.

21. a) Sketch the graph of the average value function F (ϕ) you found in
the previous exercise. Use the interval 0 ≤ ϕ ≤ π.

b) In exercise 19 you estimated the value of F (ϕ) for five specific values of
ϕ. Compare your estimates with the exact values that you can now calculate
using the formula for F (ϕ).
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22. Sketch the graph of y = cos(x) sin(x−ϕ) for each of the following values
of ϕ: 0, π/2, 2π/3, π. Use the interval 0 ≤ x ≤ 2π. Estimate by eye the
average value of each function over that interval.

23. a) Obtain a formula for the average value function

G(ϕ) =
1

2π

∫ 2π

0

cos(x) sin(x − ϕ) dx.

and sketch the graph of G(ϕ) over the interval 0 ≤ ϕ ≤ π.

b) Use your formula for G(ϕ) to compute the average value of the function
cos(x) sin(x−ϕ) exactly for ϕ = 0, π/2, 2π/3, π. Compare these values with
your estimates in the previous exercise.

24. How large a phase difference ϕ is needed to make the graphs of y =
sin(3x) and y = sin(3x − ϕ) coincide?

25. Sketch the graphs of the following functions.

a) y = 3 sin(2x − π/6) − 1

b) y = 4 sin(2x − π) + 2.

c) y = 4 sin(2x + π) + 2.

26. The function whose graph is sketched
at the right has the form

G(x) = A sin(bx − ϕ) + C.

Determine the values of A, b, C, and ϕ.
t

y y = Asin(bt - ϕ) + c

−2

5

−2 2 4 6

27. Write equations for three different functions that all have amplitude 4,
period 5, and whose graphs pass through the point (6, 7). Be sure the func-
tions are really different—if g(t) is one solution, then h(t) = g(t + 5) would
really be just the same solution.

Derivatives with degrees

28. a) In this exercise measure the angle θ in degrees. Estimate the deriva-
tive of sin(θ) at θ = 0◦ by calculating sin(θ)/θ for θ = 2◦, 1◦, .5◦.
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b) Estimate the derivative of sin(θ) at θ = 60◦ in a similar way. Is (sin(30◦))′ =
cos(30◦)?

29. a) Your calculations in the previous exercise should support the claim
that (sin(θ))′ = k cos(θ) for a particular value of k, when θ is measured in
degrees. What is k, approximately?

b) If t is the radian measure of an angle, and if θ is its degree measure, then
θ will be a function of t. What is it? Now use the chain rule to get a precise
expression for the constant k.

7.3 Differential Equations with Periodic Solutions

The models of predator–prey interactions constructed by Lotka–Volterra and
May (see chapter 4) provide us with examples of systems of differential equa-
tions that have periodic solutions. Similar examples can be found in many
areas of science. We shall analyze some of them in this section. In particu-
lar, we will try to understand how the frequency and the amplitude of the
periodic solutions depend on the parameters given in the model.

Oscillating Springs

We want to study the motion of a weight that hangs from the end
of a spring. First let the weight come to rest. Then pull down on
it. You can feel the spring pulling it back up. If you push up on
the weight, the spring (and gravity) push it back down. The force
you feel is called the spring force. Now release the weight; it will

m x

cm

0
rest
position




move. We’ll assume that the only influence on the motion is the spring force.
(In particular, we will ignore the force of friction.) With this assumption we
can construct a model to describe the motion. We’ll suppose the weight has
a mass of m grams, and it is x centimeters above its rest position after t
seconds. (If the weight goes below the rest position, then x will be negative.)

The linear spring

The simplest assumption we can reasonably make is that the spring force is A linear spring

proportional to the amount x that the spring has been displaced:

force = −c x.
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In this case the spring is said to be linear. The multiplier c is called the
spring constant. It is a positive number that varies from one spring to
another. The minus sign tells us the force pushes down if x > 0, and it pushes
up if x < 0. Because this model describes an oscillating spring governed by
a linear spring force, it is called the linear oscillator.

To see how the spring force affects the motion of the weight, we useNewton’s laws of
motion Newton’s laws. In their simplest form, they say that the force acting on a

body is the product of its mass and its acceleration. Suppose v = dx/dt is
the velocity of the weight in cm/sec, and dv/dt is its acceleration in cm/sec2.
Then

force = m
dv

dt
gm-cm/sec2.

If we equate our two expressions for the force, we get

m
dv

dt
= −c x or

dv

dt
= −b2x cm/sec2,

where we have set c/m = b2. It is more convenient to write c/m as b2 here,
because then b =

√

c/m itself will be measured in units of 1/sec. (To see
why, note that −b2x is measured in units of cm/sec2.)

Suppose we move the weight to the point x = a cm on the scale, hold it

The linear oscillator motionless for a moment, and then release it at time t = 0 sec. This gives us
the initial value problem

x′ = v, x(0) = a,

v′ = −b2x, v(0) = 0.

If we give the parameters a and b specific values, we can solve this initialThe solution with
fixed parameters value problem using Euler’s method. The figure below shows the solution

x(t) for two different sets of parameter values:

a = 4 cm, a = −5 cm,

b = 5 per sec, b = 9 per sec.

t

x

sec

cm
a = −5 cm
b = 9 /sec

a = 4 cm
b = 5 /sec−5

4

1 2 3
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The graphs were made in the usual way, with the differential equation solver
of a computer. They indicate that the weight bounces up and down in a
periodic fashion. The amplitude of the oscillation is precisely a, and the
frequency appears to be linked directly to the value of b. For instance, when
b = 9 /sec, the motion completes just under 3 cycles in 2 seconds. This is a
frequency of slightly less than 1.5 cycles per second. When b = 5 /sec, the
motion undergoes roughly 2 cycles in 2.5 seconds, a frequency of about .8
cycles per second. If the frequency is indeed proportional to b, the multiplier
must be about 1/6:

frequency ≈ b

6
cycles/sec.

We can get a better idea how the parameters in a problem affect the solu- The solution
for arbitrary

parameter values
tion if we solve the problem with a method that doesn’t require us to fix the
values of the parameters in advance. This point is discussed in chapter 4.2,
pages 214–218. It is particularly useful if we can express the solution by a
formula, which it turns out we can do in this case. To get a formula, let us
begin by noticing that

(x′)′ = v′ = −b2x.

In other words, x(t) is a function whose second derivative is the negative of
itself (times the constant b2). This suggests that we try

x(t) = sin(bt) or x(t) = cos(bt).

You should check that x′′ = −b2x in both cases.
Turn now to the initial conditions. Since sin(0) = 0, there is no way to

modify sin(bt) to make it satisfy the condition x(0) = a. However,

x(t) = a cos(bt)

does satisfy it. Finally, we can use the differential equation x′ = v to define
v(t):

v(t) = (a cos(bt))′ = −ab sin(bt).

Notice that v(0) = −ab sin(0) = 0, so the second initial condition is satisfied.
In summary, we have a formula for the solution that incorporates the The formula proves the

motion is periodicparameters. With this formula we see that the motion is really periodic—a
fact that Euler’s method could only suggest. Furthermore, the parameters
determine the amplitude and frequency of the solution in the following way:

position : a cos(bt) cm from rest after t sec
amplitude : a cm
frequency : b/2π cycles/sec
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We can see the relation between the motion and the parameters in the graph
below (in which we take a > 0).

Graph of the general
linear oscillator

t

x

sec

cm

a x = acos(bt )

2π/b 4π/b 6π/b

Here are some further properties of the motion that follow from our for-
mula for the solution. Recall that the parameter b depends on the mass m
of the weight and the spring constant c: b2 = c/m.

• The amplitude depends only on the initial conditions, not on the mass
m or the spring constant c.

• The frequency depends only on the mass and the spring constant, not
on the initial amplitude.

These properties are a consequence of the fact that the spring force is linear.
As we shall see, a non-linear spring and a pendulum move differently.

The non-linear spring

The harder you pull on a spring, the more it stretches. If the stretch
is exactly proportional to the pull (i.e., the force), the spring is linear.

x

force
non-linear

(hard) spring

linear
spring

force = −cx

linear
range

In other words, to double the stretch you must
double the force. Most springs behave this way
when they are stretched only a small amount.
This is called their linear range. Outside that
range, the relation is more complicated. One pos-
sibility is that, to double the stretch, you must
increase the force by more than double. A spring
that works this way is called a hard spring. The
graph at the left shows the relation between the
applied force and the displacement (or stretch x)
of a hard spring.
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In a nonlinear spring, force is no longer proportional to displacement.
Thus, if we write

force = −c x

we must allow the multiplier c to depend on x. One simple way to achieve
this is to replace c by c + γx2. (We use x2 rather than just x to ensure that
−x will have the same effect as +x. The multiplier γ is the Greek letter
gamma.) Then

force = −c x − γx3.

Since force = m dv/dt as well, we have

m
dv

dt
= −c x − γx3 or

dv

dt
= −b2x − βx3 cm/sec2.

Here b2 = c/m and β = γ/m. By taking the same initial conditions as before,
we get the following initial value problem:

A non-linear oscillatorx′ = v, x(0) = a,

v′ = −b2x − βx3, v(0) = 0.

To solve this problem using Euler’s method, we must fix the values of the
three parameters. For the two parameters that determine the spring force,
we choose:

b = 5 per sec β = .2 per cm2-sec2.

We have deliberately chosen b to have the same value it did for our first
solution to the linear problem. In this way, we can compare the non-linear Comparing a hard

spring to a linear springspring to the linear spring that has the same spring constant. We do this in
the figure below. The dashed graph shows the linear spring when its initial
amplitude is a = 4 cm. The solid graph shows the hard spring when its
initial amplitude is a = 1.5 cm. Note that the two oscillations have the same
frequency.

t

x

sec

cm

1.5

4

1 2 3
hard spring

linear spring
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The non-linear spring behaves like the linear one because the amplitudesThe effect of amplitude
on acceleration are small. To understand this reason, we must compare the accelerations

of the two springs. For the linear spring we have v′ = −25x, while for
the non-linear spring, v′ = −25x − .2x3. As the following graph shows,
these expressions are approximately equal when the amplitude x lies between
+2 cm and −2 cm. In other words, the linear range of the hard spring is

x

cm

v′cm
sec2

linear: = −25x

non-linear: = −25x − .2x3

−8 −4 4 8

200

−200

−2 ≤ x ≤ 2 cm. Since the initial amplitude was 1.5 cm—well within the
linear range—the hard spring acts like a linear one. In particular, its fre-
quency is approximated closely by the formula b/2π cycles per second. This
is 5/2π ≈ .8 Hz.

A different set of circumstances is reflected in the following graph. TheLarge-amplitude
oscillations hard spring has been given an initial amplitude of 8 cm. As the graph of

v′ shown above indicates, the hard spring experiences an acceleration about
50% greater than the linear spring at the that amplitude.

t

x

sec

cm

4

8

1 2 3

linear spring 
≈ 21/2 cycles

hard spring 
≈ 3 cycles
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As a consequence, the hard spring oscillates with a noticeably higher fre- The frequency of a
non-linear spring

depends on
its amplitude

quency! It completes 3 cycles in the time it takes the linear spring to com-
plete 21

2
—or 6 cycles while the linear spring completes 5. The frequency of

the hard spring is therefore about 6/5-th the frequency of the linear spring,
or 6/5 × 5/2π = 3/π ≈ .95 Hz.

The solutions of the non-linear spring problem still look like cosine func-
tions, but they’re not. It’s easier to see the difference if we take a large
amplitude solution, and look at velocity instead of position. In the graph
below you can see how the velocity of a hard spring differs from a pure sine A mathematical

commentfunction of the same period and amplitude. Since there are no sine or cosine
functions here, we can’t even yet be sure that the motion of a non-linear
spring is truly periodic! We will prove this, though, in the next section by
using the notion of a first integral.

time

velocity

sec

cm
sec

pure sine function
velocity of hard spring

There are other ways we might have modified the basic equation v′ = Other non-linear
springs−b2x to make the spring non-linear. The formula v′ = −b2x − βx3 is only

one possibility. Incidentally, our study of a hard spring was based on choosing
β > 0 in this formula. Suppose we choose β < 0 instead. As you will see
in the exercises, this is a soft spring: we can double the stretch in a soft
spring by using less than double the force. The pendulum, which we will
study next, behaves like a soft spring.

Although we can use sine and cosine functions to solve the linear oscillator
problem, there are, in general, no formulas for the solutions to the non-linear
oscillator problems. We must use numerical methods to find their graphs—as
we have done in the last three pages.

The basic differential equation for a linear spring is also used to model a
vibrating string. Think of a tightly-stretched wire, like a piano string or a The harmonic oscillator

guitar string. Let x be the distance the center of the string has moved from
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rest at any instant t. The larger x is, the more strongly the tension on the
string will pull it back towards its rest position. Since x is usually very small,
it makes sense to assume that this “restoring force” is a linear function of x:
−c x. If v is the velocity of the string, then mv′ = −c x by Newton’s laws of
motion. Because of the connection between vibrating strings and music, this
differential equation is called the harmonic oscillator.

The Sine and Cosine Revisited

The sine and cosine functions first appear in trigonometry, where they are
defined for the acute angles of a right triangle. Negative angles and angles
larger than 90◦, are outside their domain. This is a serious limitation. To
overcome it, we redefine the sine and cosine on a circle. The main conse-
quence of this change is that the sine and cosine become periodic.

However, neither circles nor triangles are particularly useful if we wantA computable
definition of the
sine and cosine

to calculate the values of the sine or the cosine. (How would you use one of
them to determine sin(1) to four—or even two—decimal places accuracy?)
Our experience with the harmonic oscillator gives yet another way to define
the sine and the cosine functions—a way that conveys computational power.

The idea is simple. With hindsight we know that u = sin(t) and v = cos(t)
are the solutions to the initial value problem

u′ = v, u(0) = 0,

v′ = −u v(0) = 1.

Now make a fresh start with this initial value problem, and define u = sin(t)
and v = cos(t) to be its solution! Then we can calculate sin(1), for instance,
by Euler’s method. Here is the result.

number estimate of
of steps sin(1)

100
1 000

10 000
100 000

1 000 000

.845671

.841892

.841513

.841475

.841471

So we can say sin(1) = .8415 to four decimal places accuracy.
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Our point of view here is that differential equations define functions. In
chapter 10, we shall consider still another method for defining and calculating
these important functions, using infinite series.

The Pendulum

x

v

0

1

We are going to study the motion of a pendulum that can swing in a full 360◦

circle. To keep the physical details as simple as possible, we’ll assume its mass
is 1 unit, and that all the mass is concentrated in the center of the pendulum
bob, 1 unit from the pivot point. Assume that the pendulum is x units from
its rest position at time t, where x is measured around the circular path
that the bob traces out. Assume the velocity is v. Take counterclockwise
positions and velocities to be positive, clockwise ones to be negative. When
the pendulum is at rest we have x = v = 0.

x

x
G

F

G sinx = F

When the pendulum is moving, there must be forces at work. Let’s ignore
friction, as we did with the spring. The force that pulls the pendulum back
toward the rest position is gravity. However, gravity itself—G in the figure
at the right—pulls straight down. Part of the pull of G works straight along
the arm of the pendulum, and is resisted by the pivot. (If not, the pendulum
would be pulled out of the pivot and fall to the floor!) It is the other part,
labelled F, that moves the pendulum sideways.

The size of F depends on the position x of the pendulum. When x = 0,
the sideways force F is zero. When x = π/2 (the pendulum is horizontal),
the entire pull of G is “sideways”, so F = G. To see how F depends on x
in general, note first that we can think of x as the radian measure of the
angle between the pendulum and the vertical (because x is measured around
a circle of radius 1). In the small right triangle, the hypotenuse is G and
the side opposite the angle x is exactly as long as F. By trigonometry, F =
G sin x.

Let’s choose units which make the size of G equal to 1. Then the size Newton’s laws
produce a model
of the pendulum

of F is simply sin x. Since F points in the clockwise (or negative) direction
when x is positive, we must write F = − sin x. According to Newton’s laws
of motion, the force F is the product of the mass and the acceleration of the
pendulum. Since the mass is 1 unit and the acceleration is v′ = x′′, we finally
get x′′ = − sin x, or

x′ = v v′ = − sin x.
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Now that we have an explicit description of the restoring force, we canThe pendulum is
a soft spring see that the pendulum behaves like a non-linear spring. However, it is true

that doubling the displacement x always less than doubles the force, as the
graph below demonstrates. Thus the pendulum is like a soft spring.

x

v′

1 2 3
−1−2−3

a linear spring

the pendulum
a soft spring

v′ = −sin x

v′ = −x

Because a swinging pendulum is used keep time, it is important to control
the period of the swing. Physics analyzes how the period depends on the
pendulum’s length and mass. We will confine ourselves to analyzing how the
period depends on its amplitude.

Let’s draw on our experience with springs. According to the graph above,Small-amplitude
oscillations the restoring force of the pendulum is essentially linear for small amplitudes—

say, for −.5 ≤ x ≤ .5 radians. Therefore, if the amplitude stays small, it is
reasonable to expect that the pendulum will behave like a linear oscillator.
As the graph indicates, the differential equation of the linear oscillator is
v′ = −x. This is of the form v′ = −b2x with b = 1. The period of such
a linear oscillator is 2π/b = 2π ≈ 6.28. Let’s see if the pendulum has this
period when it swings with a small amplitude. We use Euler’s method to
solve the initial value problem

x′ = v, x(0) = a,

v′ = − sin x, v(0) = 0,

for several small values of a. The results appear in the graph below.

t

x

6 12
−.4

.2

.5

As you can see, small amplitude oscillations have virtually the same period.
Thus, we would not expect the fluctuations in the amplitude of the pendulum
on a grandfather’s clock to affect the timekeeping.
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What happens to the period, though, if the pendulum swings in a large Large-amplitude
oscillationsarc? The largest possible initial amplitude we can give the pendulum would

point it straight up. The pendulum is then 180◦ from the rest position,
corresponding to a value of x = π = 3.14159 . . .. In the graph below we
see the solution that has an initial amplitude of x = 3, which is very near
the maximum possible. Its period is much larger than the period of the
solution with x = .5, which has been carried over from the previous graph for
comparison. Even the solution with x = 2 has a period which is significantly
larger that the solution with x = .5.

t

x

3 6 9 12

.5

2

3

x = .5

x = 2

x = 3

We saw that the period of a hard spring got shorter (its frequency increased)
when its amplitude increased. But the pendulum is a soft spring and shows
motions of longer period as its initial amplitude is increased. Notice how
flat the large-amplitude graph is. This means that the pendulum lingers
at the top of its swing for a long time. That’s why the period becomes so
large. Check the graph now and confirm that the period of the large swing
is about 17.
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Although we can’t get formulas to describe the motion of the pendulumThe pendulum at rest

for most initial conditions, there are two special circumstances when we can.
Consider a pendulum that is initially at rest: x = 0 and v = 0 when t = 0.
It will remain at rest forever: x(t) = 0, v(t) = 0 for all t ≥ 0. What we really
mean is that the constant functions x(t) = 0 and v(t) = 0 solve the initial
value problem

x′ = v, x(0) = 0,

v′ = − sin x, v(0) = 0.

There is another way for the pendulum to remain at rest. The key is thatThe pendulum
balanced on end v must not change. But v′ = − sin x, so v will remain fixed if v′ = − sin x = 0.

Now, sin x = 0 if x = 0. This yields the rest solution we have just identified.
But sin x is also zero if x = π. You should check that the constant functions
x(t) = π, v(t) = 0 solve this initial value problem:

x′ = v, x(0) = π,

v′ = − sin x, v(0) = 0.

Since the pendulum points straight up when x = π radians, this motionless
solution corresponds to the pendulum balancing on its end.

These two solutions are called equilibrium solutions (from the LatinStable and unstable
equilibrium solutions æqui-, equal + libra, a balance scale). If the pendulum is disturbed from its

rest position, it tends to return to rest. For this reason, rest is said to be
a stable equilibrium. Contrast what happens if the pendulum is disturbed
when it is balanced upright. This is said to be an unstable equilibrium. We
will take a longer look at equilibria in chapter 8.

Predator–Prey Ecology

Many animal populations undergo nearly periodic fluctuations in size. It isWhy do populations
fluctuate? even more remarkable that the period of those fluctuations varies little from

species to species. This fascinates ecologists and frustrates many who hunt,
fish, and trap those populations to make their livelihood. Why should there
be fluctuations, and can something be done to alter or eliminate them?

There are models of predator-prey interaction that exhibit periodic be-
havior. Consequently, some researchers have proposed that the fluctuations
observed in a real population occur because that species is either the preda-
tor or the prey for another species. The models themselves have different
properties; we will study one proposed by R. May. As we did with the spring
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and the pendulum, we will ask how the frequency and amplitude of periodic
solutions depend on the initial conditions.

May’s model involves two populations that vary in size over time: the
predator y and the prey x. The numbers x and y have been set to an
arbitrary scale; they lie between 0 and 20. The model also has six adjustable
parameters, but we will simply fix their values:

prey: x′ = .6 x
(

1 − x

10

)

− .5 xy

x + 1
,

predator: y′ = .1 y
(

1 − y

2x

)

.

These equations will be our starting point. However, if you wish to learn
more about the premises behind May’s model, you can refer to chapter 4.1
(page 191).

To begin to explore the model, let’s see what happens to the prey popu- A predator-free
equilibrium . . .lation when there are no predators (y = 0). Then the size of x is governed by

the simpler differential equation x′ = .6x(1 − x/10). This is logistic growth,
and x will eventually approach the carrying capacity of the environment,
which in this case is 10. (See chapter 4.1, pages 183–185.) In fact, you
should check that

x(t) = 10, y(t) = 0,

is an equilibrium solution of May’s original differential equations. Now sup-
pose we introduce a small number of predators: y = .1. Then the equilibrium . . . upset by predators

is lost, and the predator and prey populations fall into cyclic patterns with
the same period:

t

x, y

10

.1
0 50 100 150 200

x: prey

y: predator

period ≈ 39
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In the other models of periodic behavior we have studied, the frequencySolutions with various
initial conditions . . . and amplitude have depended on the initial conditions. Is the same true

here? The following graphs illustrate what happens if the initial populations
are either

x = 8, y = 2, or x = 1.1, y = 2.2.

For the sake of comparison, the solution with x = 10, y = .1 is also carried
over from the previous page.

t

x, y

8

2

0 50 100 150 200

x: prey

y: predator

t

x, y

1.1
2.2

0 50 100 150 200

x: prey

y: predator

t

x, y

10

.1
0 50 100 150 200

x: prey

y: predator

In all of these graphs, periodic behavior eventually emerges. What is
most striking, though, is that it is the same behavior in all cases. The. . . all have the

same amplitude
and frequency

amplitude and the period do not depend on the initial conditions. Moreover,
even though the populations peak at different times on the three graphs (i.e.,
the phases are different), the y peak always comes about 14 time units after
the x peak.
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Proving a Solution Is Periodic

The graphs in the last ten pages provide strong evidence that non-linear Can we prove that
systems have periodic

oscillations?
springs, pendulums, and predator-prey systems can oscillate in a periodic
way. The evidence is numerical, though. It is based on Euler’s method,
which gives us only approximate solutions to differential equations. Can we
now go one step further and prove that the solutions to these and other
systems are periodic?

Notice that we already have a proof in the case of a linear spring. The
solutions are given by formulas that involve sines and cosines, and these are The virtue

of a formulaperiodic by their very design as circular functions. But we have no formulas
for the solutions of the other systems. In particular, we are not able to say
anything about the general properties of the solutions (the way we can about
sine and cosine functions). The approach we take now does not depend on
having a formula for the solution.

It may seem that what we should do is develop more methods for finding formulas for solutions.
In fact, two hundred years of research was devoted to this goal, and much has been accomplished.
However, it is now clear that most solutions simply have no representation “in closed form” (that
is, as formulas). This isn’t a confession that we can’t find the solutions. It just means the
formulas we have are inadequate to describe the the solutions we can find.

The pendulum—a qualitative approach

x = a

v = 0

Stage 1:

Let’s work with the pendulum and model it by the following initial value
problem:

x′ = v, x(0) = a,

v′ = − sin x, v(0) = 0.

We’ll assume 0 < a < π. Thus, at the start the pendulum is motionless and
raised to the right. Call this stage 1. We’ll analyze what happens to x and
v in a qualitative sense. That is, we’ll pay attention to the signs of these
quantities, and whether they’re increasing or decreasing, but not their exact
numerical values.

x = 0

v = −V1

Stage 2:

According to the differential equations, v determines the rate at which x
changes, and x determines the rate at which v changes. In particular, since
we start with 0 < x < π, the expression − sin x must be negative. Thus v′ is
negative, so v decreases, becoming more and more negative as time goes on.
Consequently, x changes at an ever increasing negative rate, and eventually
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its value drops to 0. The moment this happens the pendulum is hanging
straight down and moving left with some large negative velocity −V1. This
is stage 2.

Immediately after the pendulum passes through stage 2, x becomes neg-
ative. Consequently, v′ = − sin x now has a positive value (because x is
negative). So v stops decreasing and starts increasing. Since x gets more
and more negative, v increases more and more rapidly. Eventually v must
become 0. Suppose x = −B1 at the moment this happens. The pendulum is
then poised motionless and raised up B1 units to the left. We have reached
stage 3.

x = −B1

v = 0

Stage 3:

x = 0

v = V2

Stage 4:

x = B2

v = 0

Stage 5:

The situation is now similar to stage 1, because v = 0 once again. The
difference is that x is now negative instead of positive. This just means that
v′ is positive. Consequently v becomes more and more positive, implying
that x changes at an ever increasing positive rate. Eventually x reaches 0.
The moment this happens the pendulum is again hanging straight down (as
it was at stage 2), but now it is moving to the right with some large positive
velocity V2. Let’s call this stage 4. It is similar to stage 2.

Immediately after the pendulum passes through stage 4, x becomes pos-
itive. This makes v′ = − sin x negative, so v stops increasing and starts
decreasing. Eventually v becomes 0 again (just as it did in the events that
lead up to stage 3). At the moment the pendulum stops, x has reached some
positive value B2. Let’s call this stage 5.

The “trade-off” between speed and height

We appear to have gone “full circle.” The pendulum has returned to the
right and is once again motionless—just as it was at the start. However, weAre we back

where we started? don’t know that the current position of the pendulum (which is x = B2) is
the same as its initial position (x = a). This is a consequence of working
qualitatively instead of quantitatively. But it is also the nub of the problem.
For the motion of the pendulum to repeat itself exactly we must have B2 = a.
Can we prove that B2 = a?

Since a and B2 are the successive positive values of x that occur when
v = 0, it makes sense to explore the connection between x and v. In a real
pendulum there is an obvious connection. The higher the pendulum bob
rises, the more slowly it moves. If you review the sequence of stages we just
went through, you’ll see that the same thing is true of our mathematical
model. This suggests that we should focus on the height of the pendulum
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bob and the magnitude of the velocity. This is called the speed; it is just
the absolute value |v| of the velocity.

x 1
1

cos x

h

A little trigonometry shows us that when the pendu-
lum makes an angle of x radians with the vertical, the
height of the pendulum bob is

h = 1 − cos x.

When x is a function of time t, then h is too and we have

h(t) = 1 − cos(x(t)).

Our intuition about the pendulum tells us that every change in height
is offset by a change in speed. (This is the “trade-off.”) It makes sense,
therefore, to compare the rates at which the height and the speed change
over time. However, the speed |v(t)| involves an absolute value, and this Changes in speed

. . . modifiedis difficult to deal with in calculus. (The absolute value function is not
differentiable at 0.) Since we are using |v| simply as a way to ignore the
difference between positive and negative velocities, we can replace |v| by v2.
Then we find

d

dt
(v(t))2 = 2 · v(t) · v′(t) = −2 · v · sin x.

Notice that we needed the chain rule to differentiate (v(t))2. After that we
used the differential equations of the pendulum to replace v′ by − sin x.

The height of the pendulum changes at this rate: Changes in height

d

dt
h(t) = sin(x(t)) · x′(t) = sin x · v.

We needed the chain rule again, and we used the differential equations of the
pendulum to replace x′ by v.

The two derivatives are almost exactly the same; except for sign, they
differ only by a factor 2. If we use 1

2
v2 instead of v2, then the trade-off is

exact: every increase in 1
2
v2 is exactly matched by a decrease in h, and vice

versa. Therefore, if we combine 1
2
v2 and h to make the new quantity

E = 1
2
v2 + h = 1

2
v2 + 1 − cos x,

then we can say that the value of E does not change as the pendulum moves.
Since E depends on v and h, and these are functions of the time t, E Showing E is a

constantitself is a function of t. To say that E doesn’t change as the pendulum moves
is to say that this function is a constant—in other words, that its derivative
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is 0. This was, in fact, the way we constructed E in the first place. Let’s
remind ourselves of why this worked. Since E = 1

2
v2 + h,

dE

dt
= v · v′ + h′ = v · (− sin x) + sin x · v = 0.

To get the second line we used the fact that v′ = − sin x and x′ = v when
x(t) and v(t) describe pendulum motion.

The quantity E is called the energy of the pendulum. The fact that E
doesn’t change is called the conservation of energy of the pendulum. A
number of problems in physics can be analyzed starting from the fact that
the energy of many systems is constant.

Let’s calculate the value of E at the five different stages of our pendulum:

stage v x h E

1 0 a 1 − cos a 1 − cos a
2 −V1 0 0 1

2
(−V1)

2

3 0 −B1 1 − cos B1 1 − cos B1

4 V2 0 0 1
2
V2

2

5 0 B2 1 − cos B2 1 − cos B2

By the conservation of energy, all the quantities in the right-hand column
have the same value. Looking at the value for E in stages 2 and 4, we see that
V1 = V2—whenever the pendulum is at the bottom of its swing (x = 0), it is
moving with the same speed, the velocity being positive when the pendulum
is swinging to the right, negative when it is swinging to the left. Similarly,
if we look at the value of E at stages 1, 3, and 5, we see that

1 − cos a = 1 − cos B1 = 1 − cos B2.

We can put this another way: whenever the pendulum is motionless, it must
be back at its starting height h = 1 − cos a.

In particular, we have thus shown that B2 (the position of the pendulum
after it’s gone over and back) = a (the position of the pendulum at the be-
ginning). Thus the value for x and the value for v are the same in stage 5 and
in stage 1—the two stages are mathematically indistinguishable. Since the. . . and that the

oscillations are periodic solution to an initial value problem depends only on the differential equation
and the initial values, what happens after stage 5 must be identical to what
happens after stage 1—the second swing of the pendulum must be identical
to the first! Thus the motion is periodic, which completes our proof.
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You can also use the fact that the value of E doesn’t change to determine
the velocities −V1 and V2 that the pendulum achieves at the bottom of its
swing. In the exercises you are asked to show that

V1 = V2 =
√

2 − 2 cos a.

First Integrals

Notice in what we have just done that we haven’t solved the differential
equation for the pendulum in the sense of finding explicit formulas giving x
and v in terms of t. Instead we found a combination of x and v that remained
constant over time and used this to deduce some of the behavior of x and v.
Such a combination of the variables that remains constant is called a first First integrals

integral of the differential equation. A surprising amount of information
about a system can be inferred from first integrals (when they exist). They
play an important role in many branches of physics, giving rise to the basic
conservation laws for energy, momentum, and angular momentum. We will
have more to say about first integrals and conservation laws in chapter 8.

In the exercises you are asked to explore first integrals for linear and non-
linear springs—and to prove thereby that (frictionless) non-linear springs
have periodic motions.

Exercises

Linear springs

In the text we always assumed that the weight on the spring was motionless
at t = 0 seconds. The first four exercises explore what happens if the weight is
given an initial impulse. For example, instead of simply releasing the weight,
you could hit it out of your hand with a hammer. This means v(0) 6= 0. The
general initial value problem is

x′ = v, x(0) = a,

v′ = −b2x, v(0) = p.

The aim is to see how the period, amplitude, and phase of the solution depend
on this new condition.

1. Pure impulse. Take b = 5 per second, as in the first example in the
text, but suppose

a = 0 cm, p = 20 cm/sec.
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(In other words, you strike the weight with a hammer as it sits motionless
at the rest position x = 0 cm.)

a) Use the differential equation solver on a computer to solve the initial
value problem numerically and graph the result.

b) From the graph, estimate the period and the amplitude of the solution.

c) Find a formula for this solution, using the graph as a guide.

d) From the formula, determine the period and amplitude of the solution.
Does the period depend the initial impulse p, or only on the spring constant
b? Does the amplitude depend on p?

2. Impulse and displacement. Take a = 4 cm and b = 5 per second, as
in the first example on page 434. But assume now that the weight is given
an initial downward impulse of p = −20 cm/sec.

a) Solve the initial value problem numerically and graph the result.

b) From the graph, estimate the period and the amplitude of the solution.
Compare these with the period and the amplitude of the solution obtained
in the text for p = 0 cm/sec.

3. Let a and b have the values they did in the last exercise, but change p
to +20 cm/sec. Graph the solution, and compare the amplitude and phase
of this solution with the solution of the previous exercise.

4. Let a, b, and p have arbitrary values. The last two exercises suggest that
the solution to the general initial value problem for a linear spring can be
given by the formula x(t) = A sin(bt − ϕ). The amplitude A and the phase
difference ϕ depend on the initial conditions. Show that the formula for x(t)
is correct by expressing A and ϕ in terms of the initial conditions.

5. Strength of the spring. Take two springs, and suppose the second is
twice as strong as the first. That is, assume the second spring constant is
twice the first. Put equal weights on the ends of the two springs, and use
the initial value v(0) = 0 in both cases. Which weight oscillates with the
higher frequency? How are the frequencies of the two related—e.g., is the
frequency of the second equal to twice the frequency of the first, or should
the multiplier be a different number?

6. a) Effect of the weight. Hang weights from two identical springs (i.e.,
springs with the same spring constant). Suppose the mass of the second
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weight is twice that of the first. Which weight oscillates with the higher
frequency? How much higher—twice as high, or some other multiplier?

b) Do this experiment in your head. Measure the frequency of the oscilla-
tions of a 200 gram weight on a spring. Suppose a second weight oscillates
at twice the frequency; what is its mass?

A reality check. Do your results in the last two exercises agree with your
intuitions about the way springs operate?

7. a) First integral. Show that E = 1
2
v2 + 1

2
b2x2 is a first integral for the

linear spring

x′ = v, x(0) = a,

v′ = −b2x, v(0) = p.

In other words, if the functions x(t) and v(t) solve this initial value problem,
you must show that the combination

E = 1
2
(v(t))2 + 1

2
b2 (x(t))2

does not change as t varies.

b) What value does E have in this problem?

c) If x is measured in cm and t in sec, what are the units for E?

8. a) This exercise concerns the initial value problem in the previous ques-
tion. When x = 0, what are the possible values that v can have?

b) At a moment when the weight on the spring is motionless, how far is it
from the rest position?

9. You already know that initial value problem in exercise 7 has a solution
of the form x(t) = A sin(bt − ϕ) and therefore must be periodic. Given a
different proof of periodicity using the first integral from the same exercise,
following the approach used by the book in the case of the pendulum.

Non-linear springs

10. a) Suppose the acceleration v′ of the weight on a hard spring depends
on the displacement x of the weight according to the formula v′ = −16x−x3
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cm/sec2. If you pull the weight down a = 2 cm, hold it motionless (so p = 0
cm/sec) and then release it, what will its frequency be?

b) How far must you pull the weight so that its frequency will be double
the frequency in part (a)? (Assume p = 0 cm/sec, so there is still no initial
impulse.)

11. Suppose the acceleration of the weight on a hard spring is given by v′ =
−16x− .1 x3 cm/sec2. If the weight is oscillating with very small amplitude,
what is the frequency of the oscillation?

12. a) Suppose a weight on a spring accelerates according to the formula

dv

dt
= − 25x

1 + x2
cm/sec2.

This is a soft spring. Explain why. [Graph v′ as a function of x.]

b) If the initial amplitude of the weight is a = 4 cm, and there is no initial
impulse (so p = 0 cm/sec), what is the frequency of the oscillation?

c) Double the initial amplitude, making a = 8 cm but keeping p = 0 cm/sec.
What happens to the frequency?

d) Suppose you make the initial amplitude a = 100 cm. Now what happens
to the frequency?

13. First integrals. Suppose the acceleration on a non-linear spring is

v′ = −b2x − βx3, where v = x′.

Show that the function

E = 1
2
v2 + 1

2
b2x2 + 1

4
βx4

is a first integral. (See the text (page 451) and exercise 7, above.)

14. Suppose the acceleration on a non-linear spring is v′ = −16x − x3

cm/sec2, and initially x = 2 cm and v = 0 cm/sec.

a) The first integral of the preceding exercise must have a fixed value for
this spring. What is that value?

b) How fast is the spring moving when it passes through the rest position?
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c) Can the spring ever be more than 2 cm away from the rest position?
Explain your answer.

15. Construct a first integral for the initial value problem

x′ = v, x(0) = a,

v′ = −b2x − βx3, v(0) = p,

and use it to show that the solution to the problem is periodic.

16. a) Show that the function

E = 1
2
v2 + 25

2
ln(1 + x2)

is a first integral for the soft spring in exercise 12.

b) If the initial amplitude is a = 4 cm and the initial velocity is 0 cm/sec,
what is the speed of the weight as it moves past the rest position?

c) Prove that the motion of this spring is periodic.

17. Suppose the acceleration on a non-linear spring has the general form
v′ = −f(x). Can you find a first integral for this spring? In other words,
you are being asked to show that a first integral always exists whenever the
rate of change of the velocity depends only on the position x (and not, for
instance, on v itself, or on the time t).

The pendulum

These questions deal with the initial value problem

x′ = v, x(0) = a,

v′ = − sin x, v(0) = p.

In particular, we want to allow an initial impulse p 6= 0.

18. Take a = 0 and given the pendulum three different initial impulses:
p = .05, p = .1, p = .2. Use the differential equation solver on a computer to
graph the three motions that result. Determine the period of the motion in
each case. Are the periods noticeably different?

19. What is the period of the motion if p = 1; if p = 2?
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20. By experiment, find how large an initial impulse p is needed to knock the
pendulum “over the top”, so it spins around its axis instead of oscillating?
Assume x(0) = 0. (Note: when the pendulum spins, x just keeps getting
larger and larger.) Of course any enormous value for p will guarantee that
the pendulum spins. Your task is to find the threshold ; this is the smallest
initial impulse that will cause spinning.

21. a) Suppose the initial position is horizontal: a = +π/2. If you give the
pendulum an initial impulse p in the same direction (that is, p > 0), find by
experiment how large p must be to cause the pendulum to spin? Once again,
the challenge is to find the threshold value.

b) Reverse the direction of the initial impulse: p < 0, and choose p so the
pendulum spins. What is the smallest |p| that will cause spinning?

22. First integrals. Consider the initial value problem described in the
text:

x′ = v, x(0) = a,

v′ = − sin x, v(0) = 0.

Use the first integral for this problem found on page 449 to show that v =√
2 − 2 cos a when x = 0.

23. a) Suppose the pendulum described in the previous exercise is at rest
(x(0) = 0), but given an initial impulse v(0) = p. What value does the first
integral have in this case?

b) Redo exercise 20 using the information the first integral gives you. You
should be able to find the exact threshhold value of the impulse that will
push the pendulum “over the top.”

24. Redo exercise 21 using an appropriate first integral. Find the threshhold
value exactly.

Predator-prey ecology

25. a) The May model. The differential equations for this model are on
page 445. Show that the constant functions

x(t) = 10, y(t) = 0,
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are a solution to the equations. This is an equilibrium solution, as defined
in the discussion of the pendulum (page 444).

b) Is x(t) = 0, y(t) = 0 an equilibrium solution?

c) Here is yet another equilibrium solution:

x(t) =
−23 ±

√
889

6
, y(t) =

−23 ±
√

889

3
.

Either verify that it is an equilibrium, or explain how it was derived.

26. a) Use a computer differential equation solver to graph the solution to
the May model that is determined by the initial conditions

x(0) = 1.13, y(0) = 2.27.

These initial conditions are very close to the equilibrium solution in part (c)
of the previous exercise. Does the solution you’ve just graphed suggest that
this equilibrium is stable or that it is unstable (as described on page 444).

b) Change the initial conditions to

x(0) = 5, y(0) = 5,

and graph the solution. Compare this solution to those determined by the
initial conditions used in the text. In particular, compare the shapes of the
graphs, their periods, and the time interval between the peak of x and the
peak of y.

27. Consider this scenario. Imagine that the prey species x is an agricultural
pest, while the predator y does not harm any crops. Farmers would like to
eliminate the pest, and they propose to do so by bringing in a large number
of predators. Does this strategy work, according to the May model? Suppose
that we start with a relatively large number of predators:

x(0) = 5, y(0) = 50.

What happens? In particular, does the pest disappear?

28. The Lotka–Volterra model. We use the differential equations found
in chapter 4, page 193, modified so that relevant values of x and y will be
roughly the same size:

x′ = .1x − .005xy,

y′ = .004xy − .04y.
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Take x(0) = 20 and y(0) = 10. Use a computer differential equation solver to
graph the solution to this initial value problem. The solutions are periodic.
What is the period? Which peaks first, the prey x or the predator y? How
much sooner?

29. Solve the Lotka–Volterra model with x(0) = 10 and y(0) = 5. What
is the period of the solutions, and what is the difference between the times
when the two populations peak? Compare these results with those of the
previous exercise.

30. Show that x(t) = 0, y(t) = 0 is an equilibrium solution of the Lotka–
Volterra equations. Test the stability of this solution, take these nearby
initial conditions:

x(0) = .1, y(0) = .1,

and find the solution. Does it remain near the equilibrium? If so, the equi-
librium is stable; if not, it is unstable.

31. Show that x(t) = 10, y(t) = 20 is another equilibrium solution of these
Lotka–Volterra equations. Is this equilibrium stable? (We will have more to
say about stability of equilibria in chapter 8.)

32. This is a repeat of the biological pest control scenario you treated above,
using the May model. Solve the Lotka–Volterra model when the initial pop-
ulations are

x(0) = 5, y(0) = 50.

What happens? In particular, does the pest disappear?

33. First integrals. As remarkable as it may seem, the Lotka–Volterra
model has a first integral. Show that the function

E = a ln y + d lnx − by − cx

is a first integral of Lotka–Volterra model given in the general form

x′ = ax − bxy,

y′ = cxy − dy.

34. Prove that the solutions of the Lotka–Volterra equations are periodic.
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The van der Pol oscillator

One of the essential functions of the electronic circuits in a television or radio
transmitter is to generate a periodic “signal” that is stable in amplitude and
period. One such circuit is described by the van der Pol differential equations.
In this circuit x(t) represents the current, and y(t) the voltage, at time t.
These functions satisfy the differential equations

x′ = y, y′ = Ay − By3 − x, with A, B > 0.

35. Take A = 4, B = 1. Make a sketch of the solution whose initial values
are x(0) = .1, y(0) = 0. Your sketch should show that this solution is not
periodic at the outset, but becomes periodic after some time has passed.
Determine the (eventual) period and amplitude of this solution.

36. Obtain the solution whose initial values are x(0) = 2, y(0) = 0, and then
the one whose initial values are x(0) = 4, y(0) = 0. What are the periods
and amplitudes of these solutions? What effect does the initial current x(0)
have on the period or the amplitude?

7.4 Chapter Summary

The Main Ideas

• There are many phenomena which exhibit periodic and near-periodic
behavior. They are modelled by differential equations with periodic
solutions.

• A periodic function repeats: the smallest number T for which g(x +
T ) = g(x) for all x is the period of the function g. Its frequency is
the reciprocal of its period, ω = 1/T .

• The circular functions are periodic; they include the sine, cosine
and tangent functions. The period of sin(t) and cos(t) is 2π and the
frequency is 1/2π. The frequency of A sin(bt) and A cos(bt) is b/2π,
and the amplitude is A. In A sin(bt + ϕ), the phase is shifted by ϕ.

• A linear spring is one for which the spring force is proportional to
the amount that the spring has been displaced. The motion of a linear
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spring is periodic. Its amplitude depends only on the initial conditions,
and its frequency only on the mass and the spring constant.

• In a non-linear spring, the force is no longer proportional to the
displacement. The motion of a non-linear spring can still be periodic,
although it is no longer described simply by sines and cosines. Its fre-
quency depends on its amplitude. A pendulum in a non-linear spring.
It has two equilibria, one stable and one unstable.

• Many quantities oscillate periodically, or nearly so. Frequently the
behavior of these quantities can be modelled by systems of differential
equations. Pendulums, electronic components, and animal populations
are some examples.

• In some initial value problems, it may still be possible to find a first
integral—a combination of the variables that remains constant—even
when we can’t find formulas for the variables separately. We can often
derive important properties of the system (such as periodicity) from
these constant combinations.

Expectations

• You should be able to find the period, frequency and amplitude of
sine and cosine functions.

• You should be able to convert between radian measure and degrees.

• You should be able to find a formula for the solution of the differential
equation describing a linear spring.

• You should be able to use Euler’s method to describe the motion of a
non-linear spring.

• You should be able to analyze oscillations of various kinds to determine
their periodicity.
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Chapter 8

Dynamical Systems

A recurring theme in this book is the use of mathematical models consisting
of a set of differential equations to explore the behavior of physical systems
as they evolve over time. Some examples we have encountered are the S-I-R
epidemiological model, predator-prey systems, and the motion of a pendu-
lum. We call such a set of differential equations a dynamical system.
Dynamical systems play important roles in all branches of science. In this
chapter we will develop some general tools for thinking about them, with par-
ticular emphasis on the kinds of geometric insight provided by the concepts
of state space and vector field.

8.1 State Spaces and Vector Fields

If you look back at the examples we’ve considered, many of them take the The standard way
to graph solutionsfollowing form: we have two (or more) variable quantities x and y that are

functions of time, and we want to find the nature of these functions. What
we have to work with is a model for the way the functions x(t) and y(t)
are changing—i.e., we are told how to calculate x′(t) and y′(t) whenever we
know the values of x and y, and possibly t. From a given starting point,
we typically used something like Euler’s method to get values for x and y at
times on either side of the starting value. We then graphed the solutions as
functions of time—x against t and y against t.

In many instances, the rules determining x′(t) and y′(t) depend only on
the current values of x and y, but not on the value of t, so that knowing the
current state of the system (as specified by its x and y values) is sufficient to

461
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determine the future and past states of the system. Such systems are said to
be autonomous. These are the only systems we will be considering in this
chapter.

In autonomous systems there is another way of visualizing the solutionsA new way
to graph solutions:
as trajectories
in state space

that can be very powerful. Instead of plotting values of x and y as functions
of time, we view these values as coordinates of a point in the x-y plane. As
the system changes, the point (x, y) will trace out a curve in this plane. The
point (x, y) is called a state, and the portion of the plane corresponding
to physically possible states is called the state space of the system. The
solution curves that get traced out in state space are called trajectories.
By looking at three examples, we will see how this method of analysis can
help us understand the overall behavior of a system.

There are a number of effective software packages available which can
perform efficiently all the operations we will be considering, and one of them
would probably be the most useful tool for exploring the ideas in this chapter.
On the other hand, the basic numerical operations are quite simple, and it is
easy to modify the programs developed earlier in the text to perform these
operations as well. For those of you who enjoy programming, we will from
time to time point out some of these modifications. It can be instructive to
implement them in your own programs, and we urge you to do so.

Predator–Prey Models

In chapter 4.1, we looked at several models for the dynamics of a simple
system consisting of foxes (F ) and rabbits (R). Our first model was

R′ = .1R

(

1 − R

10000

)

− .005 RF rabbits per month,

F ′ = .00004 RF − .04 F foxes per month.

When we started with the initial values R(0) = 2000 rabbits and F (0) =
10 foxes, Euler’s method produced the following solutions for the first 250
months:
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Let’s see how the same model looks when we express it in the language of Two ways of
representing the same

solution graphically
state spaces. The state space consists of points in the R-F plane. For physical
reasons our state space consists only of points (R, F ) satisfying R ≥ 0 and
F ≥ 0. That is, our state space is the first quadrant of the R-F plane
together with the bounding portions of the R-axis and the F -axis.We can
easily modify the program used to obtain the curves in the previous picture
to plot the corresponding trajectory in the R-F plane. We only need change
the specification of the dimensions of the viewing window and change the
plot command to plot points with coordinates (R, F ) instead of (t, R) and
(t, F ); all the rest of the calculations are unchanged. Here’s what the same
solution looks like when we do this:
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You should notice several things here:

• The trajectory looks like a spiral, moving in towards, but never reach-
ing, some point at its center. We will see later (see page 469) how to
determine the coordinates of this limit state.

• If we had started at any other initial state with R > 0 and F > 0, we
would have gotten another spiral converging to the same limit (try it
and see).

• From the trajectory alone, there is no way of determining the time at
which the system passes through the different states. In part, this sim-
ply emphasizes that the succession of states the system moves through
does not depend on the initial value of t, nor does it depend on the units
in which t is measured—if t were measured in days or years, rather than
in months, the trajectory would be unchanged.

If we wanted to include some
information about time, one way
would be to label some points on
the trajectory with the associated
time value. If we label the points
every 6 months, say, we would get
the picture at the right. Note that
the points are not uniformly spaced
along the trajectory: the spacing isR
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largest between points relatively far from the origin, where the values of R
and F are largest. Moreover, the closer we come to the limit state, the tighter
the spacing becomes.

Could we have foreseen some of this behavior by looking at the originalThe differential
equations indicate how
the state changes

differential equations? Since the differential equations give R′ and F ′ as
functions of R and F alone, for each point (R, F ) in the state space we can
calculate the associated values for R′ and F ′. Knowing these values, we can
in turn tell in what direction and with what speed a trajectory would be
moving as it passed through the point (R, F ). Using our (by now) standard
argument, in time ∆t the change in R would be ≈ R′∆t, while F would
change by ≈ F ′∆t. We can convey this information graphically by choosing
a number of points in the state space, and from each point (R, F ) drawing
an arrow to the point (R + R′∆t, F + F ′∆t). We would typically choose a
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value for ∆t that keeps the arrows a reasonable size. Here’s what we get in
our current example when we choose a 16 × 16 grid of points in the region
0 ≤ R ≤ 3000 and 0 ≤ F ≤ 30, with ∆t = 1.
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Several things are immediately clear from this picture: the arrows suggest Arrows indicate the
change in state. . .a general counter-clockwise flow in the plane; change is most rapid in the

upper right corner; near the limit point of the flow and near the origin change
is so slow that arrows don’t even show up there.

Moreover, since the method used to construct the arrows is exactly the
way Euler’s method calculates the trajectories themselves, the solution tra-
jectory through a given initial state is a curve in the state space which at . . . and trajectories are

tangent to the arrowsevery point is tangent to the arrow at that point. For instance, if we super-
pose the trajectory graphed on page 463 on the picture above, we get the
following:
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The net effect of this construction is thus to transform a problem inHow to construct a
geometrical
visualization of a
dynamical system

analysis—findinging a solution to a system of differential equations—into
a problem in geometry—finding a curve which is tangent everywhere to a
prescribed set of arrows. This correspondence between the analytical and
the geometrical ways of formulating a problem is very powerful. Let’s sum
up the way this correspondence was established:

• We set up a state space for the system being studied. Each point—
called a state—in the space corresponds to a possible pair of values
the system could have.

• There is a rule which assigns to each point in the state space a velocity
vector—which can be visualized as an arrow in the space based at the
given point—specifying the rates at which the coordinates of the point
are changing. The rule itself, which is just our original set of rate
equations, is called a vector field. Geometrically, we can visualize the
vector field as the state space with all the associated arrows.

• Solutions to the dynamical system correspond to trajectories in the
state space. At every point on a trajectory the associated velocity
vector specified by the vector field will be tangent to the trajectory.
The existence and uniqueness principle for the solutions of differential
equations—there is a unique solution for each set of initial values—is
geometrically expressed by the property that every point in the state
space lies on exactly one trajectory. The set of all possible trajectories
is called the phase portrait of the system. For instance, part of the
phase portrait of the system we have been considering appears below.
We have drawn only a few trajectories—if we had drawn them all,
we would have seen only a black rectangle since there is a trajectory
through every point.
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There is almost too much detail in the picture of the vector field and the Simplifying the picture

phase portrait. One way to see the underlying simplicity is to notice that the
space is divided into four regions according to whether F ′ and R′ are positive
or negative. The signs of F ′ and R′ in turn determine the direction of the
associated velocity vector. For instance, if F ′ and R′ are both positive, then
F and R must both be increasing, which means the velocity vector will be
pointing up and to the right, while if F ′ > 0 and R′ < 0, the velocity vector
will be pointing up (F ′ > 0) and to the left (R′ < 0). Let’s see which states
correspond to which behaviors. Here are original rate equations:

R′ = .1R

(

1 − R

10000

)

− .005 RF rabbits per month,

F ′ = .00004 RF − .04 F foxes per month.

The equation for F ′ is slightly simpler, so we’ll start there. We see that
F ′ = 0 in exactly two cases:

1. when F = 0, or

2. when .00004R − .04 = 0, which is equivalent to saying R = 1000.

The first case simply says that if we are ever on the R-axis (F = 0), then
we stay there—a trajectory starting on the R-axis must move horizontally.
(If you start with no foxes, you will never have any at a later time.) The
second case says that the value of F isn’t changing whenever R = 1000. The
set of points satisfying R = 1000 is just a vertical line in the state space. The
condition that F ′ = 0 on this line can be expressed geometrically by saying
that any trajectory crossing this line must do so horizontally (why?).

The remainder of the quadrant consists of two regions: one consists of all Divide the state space
into regionspoints (R, F ) with 0 ≤ R < 1000 and F > 0, the other consists of all points

(R, F ) with R > 1000 and F > 0. Moreover, since we’ve already accounted
for all the points where F ′ = 0, it must be true that at every point of these
two regions F ′ must be > 0 or < 0; F ′ can’t equal 0 in either region. Further,
within any one region F ′ must be always positive or always negative. If it
were positive at some points and negative at others in a single region, there
would have to be transition points where it took on the value 0, which we
have just observed can’t happen. (Be sure you see why this is so!) Thus to
determine the sign of F ′ in an entire region, we only need to see what the sign
is at one point in that region. For instance if we let R = 2000 and F = 1, we
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see that F ′ = .08− .04, which is positive. Therefore we will have F ′ > 0 (fox
population increasing) for any other state (R, F ) with R > 1000. Similarly
we can show that F ′ < 0 (fox population decreasing) if 0 ≤ R < 1000—the
test point R = 0 and F = 1 is easy to evaluate. We could, of course, have
arrived at the same conclusions through more formal algebraic arguments,
which are fairly straightforward in this instance. In other problems, though,
the “test point” approach may be the more convenient.

In exactly the same way, if we look at the first rate equation, we find that
R′ = 0 in two cases:

1. when R = 0, or

2. when .1 (1−R/10000)− .005 F = 0. This is just the equation of a line,
which can be rewritten as F = 20 − .002 R.

The interpretations of these two cases are similar to the preceding anal-
ysis: any trajectory starting on the F -axis must stay on the F -axis; any
trajectory crossing the line F = 20 − .002 R must cross it vertically, since
R′ = 0—the R-value isn’t changing—there. Further, for any other state
(R, F ) we have R′ > 0 if the point is below this line (the point R = 1 and
F = 0 is a convenient test point where it’s easy to see without doing any
arithmetic that R′ > 0), and R′ < 0 if the point is above the line.

We can combine all this information into the following picture. We have
drawn a number of velocity vectors along the lines where R′ = 0 and F ′ = 0,
with one or two others in each region.
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We see that the entire state space is divided into four regions:

1. Region I, above the line F = 20 − .002 R and to the right of the line
R = 1000 . Here R′ < 0 , and F ′ > 0 , so all velocity vectors are
pointing up and to the left.

2. Region II, below the line F = 20 − .002 R and to the right of the line
R = 1000 . Here R′ > 0 , and F ′ > 0 , and all velocity vectors are
pointing up and to the right.

3. Region III, below the line F = 20 − .002 R and to the left of the line
R = 1000 . Here R′ > 0 , and F ′ < 0 , and all velocity vectors are
pointing down and to the right.

4. Region IV, above the line F = 20 − .002 R and to the left of the line
R = 1000 . Here R′ < 0 , and F ′ < 0 , and all velocity vectors are
pointing down and to the left.

Notice that this diagram makes it clear what the limit state of the spirals There are simple
trajectories: three are

just points. . .
is: it is the point Q = (1000, 18) where the line R = 1000 and the line
F = 20 − .002 R intersect. Notice that at Q both R′ = 0 and F ′ = 0, so
that if we are ever at Q, we never leave—the point Q is a trajectory all by
itself. The points O = (0, 0) and P = (10 000, 0) are the two other such point
trajectories. While the typical trajectory looks like a spiral coming into the
point Q, note that this picture contains three other “special” trajectories in . . . and three are

straight line segmentsaddition to the point trajectories:

• The F -axis for F > 0. The point (0, 0) is not part of this trajectory.

• The portion of the R-axis with 0 < R < 10000. Here the flow is toward
the right, towards the point P .

• The portion of the R-axis with 10000 < R. Flow is to the left, towards
P , with movement being slower and slower as P is approached. Note
that this is entirely separate from the preceding trajectory—you can’t
start at any point on one of them and get to any point on the other.

Equilibrium Points

The three points O, P , and Q in the previous figure—single points which Different kinds of
equilibrium pointsare also trajectories—are called equilibrium points for the system. If the

ststem ever in such a state, it stays in it forever. Moreover, the system can’t
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reach such a state from any other state (although it may be able to come
very close). Nevertheless, the behavior of the system is not the same near
the three points. If we zoom in on each of these points and draw some of the
nearby trajectories, we get the following pictures:

O P

Q

Points O and P look fairly similar—they would look even more alike if
we crossed over into the negative R and negative F regions and included the
trajectories there as well (impossible to do in the real world, but elementary
in mathematics!). In both cases there is one direction from which trajectories
come straight towards the point (in the case of O, this is the F -axis; for P
this is the R-axis), and one direction in which trajectories move directly away
from the point (the R-axis in the case of point O, and the line of slope −.0092
(we’ll see how to find this later!) in the case of P ). The remaining trajectories
look sort of like hyperbolas asymptotic to these two lines. Equilibrium points
of this sort are called saddle points. They are characterized by the propertySaddle point

equilibrium that there is exactly one direction along which the system can be displaced
and still move back towards the equilibrium point. Displacements in any
other direction get amplified, with the state eventually moving even further
away.

Point Q is quite different. If the state experiences a small displacement
away from Q in any direction, over time it will move back towards Q. Such
equilibrium points are called attractors, and Q is an example of a particular
kind of attractor called a spiral attractor. In this example, Q is an attractorSpiral equilibrium

for almost the entire space—if we start with any point (R, F ) with R > 0 and
F > 0, the trajectory through (R, F ) will eventually come arbitrarily close to
Q and stay there. We will shortly see examples (see page 477, for instance)
of attractors that draw from more limited portions of the state space.

For future reference, we define here the concept of repellor and spiralAttractors and repellors

repellor. Their vector fields look just like those for the attractors, but with
all the arrows reversed. If the state experiences a small displacement from a
repellor, over time this displacement will increase. We will see examples of a
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repellor in 8.4 It turns out that there is a relatively small number of kinds of
equilibrium points that a system can have, and we will meet most of them in
the next several examples. We will turn more systematically to the problem
of identifying the kinds of equilibrium points in 8.2.

The Pendulum Revisited

x

v

0

1

In chapter 7 we analyzed the motion of a pendulum. Let’s see how this
analysis looks when translated into the language of state space. We first need
to figure out what the appropriate coordinates are, which means deciding
what information we need in order to specify the state of a pendulum. If
you look back at the model in the last chapter, you will recall that the two
variables we needed were the displacement x and the velocity v. Since x and
v can potentially take on any values, our state space will be the entire x-v
plane. As before, the dynamical system is specified by the equations

x′ = v, v′ = − sin x.

Here is what the vector field for this system looks like:

v
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0
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x
−4π −3π −2π 2π 3π 4ππ−π 0

We have included in this diagram the lines where v′ = 0 (the vertical lines
at every multiple of π) and the line where x′ = 0 (the horizontal line at v = 0).
Note that the velocity vectors are horizontal on the lines corresponding to
v′ = 0 and are vertical on the line corresponding to x′ = 0. The points The equilibrium points

where these two sets of lines intersect—all points of the form (kπ, 0) for k
an integer—are the equilibrium points of the system. Let’s sketch the phase



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

472 CHAPTER 8. DYNAMICAL SYSTEMS

portrait of this system to see more clearly what’s going on:
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x
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We see that there are several different kinds of trajectories:

• There are the wavy trajectories moving from left to right across the
top of the state space. Note that for these trajectories the value of v is
always positive, and x just keeps increasing. These trajectories corre-Trajectories from left

to right in the state
plane correspond to
v > 0

spond to the cases where the velocity is great enough that the pendu-
lum can go over the top, continuing to loop around counterclockwise
(since x is increasing and x is measured in a counterclockwise direction)
forever. Notice that v takes on its minimum value when x is an odd
multiple of π, which is what we would expect, since the pendulum is
at the top of its arc then. Similarly, v takes on its maximum value at
the bottom of its arc—x an even multiple of π.

• The wavy trajectories moving from right to left across the bottom are
similar, except that v is always negative. This corresponds to the pen-
dulum wrapping around in a clockwise direction.

• There are the closed loops. Here x oscillates back and forth betweenOscillations of the
pendulum correspond
to closed loops in the
state plane

some maximum and minimum value symmetrically placed about an
even multiple of π. These trajectories correspond to a pendulum swing-
ing back and forth. The fact that some are centered at x-values other
than 0 is due to the fact that the same position of the pendulum can
be specified by an infinite number of values of x, all differing from each
other by multiples of 2π.

• There are the equilibrium points (kπ, 0), with k an even integer. ThisA center: a neutral
equilibrium corresponds to the pendulum hanging straight down. If we perturb

the system to a state slightly away from such a point, the pendulum
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swings back and forth, and the corresponding trajectory loops around
the equilibrium point forever. The system neither comes back to the
equilibrium point—the condition for an attractor—nor does it go wan-
dering off even further away—the condition for a repellor. Such an
equilibrium point is called a center. Notice that it is neither an at-
tractor or a repellor; it is said to be a neutral equilibrium.

• There are the equilibrium points (kπ, 0), with k an odd integer, corre-
spond to the pendulum balanced vertically. These are saddle points—
if we perturb the system slightly with exactly the right v-value for
the given x-value, the system will move back toward the vertical posi-
tion; any other combination, though, will cause the pendulum to wrap
around and around forever or to oscillate back and forth forever, de-
pending on whether the v-value is greater than or less than the critical
value.

• There are the trajectories connecting the saddle points. These corre-
spond to cases where the pendulum has just enough velocity so that it
keeps moving closer to the vertical position without either overshooting
and wrapping around, or coming to a stop and reversing direction. In
fact, these trajectories divide the state space: on one side of such a A connected curve in

the phase portrait may
be composed of more

than one trajectory

trajectory are points corresponding to states where the pendulum will
wrap around, and on the other side are points corresponding to states
where the pendulum will swing back and forth. Note that the saddle
points are not part of these trajectories, and that each arc between
saddle points is a separate trajectory—you can’t get from a point on
one of them to a point on another.

First Integrals Again

In the case of the pendulum, we have another way of thinking about the
trajectories. Recall that in chapter 7.3 we saw that, for any given initial
conditions, the quantity E = 1

2
v2 + 1 − cos x was constant over time. In the

vocabulary of this chapter, if (x, v) is any state on the trajectory through
(x1, v1), then it must be true that 1

2
v2 + 1 − cos x = 1

2
v2
1 + 1 − cos x1. But

this relation determines a curve in the x-v plane. We thus have an algebraic First integrals
can give equations

of trajectories
condition for each of the trajectories, which will depend on the initial values.
In this example we could actually get an equation for each trajectory by
first using the initial values to determine the energy E = 1

2
v2
1 + 1 − cos x1.
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We could then solve for v in terms of x by v = ±
√

2(E − 1 + cos x) and
plot the resulting function. (Whether we took the plus sign or the minus
sign would depend on whether the pendulum was moving counterclockwise
or clockwise.) Let’s return to our previous sketch of the phase portrait and
label some of the trajectories by their corresponding values of E:

E = 8.0

E = 8.0

E = 4.5

E = 4.5

E = 2.0

E = 2.0

E = 0.5

E = 0.5
E = 0v

−4

−3

−2

−1

0

1

2

3

4

x
−4π −3π −2π 2π 3π 4ππ−π 0

Note that for each value of E ≥ 0 there is more than one trajectory having
that value as its energy.

We can now characterize the different kinds of trajectories by their asso-
ciated energy E:

• If E > 2 we get a trajectory extending from x = ∞ to x = −∞ (or
vice versa).

• If 0 < E < 2, the trajectory is a closed loop.

• If E = 0, we get a neutral equilibrium point.

• If E = 2, we get either a saddle point equilibrium, or a trajectory
connecting two such saddle points.

A Model for the Acquisition of Immunity

One of the roles of mathematical modelling is to allow researchers to exploreA mathematical model
can be used to think
about the feasibility of
a proposed explanation

possible mechanisms to explain an observed phenomenon. As an example of
this, consider the phenomenon of immunity: for many infections, particularly
those due to viruses, once you’ve been exposed to the disease your body
continues to produce high levels of antibodies to the disease for the rest of
your life, even in the absence of any further stimulation from the virus.
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A capsule summary of the immune response: Vertebrates have a wide variety of specialized
cells called lymphocytes circulating in their blood streams and lymphatic systems at all times.
Each lymphocyte has the ability to recognize and bind with a specific kind of invading organism.
The invader is called an antigen, and the neutralizing molecules produced by the responding
lymphocytes are called antibodies. Prior to infection, the concentration level of a particular
antibody is typically so low as to be undetectable, but the appearance of the antigen causes the
system to respond by producing large quantities of the appropriate antibody. If the body can
continue to produce high levels of antibodies, it will be immune to reinfection.

In their book Infectious Diseases of Humans, Roy Anderson and Robert
May propose the following model as a possible mechanism for how antibody
levels are sustained. Suppose that there are two kinds of lymphocytes (called
effector cells) whose densities at time t are denoted by E1(t) and E2(t), with
the type 2 cells being the potential antibodies for the disease in question.
They assume further that new cells of type i (i = 1 or i = 2) are produced
by the bone marrow at constant rates Λi and they die at a per capita rates
of µi. They assume that each cell type is an antigen for the other—that
is, contact with cell type 2 triggers cell type 1 to proliferate, and vice versa.
They further assume that this proliferation response saturates to a maximum
net rate which is dependent on the product of their respective densities. The
following equations express this behavior:

dE1/dt = Λ1 − µ1E1 + a1E1E2/(1 + b1E1E2),

dE2/dt = Λ2 − µ2E2 + a2E1E2/(1 + b2E1E2).

Here the parameters Λi, µi, ai, and bi would have to be determined by ex-
perimental means. At this stage, though, when we are simply exploring to
see if such a mechanism might account for the phenomenon of permanent
immunity, we can try a range of values for the parameters to see how they
affect the behavior of the model.

E1

E2
100

101

102

103

104

105

100 101 102 103 104 105

E ′2 = 0

E ′1 = 0
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In the figure above, we have taken Λ1 = Λ2 = 8000, µ1 = µ2 = 1000,
a1 = a2 = 10, and b1 = b2 = 10−6.

There are a couple of features to notice about this graph:

1. Since the velocity vectors differ so much in their size, we have recordedKnowing the direction
of the trajectories is
often sufficient

only the direction of the velocity vectors, drawing all the arrows to be
the same length. Thus we don’t really show the vector field, but its
close relative, the direction field. This is often a useful substitute.

2. Since the range of values we want to represent is so great we have
employed a common device from the sciences of plotting the values
on a log-log scale. That is, we have plotted the values so that each
interval spanning a power of 10—from 100 to 101, or from 103 to 104—
gets the same space. This is equivalent to plotting the logarithms ofExpressing graphical

information over
several different orders
of magnitude

the values on ordinary graph paper. This allows us to see effects that
take place at different scales. If we hadn’t done this, but had plotted
this information on regular graph paper with the values running from
0 to 105, then some of our most interesting behavior—from 100 to
102—would be compressed into the lower left-hand corner of the graph,
occupying only .001 of the vertical and horizontal scales.

We have included in the graph the two curves corresponding to all points
satisfying E ′

1 = 0 and E ′
2 = 0 (note that these curves are not trajecto-

ries). These curves intersect at the three points P1 = (8.7689, 8.7689),
P2 = (92.0869, 92.0869), and P3 = (9907.14, 9907.14), which are then the
equilibrium points of this system. The points P1 and P3 appear to be attrac-
tors, while the point P2 is a saddle point. In the next section (see page 487)
we will see how to zoom in and look at the trajectories near each of these
points to confirm this impression. Here is a picture of the phase portrait for
this system.

E1

E2
100

101

102

103

104

105

100 101 102 103 104 105
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Note that neither P1 nor P3 is an attractor for the entire system. The
basin of attraction for P1 appears to be a region in the lower left of the
graph, while the basin of attraction for P3 is everything else. The boundary
separating these two basins is formed by the two heavily shaded trajectories
which come toward the point P2 (since P2 is a saddle point, there are only
two such trajectories—every other trajectory eventually veers off and heads
toward either P1 or P3).

We can now interpret this system in the following way. State P1 represents
the virgin or resting state of the system, with coordinate values on the
order of magnitude of Ei ≈ Λi/µi, which would just be the steady state
values we would have if there were no interactions between the two kinds of
cells (why?). Note that after small perturbations (i.e., anything roughly less
than a 10-fold increase of type 1 or type 2 cells) from P1, the system will
settle back to this resting state.

Now, though, suppose a viral pathogen appears which possesses an anti-
gen which is identical to that expressed by cell type 1. This has an effect
equivalent to moving vertically in the E1-E2 plane to a state which is now in
the basin for P3. As a result, the system immediately starts producing large
quantities of type 2 cells (which are antibodies for the virus) very rapidly,
the virus is wiped out, and the system settles into a new state—the im-
mune state—P3 and remains there. There are now so many type 2 cells
permanently floating around the body that no further infection by the viral
pathogen is possible. The only way the system can be switched back to state
P1 is if some other agent, such as radiation therapy or infection with an HIV
virus, for instance, kills off large numbers of both the type 1 and type 2 cells,
moving the system back into the basin of attraction for P1. Just killing off
large numbers of one type of cell won’t move the system back to stateP1—do
you see why?

Exercises

Two-species interactions

We look at some variations of the predator-prey model. While the original
context is given in terms of rabbits and foxes, similar models can be con-
structed for a variety of interactions between populations—not just predator
and prey. The key features of the models are determined by the nature of the
feedback structure between the populations. In the predator-prey models,
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the number of foxes has a negative effect on the growth rate of rabbits—the
more foxes, the slower the rabbit population grows—while the number of
rabbits has a positive effect on the growth rate of foxes. Can you think of
other pairs of quantities whose interaction is of this sort? In the first problem
we will look at several different models for predator-prey interactions. In the
following three problems we will look at models for other kinds of feedback
structures.

1. Below are four predator-prey models. In each model all the letters other
than R and F are constant parameters. You can perform a general analysis,
giving your answers in terms of the unspecified parameters a, b, c, etc., or,
if you are more comfortable with specific values, perform the analysis using
a = .1, b = .005, c = .00004, d = g = .04, e = .001, f = .05, h = .004, and
K = 10, 000. For each model you should carry out the following steps to
sketch the vector field for the model in the first quadrant of the R-F plane.
Compare your work with the steps that led up to the analysis of the vector
field on page 468.

• Write down in words a justification for each rate equation—why is the
model a reasonable one? What is it saying about the way rabbit and
fox populations change?

• Draw (in red) the set of points where R′ = 0, and mark the regions
where R′ > 0 and R′ < 0.

• Draw (in green) the set of points where F ′ = 0, and mark the regions
where F ′ > 0 and F ′ < 0.

• Mark the equilibrium points. What color are they?

• Sketch representative vectors of the vector field, and then sketch a cou-
ple of trajectories that follow these vectors. You might use a computer
to verify your sketches.

• On the basis of your sketches make a conjecture about the stability of
the equilibrium points.

a) The original Lotka–Volterra model, proposed independently in the mid-
1920’s by Lotka and Volterra. This model stimulated much of the subsequent
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development of mathematical population biology.

R′ = aR − bR F,

F ′ = cR F − dF.

b) The Leslie–Gower model.

R′ = aR − bRF,

F ′ =

(

e − f
F

R

)

F.

c) Leslie–Gower with carrying capacity for rabbits.

R′ = aR

(

1 − R

K

)

− bRF,

F ′ =

(

e − f
F

R

)

F.

d) Another combination.

R′ = aR

(

1 − R

K

)

− bRF,

F ′ = cRF + gF − hF 2.

2. Symbiosis and mutualism. Many flowers cannot pollinate themselves;
instead insects like bees transport pollen from one flower to another. For
their part, bees collect nectar from flowers and make honey to feed new
bees. This sort of feedback structure in which the presence of each element
has a positive effect on the growth rate of the other is called symbiosis or
mutualism (there is a distinction made between these two interactions, but
mathematically they are similar). Here is a model: B is the number of bees
per acre, measured in hundreds of bees, while C is the weight of clover per
acre, in thousands of pounds. Assume time to be measured in months.

B′ = .1(1 − .01B + .005C)B,

C ′ = .03(1 + .04B − .1C)C.

a) Do these equations describe symbiosis? What terms account for symbio-
sis?
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b) Each equation has a negative term in it. What aspect of reality is this
term capturing?

c) Sketch the vector field for this system in the B-C plane. Find the equi-
librium points, and mark them on your sketch.

d) Draw some trajectories on your sketch, and use them to determine the
stability of the equilibrium points.

e) Suppose an acre of land has 10,000 pounds of clover on it, and a hive
of 2,000 bees is introduced. (What are the values of B(0) and C(0) in this
case?) What happens? Answer this question both by drawing a trajectory
and by describing the situation in words.

f) Let a couple of years pass after the situation in part (e) has stabilized.
Suppose the field is now mowed so only 2,000 pounds of clover remain on
it. The bee–clover system is now at what point on the B-C plane? What
happens now? Does the bee population drop? Does it stay down, or does it
recover? Does the clover grow back?

g) This scenario is an alternative to part (f); it is also played out a couple
of years after the situation in part (e) has stabilized. Suppose an insecticide
applied to the clover field kills two-thirds of the bees. The insecticide is then
washed away by rain, leaving the remaining bees unaffected. What happens?

3. Competition As a third kind of feedback structure, consider two species
X and Y competing for the same food or territory. In this case each has a
negative impact on the growth rate of the other. If we let x and y be the
number of individuals of species X and Y, respectively, then the larger y
is, the less rapidly x increases—and vice versa. Here is a specific model to
consider:

x′ = .15(1 − .005x − .010y)x,

y′ = .03(1 − .004x − .005y)y.

The term −.010y in the first equation shows explicitly how an increase in
y reduces the growth rate x′. In the second equation −.004x tells us how
much X affects the growth of Y. Notice that Y affects X more strongly than
X affects Y.

If x and y are both small, then the parenthetical terms are approximately
equal to 1, so the equations reduce to

x′ = .15x,

y′ = .03y.
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Thus, in these circumstances X’s per capita growth rate is five times as large
as Y’s.

In the competition for resources will the growth rate advantage permit X
to win the competition and drive out Y, or will the more adverse effect that
Y has on the growth of X permit Y to win? Perhaps the two species will
both survive and share the resources for which they compete. The purpose
of this exercise is to decide these questions.

a) Suppose we start with x = y = 10. What are the two growth rates x′

and y′? Is x′ about five times as large as y′ in this case? What are the
approximate values of x and y after .5 time units have elapsed? Is X growing
significantly more rapidly than Y?

b) How many equilibrium points does this system have, and where are they?

c) Sketch and label in the x-y plane the points where x′ = 0 and where
y′ = 0. The vector field typically points in one of four directions: up and to
the right; up and to the left; down and to the right; or, down and to the left.
Indicate on your sketch the zones where these different directions occur and
draw representative vectors in each zone.

[Note: Only three of the zones actually occur in the first quadrant; no vectors
there point down and to the right.]

d) Sketch on the x-y plane the trajectory that starts at the point (x, y) =
(10, 10). Now answer the question: What happens to a population of 10
individuals each from species X and from species Y? In particular, does X
gain an early lead? Does X keep its lead? Does either X or Y eventually
vanish?

e) Is the outcome of part (d) typical, or is it not? Try several other starting
points: (x, y) = (150, 25), (300, 10), (200, 200), (50, 200). Do these starting
points lead to the same eventual outcome, or are there different outcomes?
Use a computer to confirm your analysis.

f) Describe the type of each equilibrium point you found in part (a). Is any
equilibrium an attractor?

4. Fairer competition. The vector field in question 3 shows that species
X didn’t have a chance: all trajectories in the first quadrant flow to the
equilibrium at (0, 200). We can attribute this to the strength of the adverse
effect Y has on X—that is, to the size of the term −.010y in the first equation
when compared to the corresponding term −.004x in the second equation.
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Let’s try to give X a better chance by increasing this term to −.006x. The
equations become

x′ = .15(1 − .005x − .010y)x,

y′ = .03(1 − .006x − .005y)y.

a) Sketch and label in the x-y plane the points where x′ = 0 and where
y′ = 0. Sketch representative vectors for the vector field. Mark all equilib-
rium points.

b) What happens to a population consisting of 10 individuals each from
species X and species Y? Is the outcome significantly different from what it
was in question 3? To get quantitatively precise results you will probably
find a computer helpful.

c) What happens to a population consisting of 150 individuals from species
X and 25 individuals from species Y? Is this outcome significantly different
from what it was in question 3?

d) Is it possible for X and Y to coexist? What must x and y be? Is that
coexistence stable; that is, if x and y are changed slightly, will the original
values be restored?

e) Sometimes X wins the competition, sometimes Y. Mark in the x-y plane
the dividing line between those starting points which lead to X winning and
those which lead to Y winning.

f) Identify the type of each equilibrium point.

g) An often-articulated concept in ecology is the principle of competitive
exclusion, which states that you can’t have a stable situation in which two
species compete for the same resource—one of them will eventually crowd
out the other. Is the model you’ve been exploring in this problem consistent
with such a principle?

5. More on the Lotka–Volterra model. The Lotka–Volterra model,

R′ = aR − bRF,

F ′ = cRF − dF,

while it had a major impact on the development of mathematical biology, was
found to be flawed in several important ways. The chief problem is that the
equilibrium point (d/c, a/b) is a neutral equilibrium point—given any starting
state, the system would follow a closed trajectory. This in itself was all right
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and, in fact, stimulated a great many important investigations on whether or
not cycles were an intrinsic feature of many populations. The difficulty was
that there were so many possible closed trajectories—which one the system
followed depended on where it started. A second difficulty, related to the
first, is that there is a first integral for the Lotka–Volterra model. What is
seen as a virtue in a physical system like the pendulum—since it is equivalent
to the conservation of energy—is unrealistic in an ecological system, where
there are almost certainly too many outside forces at work for any quantity
to be conserved there. In the following exercises we will explore some of
these behaviors. As before, you can either perform a general analysis of the
model or use the specific parameter values a = .1, b = .005, c = .00004, and
d = .04.

a) Sketch the vector field, together with some typical trajectories, in the rest
of the R-F plane, including negative values. What happens to any trajectory
starting at a state with a negative R or negative F value?

b) For this exercise you will need to go back to a computer program that
implements Euler’s method of approximating the trajectory by drawing a
straight line segment from a point in the direction indicated by the velocity
vector (commercial packages use fancier routines which accommodate for the
kind of phenomena you are about to see!). Using the specific values for a,
b, c, and d suggested above, starting from the point (2000, 10) in the R-F
plane, and using a time step ∆t = 1, draw the first 500 segments of Euler’s
approximation to the trajectory. What does the trajectory look like? Would
you think the trajectory was a closed loop on the basis of this result? How
small does ∆t have to be before the trajectory looks like it closes? Can you
explain this phenomenon?

c) Using the same values for a, b, c, and d as in the preceding part, start
at the point (2000, 1) and use ∆t = 2. This time calculate the first 1000
segments of Euler’s approximation; what happens? (Your computer will
probably give you some sort of overflow message.) Can you explain this?
(Think about your answer to part (a).)

d) Getting a first integral for the system Show that the Lotka–Volterra
equations imply that

R′

R
(cR − d) =

F ′

F
(a − bF ).
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Integrate this equation and show that the expression

cR + bF − d lnR − a ln F

must be a constant for all points on a given trajectory. If we know one point
on the trajectory (such as the starting point), we can evaluate the constant.

e) Show that the function f(R) = cR− d lnR is decreasing for 0 < R < d/c
and is increasing for d/c < R < ∞. Hence argue that for any given value of
F there are at most two values of R giving the same value for the expression
cR+bF −d ln R−a ln F . Hence conclude that the trajectories for the Lotka–
Volterra equations can’t be spirals, but must then be closed loops.

The pendulum

6. Suppose instead of an idealized frictionless pendulum, we wanted to
model a pendulum that “ran down”. One approach we might try is to throw
in a term for air resistance. Let’s see what happens when we add a term
to the expression for v′ which suggests that there is a drag effect which is
proportional to the value of v—the larger v is, the greater will be the drag.
Here are equations that do this:

x′ = v,

v′ = − sin x − .1v.

Perform a vector field analysis of this model, indicating the regions where
the velocity vectors are pointing in the various combinations of up, down,
right, and left. Try sketching in some trajectories. Where are the equilibrium
points? What kinds are they?

The Anderson–May model

7. Consider dE1/dt = Λ1 − µ1E1 + a1E1E2/(1 + b1E1E2). For what values
of E1 is it possible to find a value for E2 making dE1/dt = 0? Express
your answer in terms of the parameters Λ1, µ1, a1, and b1. Is your answer
consistent with the graph on page 475?

8. In the same book—Infectious Diseases of Humans—containing the pre-
vious model, Anderson and May propose another model to explain the acqui-
sition of (apparently) permanent immunity. In this model there is just the
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virus and the lymphocyte cells (effector cells) that kill the virus. We denote
their populations at time t by V (t) and E(t). They propose the model

dE/dt = Λ − µE + εV E,

dV/dt = rV − σV E.

Here Λ is the (constant) rate of background production of the lymphocytes
by the bone marrow, µ is the per capita death rate of such cells, and r is
the intrinsic growth rate of the virus if none of the specific lymphocytes was
present. Both the increased production of the lymphocytes and the death
of the virus are assumed to proceed at rates proportional to the number of
their interactions, determined by their product.

a) Show that in the absence of any virus, the effector cells have a stable
equilibrium of Λ/µ.

b) Perform a state space analysis of the vector field. Note that there will be
two very different cases, depending on whether Λ/µ > r/σ or Λ/µ < r/σ. In
each case say what you can about the equilibrium points and the expected
long-term behavior of the system.

c) Using parameter values Λ = 1, µ = r = .5, and ε = σ = .01, and starting
values E = V = 1 find the resulting trajectory. (The trajectory will be a
spiral, but it moves in very slowly.)

d) How long, approximately, will it take the spiral to make one revolution?
If this time, call it T , is roughly the same length as the lifetime of the infected
individual, what will appear to be happening? It might help to plot both E
and V as functions of time over the interval [0, T ].

8.2 Local Behavior of Dynamical Systems

A Microscopic View

One of the themes of this book has been the concept of the “microscope”.
When we zoom in on some part of a geometrical object, the structure typ- Phase portraits under

the microscopeically becomes much simpler. In chapter 3 we used this approach to think
about the behavior of functions. In this section we will use the same idea to
analyze the behavior of a vector field and its phase portrait. There are two
parts to this process:
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1. We shift the origin of the coordinate system to center on the point we
are interested in—we localize—and

2. We approximate both the vector field and its phase portrait by suitable
linear approximations—we linearize.

To get a feel for how this works, let’s go back and look at problem 4
on page 481 of the previous section. There we had two species X and Y
competing for the same food source. We modeled the dynamics of this system
by the equations

x′ = .15(1 − .005x − .010y)x,

y′ = .03(1 − .006x − .005y)y.

The phase portrait for this system looks like the following figure.

50

100

150

200

250

50 100 150 200 250 x

y

P

Q R

S

The three equilibrium points—P = (0, 200), R = (1000/7, 200/7), and
S = (0, 200)—are indicated, together with a generic point Q = (35, 50).
Note that P and S are attractors and that R is a saddle point. As was
the case with the Anderson–May model, there is a trajectory flowing away
from R to each of the attractors. There are also two trajectories (not shown)
flowing directly toward R and forming the boundary between the basins of
attraction for P and S. We will see how to construct this boundary shortly
(page 497).
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Let’s first zoom in on the point Q and see what the phase portrait looks
like there. If we take the region ±1 unit on either side of Q, we get the
following phase portrait:

Q

At this level, all the trajectories appear to be parallel straight lines. How
could we have anticipated this picture? The first step in analyzing this
phase portrait is to observe that since we are interested in its behavior near
Q = (35, 50), instead of working with the variables x(t) and y(t), we introduce
new variables r(t) and s(t) which measure how far we are from Q:

r(t) = x(t) − 35,

s(t) = y(t) − 50.

The effect of this transformation is simply to shift the origin to the point
Q—the location of every point in the plane is now measured relative to Q
rather than to the x-y origin. A point is close to the point Q if its r-s Shifting the origin

coordinates are small. Further, if we are given the r-s coordinates of a point,
we can always recover the x-y coordinates, and vice versa—we can transform
in either direction:

r = x − 35, ⇐⇒ x = r + 35,

s = y − 50, ⇐⇒ y = s + 50.

Next, note that r′(t) = x′(t) and s′(t) = y′(t) so that the new variables
change at the same rates as the old ones. We can now express our original
differential equations in terms of the variables r and s by replacing x′ by r′,
x by r + 35, y′ by s′, and y by s + 50. When we do this, we get

r′ = .15(1 − .005(r + 35) − .010(s + 50))(r + 35)

= 1.70625 + .0225r − .0525s − .00075r2 − .0015rs,

s′ = .03(1 − .006(r + 35) − .005(s + 50))(s + 50)

= .81 − .009r + .0087s − .00018rs− .00015s2.
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What we have accomplished by this is to transform a problem about
trajectories near the point (35, 50)) in the x-y plane into a problem about
trajectories near the origin in the r-s plane—we have localized the problem
to the point we are interested in.

The second step comes in analyzing the r-s system: since we are only
interested in its behavior near the origin, we will be looking at values of
r and s that are small. Under these circumstances, the contributions ofNear an ordinary point,

a vector field is
almost constant

the constant terms will far outweigh the contributions of any of the terms
involving r and s. For instance, in our current example we are looking at a
window that is ±1 unit wide and ±1 unit high around Q. In this window,
the terms involving r or s are at most 3% of the constant term in the case
of r′, and a little over 1% in the case of s′. If we had used a smaller window,
the contributions of the non-constant terms would be even less significant.
This means that near the r-s origin the vector field for this system is well-
approximated by the behavior of the related constant linear system:

r′ = 1.70625,

s′ = 0.81.

Note that 1.70625 and .81 are just the values of x′ and y′ at Q.
In this linearized system, any change ∆t in the time produces a change

∆r = 1.70625∆t in r, and a change ∆s = .81∆t in s. Thus the velocity
vectors in the vector field near Q would all have the same length and wouldNear an ordinary point

all trajectories look
the same

be pointing in the same direction, with slope ∆s/∆r = .81/1.70625 = .4747.
This in turn means that near Q all trajectories have the same slope and are
traversed at the same speed.

We would see a similar picture—a family of parallel straight lines—
whenever we zoom in on the phase portrait near any other ordinary (i.e.,
non-equilibrium) point (x∗, y∗) The vector field near such a point can always
be approximated by a constant linear system of the form

r′ = e,

s′ = f,

where e and f are the values of x′ and y′ at (x∗, y∗). The trajectories of this
approximating linear system will be lines of slope f/e.

Near an equilibrium point, the picture is more complicated. No matterEquilibrium points
are different how far in we zoom, the phase portrait never looks like a family of straight
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lines. For instance, here’s what the picture looks like when we zoom in on
R = (1000/7, 200/7) ≈ (142.857, 28.571) :

R

—if we zoomed in to a window 1/100-th the size of this one, the picture
would be indistinguishable from this one.

Here we see four trajectories that look almost like straight lines—two
coming directly towards R and two going directly away. All the other tra-
jectories appear to be asymptotic to these two sets. On page 495 in the next
section you will see how to find the equations of these asymptotes.

What happens when we linearize the vector field at R? As before, we
first shift the origin so that it is centered at R by changing to coordinates r
and s, where

r(t) = x(t) − 1000/7,

s(t) = y(t) − 200/7.

When we then write the differential equations in terms of r and s, we get
as before that x′ = r′ and y′ = s′ and

r′ = .15(1 − .005(r + 1000/7) − .010(s + 200/7))(r + 1000/7)

= −.107143r − .214286s − .00075r2 − .0015rs,

s′ = .03(1 − .006(r + 1000/7) − .005(s + 200/7))(s + 200/7)

= −.00514286r − .00428571s− .00018rs − .00015s2.

This time, though, the constant term in the expression for both r′ and s′ Linear approximation
of the vector fieldis 0. This is because the point R was an equilibrium point, which meant that

both x′ and y′, and hence r′ and s′, were 0 there. If we are considering only
small values of r and s, though, say much smaller than 1, then the terms
involving r2 or s2 or rs will be much smaller than the terms involving r and
s alone. We can therefore simplify our equations at R by taking only the
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first powers of r and s, getting for the linearized system

r′ = −.107143r − .214286s,

s′ = −.00514286r − .00428571s.

In a similar fashion we could hope to explore the behavior of any other
dynamical system about any of its equilibrium points by approximating the
vector field there by a linear system of the form

r′ = ar + bs,

s′ = cr + ds,

for suitable constants a, b, c, and d.
We will see in section 8.3 how to use this linearized form of the vector

field to discover many of the properties of equilibrium points.
How can we find values for the constants a, b, c, and d? If the differential

equations specifying the rates of change of the variables are polynomials,
then we can proceed as above:

• Shift the origin to the point we’re interested in;

• Express the rate equations in terms of the new local variables;

• Throw away all the terms except the first degree terms.

This process requires some fairly tedious algebra. Moreover, what if the
differential equations are not polynomials? Suppose, for instance, we wanted
to study the local behavior of the Anderson–May model (page 475) at the
saddle point P2 = (92.0869, 92.0869). Note that the differential equations
are of the form

dE1/dt = f1(E1, E2),

dE2/dt = f2(E1, E2),

where f1 and f2 are the functions given in the text. But f1 and f2 are
just functions, and we learned in chapter 3 how to construct locally linearTo linearize a vector

field, linearize the
functions that
determine it

approximations to them. This was, in fact, how we defined derivatives in
the first place. Thus if E1 changes by a small amount ∆E1 = E1 − 92.0869,
the function fi will change by approximately ∂fi/∂E1 × ∆E1. Similarly, a
small change ∆E2 = E2 − 92.0869 will produce a change of approximately
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∂fi/∂E2 × ∆E2 in the function fi. The total change in the function fi can
then be approximated by the sum of these changes:

∆f1(E1, E2) ≈
∂f1

∂E1
∆E1 +

∂f1

∂E2
∆E2,

∆f2(E1, E2) ≈
∂f2

∂E1
∆E1 +

∂f2

∂E2
∆E2.

But since P2 is an equilibrium point, we have by definition that f1 and f2 General form for the
local linearization at

an equilibrium point. . .
are both zero there, so ∆fi(E1, E2) = fi(E1, E2) − fi(P2) is just fi(E1, E2).
Further, if you look closely you will see that the quantity ∆E1 = E1−92.0869
is identical with what we have been calling the local coordinate r, and ∆E2 =
E2 − 92.0869 is just the other local coordinate s. Thus, since E ′

1 = r′ and
E ′

2 = s′, we have

r′ =
∂f1

∂E1
r +

∂f1

∂E2
s,

s′ =
∂f2

∂E1
r +

∂f2

∂E2
s,

where the partial derivatives are evaluated at P2. Notice that there is nothing
in this expression which is specific to this particular problem. The local
linearization of any vector field at any equilibrium point will be in this form.

Finally, using the values given for the different parameters back on page 475,
we can evaluate all the partial derivatives to get the specific local linearization
for the point P2:

r′ = −94.5525 r + 905.448 s,

s′ = 905.448 r − 94.5525 s,

We will see in the next section how knowing this form will allow us to
find the boundary between the two basins of attraction.

For completeness, let’s remind ourselves of what the local linearization . . . and at
a generic pointwould look like at a nonequilibrium point in the current formulation. The

result is immediate and simple, using the analysis we used before. If Q is
a generic point, then the local linearization consists of parallel lines, whose
slopes are given by the constant rate equations

r′ = f1(Q),

s′ = f2(Q).
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Exercises

1. Find the local linearizations at all the equilibrium points in exercises 2–4
at the end of the previous section.

2. a) The Lotka–Volterra equations

R′ = aR − bRF,

F ′ = cRF − dF,

have an equilibrium point at (R, F ) = 00(d/c, a/b).

b) What is the local linearization there?

c) What is a striking feature of this linearization, and what is its physical
significance?

d) The trajectories for the local linearizations turn out to be ellipses. If r
and f are the local variables, find constants α and β such that the expression
α r2 + β f 2 is constant on any trajectory.

3. Find the local linearization at the point P1 in the Anderson–May model
for the acquisition of immunity discussed in the previous section, using the
parameter values given in the text on page 476.

4. Go back to the second Anderson–May model analyzed in problem 8 of
the previous section (page 484). Using the parameter values given in part (c)
there, find the local linearizations at all equilibrium points.

8.3 A Taxonomy of Equilibrium Points

In the exercises and examples we have seen so far in this chapter, there haveAn intuitive
classification of
equilibrium points

been several kinds of trajectories near equilibrium points: spirals towards
and spirals away from the equilibrium, closed loops about the equilibrium,
trajectories that looked vaguely like hyperbolas, and trajectories that seemed
to arc more or less directly into or away from the equilibrium. It turns out
that this rough classification covers virtually all the equilibrium behaviors
we might encounter in a two-dimensional state space. There are many ways
to demonstrate this, but we can accomplish almost everything with a couple
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of simple insights. We begin with a summary of the different kinds of equi-
librium points, then turn to the question of devising ways to figure out from
the equations what kind we are dealing with.

Suppose, then, that we are studying a two-dimensional dynamical system
and that we have linearized the system at an equilibrium point. The point is
either an attractor, repellor, saddle point, or neutral point. Attractors and
repellors can be further subdivided according to whether they have one or
two straight line trajectories, or whether their trajectories are spirals. Note
that any attractor can be converted into a repellor simply by reversing the
arrows, and vice versa (how do you accomplish this arrow reversal at the
level of the defining differential equations?). If you reverse all the arrows at
a saddle point, you get another saddle point. If you reverse the arrows at a
neutral point, you get the same closed loops, but they are traversed in the
opposite direction.

Here, then, is a listing of all the kinds of equilibrium points. There are
five generic types. (Generic here means “general”; if you generate a random
equilibrium point, it will almost certainly be one of these.) They are most
easily categorized by whether or not they have fixed line trajectories—that
is, trajectories which are straight lines going directly toward or directly away
from the equilibrium point.

The existence or not of straight line trajectories and how to find them when they do exist is
an instance of the so-called eigenvector problem. Analogous problems occur elsewhere in many
parts of mathematics, physics, and even population biology. Being able to find such eigenvectors
efficiently is an important problem in computational mathematics.

Nodes. Two pairs of fixed lines, all trajectories flowing toward the equilib-
rium (attractors) or away from it (repellors).

Spirals. No fixed lines, all trajectories spiraling toward the equilibrium
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(attractors) or away from it (repellors).

Saddle Point. Two pairs of fixed lines, with the flow along one pair being
toward the equilibrium, and the flow along the other pair away from it. All
other trajectories are asymptotic to these lines.

In addition to these five generic cases, there are three more types which
arise under more specialized conditions:

Special Nodes. One pair of fixed lines, all trajectories flowing toward the
equilibrium (attractors) or away from it (repellors).

Center. No fixed lines, all trajectories flowing around the equilibrium in



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

8.3. A TAXONOMY OF EQUILIBRIUM POINTS 495

closed loops.

Except for a variety of highly specialized (or degenerate, in mathematical
terminology) cases, examples of which are given in the exercises, the region
near every equilibrium point will look like one of the above (although the
exact shape may vary).

Clearly, it would be helpful to have an efficient way to determine whether
or not fixed lines exist, and what their equations are if they do.

Straight-Line Trajectories

Given a dynamical system

r′ = ar + bs,

s′ = cr + ds,

how can we tell whether or not it has any straight-line trajectories? If b = 0,
then the (vertical) line r = 0 is a trajectory. Otherwise, note that the line
s = mr will be a trajectory for this system provided the slope of the line—
namely m—equals the slope of the vector field at every point (r, s) on the
line. But the slope of the vector field at any point (r, s) is just s′/r′, which
in turn is equal to (cr + ds)/(ar + bs). Since every point on the line of slope
m is of the form (r, mr), what we are really asking, then, is whether there
are any values of m which satisfy the equation

The condition for a
fixed-line trajectory

m =
cr + dmr

ar + bmr
=

c + dm

a + bm

To see how this works, let’s return to the example of two competing
species which we last looked at on page 486. There we zoomed in on the sad-
dle point R = (1000/7, 200/7) and found that the local linear approximation
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was

r′ = −.1071r − .2143s,

s′ = −.0051r − .0043s.

If this system has a straight-line trajectory of slope m, then m must satisfy

m =
−.0051 − .0043m

−.1071 − .2143m
,

which leads to the quadratic equation

.2143m2 + .1028m − .0051 = 0,

which has roots
m = .0454 and m = −.5250.

Thus the lines s = .0454r and s = −.5250r are trajectories of the linear
system. To be more exact, each of these lines is made up of three distinct
trajectories: the portion of the line consisting of all points with r > 0, the
portion with r < 0, and the origin (which is the saddle point R) by itself,
which is always a trajectory in any linear system. To see whether flow along
these trajectories is towards the origin or away from it, we could look to see
where the lines lie in the state plane. It is just as simple, though, to try a
test point. For instance, a typical point on the line s = .0454r is (1, .0454).
When we substitute these values into the original rate equations, we find that

r′ = −.1071 × 1 − .2143 × .0454,

s′ = −.0051 × 1 − .0043 × .0454.

We don’t even need to do the arithmetic to be able to tell that both r′ and
s′ are negative at this point, hence both r and s are decreasing, which means
that on the line of slope .0454 movement is towards the origin. Similarly, on
the line of slope −.5250 the flow is away from the origin. Finally, it turns
out (as is the case with every linear system with straight-line trajectories)
that every other trajectory is asymptotic to these lines.

The crux of this approach was the use of the quadratic formula. Of course,
it may happen—and we will see examples in the exercises—that when we try
the same approach on another system we find there are no real roots to the
equation. This means that there are no fixed lines, so that trajectories must
be spirals or closed loops.
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Attractors and Basins of Attraction

One byproduct of the analysis in the previous section is that it gives us a
technique for sketching the boundary separating two basins of attraction.
Let’s continue with the previous example to illustrate how this is done. We
observed that the boundary between the two basins was formed by the two
trajectories coming directly into the saddle point R between the two attrac-
tors P and S. We have just seen that near R these two trajectories looked
like the straight line of slope .0454. We can therefore take a point on this
line on each side of R and run the system backward (if we go forward, we
simply approach R) in time to reconstruct the trajectories, and hence get
the boundary of the basins of attraction.

Exercises

1. In this exercise we look at a number of different linear systems to see what
kinds of trajectories we get. In each case you should sketch the trajectories.
Do this as before by first identifying the regions in the plane where r′ =
0, r′ > 0, and r′ < 0, and similarly for s′. Then sketch trajectories consistent
with this information. You might want to use a graphing program to check
any answer you’re unsure of.

a) r′ = 4r + s, s′ = 2r + 3s.

b) r′ = 4r + s, s′ = −2r + 3s.

c) r′ = 2r + 3s, s′ = 4r + s.

d) r′ = −4r + 4s, s′ = 2r + s.

e) r′ = −.4r − 4s, s′ = 2r − .5s.

f) r′ = −.4r − 4s, s′ = 2r + .4s.

g) Make up and analyze four more linear systems.

2. If you start with a given linear system and consider the related system
in which all the coefficients are four times as big, how do the trajectories
change?

3. If you start with a given linear system and consider the related system
in which all the coefficients have their signs reversed, how do the trajectories
change?
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4. a) Use the quadratic formula to find the general solution to the equation

m =
c + dm

a + bm
.

b) In exercises 1, 3, and 4 in the previous section you found local lineariza-
tions at the equilibrium points of a number of examples discussed earlier.
Determine which of these have straight-line trajectories and which do not.
For those that do, find the equations of the lines and determine for each line
whether the flow is towards the origin or away from it.

c) What is the general condition for a linear dynamical system to have
straight-line trajectories?

5. Make up a system that has the lines of slope ±1 as trajectories.

6. What is the condition for a system to have exactly one fixed line? Con-
struct a couple of systems that have only one fixed line and sketch their phase
portraits.

7. Degeneracy The analysis developed in this section implicitly assumed
that in the local linearization, at least one of the coefficients in each of the
expressions for r′ and s′ was non-zero. If this is not true, then many more
possibilities open up. The following two systems have the origin as their only
equilibrium point. In each case, write down the local linearization and draw
in the trajectory pattern for the linearized system. Notice that the linearized
systems have more than one equilibrium point. Then do the standard phase
plane analysis for the original system—identify the regions in the plane where
r′ = 0and where s′ = 0, and specify what the direction field is doing in the
rest of the plane, as usual. Sketch in some typical trajectories. Comment on
the connections between the linearized and unlinearized forms.

a) r′ = r2, s′ = −s. You should see sort of a hybrid between a saddle
point and an attractor here.

b) r′ = r2 + s2, s′ = r.

8. a) Use the technique presented at the end of this section (page 497 to
graph the boundary between the two basins of attraction.

b) In the same way, construct the boundary between the two basins in the
competing species model we’ve been discussing—problem 4 on page 481.
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Distance from the Origin

Another way to distinguish between different kinds of trajectories is to see
how their distance from the origin varies over time. For saddle points the
distance will first decrease and then increase. For spiral attractors and nodal
attractors the distance may be always decreasing, or it may fluctuate, de-
pending on how flat the trajectory is.

Again, let’s look at a general linear system

r′ = ar + bs,

s′ = cr + ds.

onsider the system moving along some trajectory in r-s space. At time t it
will be at a point (r(t), s(t), situated at a distance d(t) =

√

r(t)2 + s(t)2. We
would like to know how the function d(t) behaves. Is it always increasing?
Always decreasing? Or does it have local maxima and minima? To answer
this we need to know if d′(t) is ever = 0, or if it is always positive or always
negative. We can simplify our calculations if we look at the square of the
distance: D(t) = d(t)2 = r(t)2 + s(t)2. The function D will be increasing
and decreasing at exactly the same points as the function d, and it’s easier
to work with.

9. a) Show that

D′(t) = 2r(t)r′(t) + 2s(t)s′(t)

= 2[r(ar + bs) + s(cr + ds)]

= 2[ar2 + (b + c)rs + ds2].

b) Show that if we look at points on the line of slope m, so that s = mr, we
will have D′(t) = 0 there if and only if

a + (b + c)m + dm2 = 0 .

c) Use the quadratic formula to conclude that this happens precisely where

m =
−(b + c) ±

√

(b + c)2 − 4ad

2d
.

d) Show in particular, if (b+c)2−4ad < 0, there are no solutions to D′(t) = 0,
and the distance must always be strictly increasing along all trajectories, or
strictly decreasing along all trajectories.
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e) Return to the example

r′ = −.1071r − .2143s,

s′ = −.0051r − .0043s,

and find the equations of the two lines where trajectories pass closest to the
origin. These lines will not be trajectories themselves. Their significance is
that the ‘vertices’ of all the trajectories will lie along them.

10. Choose four of the exercise in the first part of this section and analyze
them to see where (and whether) trajectories have a closest approach to the
origin.

11. a) Use the results of this section to construct a dynamical system whose
trajectories are spirals that are always moving away from the origin.

b) Use the results to construct a dynamical system whose trajectories are
flattened spirals, so that the distance from the origin, while increasing overall,
has local maxima and minima.

12. It turns out that trajectories which form closed loops should really be
considered as a special kind of spiral. In fact, a flattened spiral will close
up precisely when the two directions in which the distance is a maximum or
minimum are perpendicular to each other. Express this as a condition on
the coefficients a, b, c, and d in the dynamical system.

13. Write down the equations of some dynamical systems that will have
closed orbits.

8.4 Limit Cycles

With this analysis of the behavior of vector fields near equilibrium points,
we now know most of the possibilities for the long-term behavior of trajecto-
ries. The one important phenomenon we haven’t discussed is limit cycles.
To see an example of this, let’s return to May’s predator–prey model we
first encountered in chapter 4. If x(t) and y(t) are the prey and predator
populations, respectively, at time t, then the general form of May’s model is

x′ = ax
(

1 − x

b

)

− cxy

x + d
,

y′ = ey

(

1 − y

fx

)

;
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the parameters a, b, c, d, e and f are all positive.

Using parameter values of a = .6, b = 10, c = .5, d = 1, e = .1 and
f = 2, let’s take several different starting values and sketch the resulting
trajectories. Here’s what we find:

x

y

2

4

6

8

2 4 6 8 10

the limit cycle

Notice that no matter where we start, the trajectory is apparently always
drawn to the closed loop shown in dashes above. This loop is an example of
an attracting limit cycle. As usual, we could reverse all the arrows in our
vector field, in which case this example would be converted to a repelling
limit cycle.

A limit cycle is very different from the kind of behavior we saw in the
neighborhood of a neutral equilibrium point called a center. Around a center
there is a closed loop trajectory through every point: displace the state Limit cycles give

models for cyclic
behavior

slightly, and it would move happily along the new loop. If the state is on an
attracting limit cycle, though, and you displace it, it will move back toward
the cycle it started from. For this reason limit cycles make very good models
for cyclic behavior, whether it is in the firing of neurons or population cycles
of mammals.

The size of the limit cycle, and even its very existence, depends on the
specific values of the parameters in the model. If you change the parameters,
you change the limit cycle. If you change the parameters enough, the limit
cycle may disappear all together. (See the exercises.)

A result proved early in this century is the Poincaré–Bendixson Theo-
rem which says that equilibrium points and limit cycles are as complicated as
dynamical systems in two variables can get. Once we pass to three variables,
the situation becomes much more complicated. Many of the phenomena as-
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sociated with such systems have been discovered only within the past 50
years, and their exploration is a subject of continuing research. In the next
section we will give a brief introduction of some of the new behaviors that
can arise.

Exercises

1. Using the parameter values given in the text, find the coordinates of the
equilibrium point at the center of the limit cycle and show that it is, in fact,
a repellor.

2. May’s model is interesting in that it exhibits a phenomenon known as
Hopf bifurcation. Namely, the existence of a limit cycle depends on the
values of the parameters. Choose one of the parameters in May’s model
and try a range of values both larger and smaller than in the example we’ve
worked out. At what value does the limit cycle disappear? When this hap-
pens, the equilibrium point inside the cycle has become an attractor. Can
you work out analytically when this happens?

8.5 Beyond the Plane:

Three-Dimensional Systems

Up to now we have worked with dynamical systems in which there are only
two interacting quantities. We have thought of the two quantities as spec-
ifying a point in the state space, which we think of as some subset of the
plane. The dynamical system defined a vector field on the state space. These
geometric notions carry over to dynamical systems involving more than two
interacting quantities.

In particular, if we have a dynamical system consisting of three interacting
quantities, then we think of the values of the three quantities as specifying
a point (or state) in three-dimensional space. So, for instance, if we have an
ecological system consisting of three species, then we think of the numbers
x, y, z of each of the three species as specifying a point (x, y, z) in space.
The set of all possible points or “states” is the set of points

{(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0}
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that constitute the “first octant” in Cartesian 3-space. We think of the
dynamical system as a vector field: that is, as a rule which assigns to each
point of the state space a vector. As in the case of the plane, we can define
equilibrium points, trajectories, limit cycles, attractors, and the like.

In three-space there is a much wider range of behavior possible, even in
the case of equilibrium points. We do, of course, have point attractors and
repellors: all trajectories near a point attractor flow towards the attractor and
all trajectories near a point repellor flow away from the repellor. However,
a greater range of combinations is possible: an equilibrium point can attract
all points along some plane, but repel all other points. Or the equilibrium
point could be a center, surrounded by closed orbits lying in some plane
which attract trajectories off the plane.

It is worth pointing out that we can represent the two-dimensional sys-
tems we’ve been exploring so far in this chapter in three dimensions by in-
troducing a time axis. This has the effect of ‘unwinding” the trajectories
by stretching them out in the t-direction: closed trajectories become endless
coils, equilibrium points become straight lines parallel to the t-axis, and so
on.

The analytic tools we introduced to find and explore the nature of equi-
librium points in two-dimensional systems carry over to three dimensions. In
particular, in investigating the nature of an equilibrium point analytically,
we first localize the system at the equilibrium point and linearize. The be-
havior of the linearized system can then be explored using analogues of the
techniques introduced in the previous section (or using simple linear algebra).

There are also, of course, limit cycles, which can be attractors, repellors
of a mix of the two (attracting, for example, all trajectories on a plane,
but repelling all trajectories off the plane) in three-dimensional systems. As
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in the case of dynamical systems in the plane, attracting limit cycles in a
three-dimensional system signal stable periodic behavior.

However, more complicated types of periodic behavior are possible in the
three-dimensional case: we could, for example, have an attracting torus in
the state space.

In this case, the behavior of the states does not settle down to periodic
behavior, but a behavior which is approximately periodic (often called quasi-
periodic). In the plane, there is a well studied phenomenon called Hopf
bifurcation in which changing the parameters in a dynamical system can
cause an attracting fixed point to become a repellor surrounded by a stable
attracting limit cycle. Such dynamical systems arise in modelling situations
in which a state begins to oscillate. In three dimensions we also sees the same
sort of phenomenon in which an attractor can give birth to an attracting limit
cycle. However, there are also three-dimensional systems in which varying
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the parameters results in an attracting limit cycle becoming a repelling limit
cycle enclosed by an attracting torus (this is also called Hopf bifurcation and
is frequently encountered in applications).

These sorts of behavior are relatively straightforward generalizations of
behavior in the plane. At the turn of the century, Poincaré realized that
simple three-dimensional systems could have exceedingly complicated trajec-
tories which exhibit behavior totally unlike any two-dimensional trajectory.
Discoveries in the last three decades have made it clear that qualitatively
new types of attractors (not just trajectories) can exist in three-dimensional
systems with even very simple equations. The most famous such attractor
was discovered by a meteorologist, Edward Lorenz, in the course of using dy-
namical systems to model weather patterns. He discovered a class of simple
systems with an attractor which corresponded to behavior which was in no
sense periodic. An example of such a system is

x′ = −3x − 3y,

y′ = −xz + 30x − y,

z′ = xy − z.

All trajectories of the system entered a bounded region of the state space and
tended towards a clearly defined geometrical object (resembling a butterfly).
But along the attractor, nearby points followed trajectories which rapidly
diverged from one another. Below, we have sketched two views of a trajectory
beginning at (0,1,0) of the system above.
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As Lorenz noted in the paper describing his discovery (Deterministic Non-
periodic Flow, J. Atmos. Sci., 20 130 (1963)), this divergence of trajectories
along an attractor has astonishing practical implications. It means that that
the trajectories of nearby points in state space could (and would) wind up
following very different paths along the attractor. Since we never know ini-
tial conditions exactly (and even if we did, a computer truncates decimal
expansions of the coordinates of any point, effectively replacing the point
with a nearby point), this means that long-term predictions using a model
possessing such an attractor are impossible. In other words, although the fu-
ture is completely determined by a dynamical system given an initial state,
it is unknowable in systems of the sort discovered by Lorenz, because initial
states are never known exactly in practice. Such systems are called chaotic
and attractors which are not points, limit cycles or tori are called strange
attractors. These systems have been intensively studied in the last thirty
years and are still far from completely understood. Chaotic systems have
been used to attempt to model a wide variety of real situations which exhibit
unpredictable behavior: business cycles, turbulence, heart attacks, etc. Al-
though fascinating and philosophically provocative, most of this work is still
very speculative and has yet to prove of practical value.

Systems involving more than three variables can still be treated geomet-
rically: we think of the space of states as a higher dimensional space (one
dimension for each quantity) and the dynamical system as defining a vector
field on the state space. Of course, we cannot visualize such spaces directly,
but the geometrical insight we gain in dimensions two and three very fre-
quently allows us to handle such systems.

Exercises

In the next two exercises, we look at some three-dimensional systems which
arise in ecology. These questions are challenging and you will probably find
it helpful to work them out in a group.

1. a) Consider a system consisting of three species: giant carnivorous rep-
tiles, vegetarian mammals, and plants. Suppose that the populations of these
are given by x, y and z respectively. The reptiles eat the mammals, the mam-
mals eat the plants, and the plants compete among themselves. Explain why
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the following system is consistent with these hypotheses:

x′ = −.2x + .0001xy,

y′ = −.05y − .001xy + .000001yz,

z′ = z − .00001z2 − .0001yz.

b) Find all equilibrium points of the system. There are five, one of which is
physically impossible. Describe the significance of the other four.

c) The most interesting equilibrium is the one in which all three species are
present. Localize the system at this equilibrium, using local variables u, v,
and w. Linearize. Show that the linearized system has the form

u′ = .003v,

v′ = −2u + .002w,

w′ = −8v − .8w.

Can you determine whether the equilibrium is an attractor? This is a hard
question—it is an attractor. One way to show this is a generalization of the
technique we used in the preceding section to examine the distance of points
on a trajectory from the origin over time. For the current problem we use a
generalized distance function

D(t) = 8 · 106u2 + 12000v2 + 3w2.

Show, using arguments like those we used when we looked at ordinary dis-
tance, that as we move along a trajectory, the value of D must decrease.
Hence conclude that the equilibrium point must be an attractor.

2. The system of equations

x′ = x − .001x2 + .002xy − .1xz,

y′ = y − .01y2 + .001xy,

z′ = −z + .001xz.

arises in a general family of models proposed in 1980 by Heithaus, Culver, and
Beattie (“Models of Some Ant-Plant Mutualisms,” American Naturalist, 116
(1980) pp. 347-361) for investigating the interactions three species: violets,
ants, and mice. Violets produce seeds with density x (per square meter,
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say). The ants take some of the seeds and use the seed covering for food.
But they leave the remainder, which is still a perfectly good seed, in their
refuse piles, which happily turn out to be good sites for germination. The
ants have density y. Finally, the seeds are also taken by mice, who use the
whole seed for food (destroying both the cover and the seed within). The
mice have density z.

a) Explain why these equations are consistent with the hypotheses we made
on the interactions between the violets, ants and mice.

b) Find all equilibrium points for the system. Don’t forget the points where
one or more of the variables equals 0.

x′ = x − .001x2 + .002xy − .1xz,

y′ = y − .01y2 + .001xy,

z′ = −z + .001xz.

c) Localize the model at each of these equilibria, using local coordinates u,
v, and w as before, and linearize.

d) In the case of the equilibrium point (1000, 200, 4) the local linearization
is

u′ = −u + 2v − 100w,

v′ = .2u − 2v,

w′ = .004u.

As in the preceding problem, show that this point is an attractor by examin-
ing the generalized distance function R(t) = u(t)2 + v(t)2 + 25000w(t)2 and
showing that the value of R decreases as you move along a trajectory.

8.6 Chapter Summary

The Main Ideas

• A dynamical system can be viewed as a geometrical object. The pos-
sible values of the dependent variables are then the coordinates of a
point—called a state. The set of all possible points is called the state
space for the system.
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• The differential equations become a rule assigning a velocity vector
to each state. Thought of in this way, the equations are called a vector
field.

• Solutions to the differential equations correspond to trajectories in the
state space. At every point a trajectory is tangent to the corresponding
velocity vector, and is changing at the rate given by the length of the
vector. The set of all possible trajectories is called the phase portrait
of the system.

• Equilibrium points are points where the velocity vector is 0. An
equilibrium point is a trajectory consisting of a single point. A dy-
namical system is conveniently analyzed by examining the nature of its
equilibrium points—whether they are attractors, repellors, saddle
points, or centers.

• To study the nature of an equilibrium point it is helpful to look at the
local linearization of the vector field near the point.

• Determining whether fixed-line trajectories exist is a crucial part of
analyzing the nature of an equilibrium point.

• In addition to equilibrium points, dynamical systems in two dimensions
may also have limit cycles that shape the asymptotic behavior of the
system.

• In higher dimensional state spaces, there are not only the obvious ex-
tensions of point attractors and limit cycles, but it is possible to have an
attracting torus as well. There are even more complicated attracting
objects called strange attractors.

Expectations

• You should be able to describe the assumptions embodied in a particu-
lar dynamical system modeling the interaction between two (or three)
species and evaluate whether the assumptions seem reasonable.

• For a dynamical system with two dependent variables, you should be
able to determine the regions where each variable is zero or has a con-
stant sign, find equilibrium points, sketch representative vectors of the
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vector field, and draw trajectories that are consistent with this infor-
mation.

• You should be able to determine whether a linear system of differential
equations with two dependent variables has fixed-line trajectories—
that is, trajectories that are straight lines going directly toward or
directly away from an equilibrium point.

• You should be able to localize and linearize a dynamical system in
two variables to explore its behavior near an equilibrium point.

• You should be able to recognize the five generic types of equilibrium
points: attracting and repelling nodes, attracting and repelling spi-
rals, and saddle points.

• Using a differential equation solver, you should be able to recognize
when a dnamical system has a limit cycle.

• You should be able to analyze a dynamical system with three dependent
variables.
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Chapter 9

Functions of Several Variables

Functions that depend on several input variables first appeared in the S-I-R
model at the beginning of the course. Usually, the number of variables has
not been an issue for us. For instance, when we introduced the derivative in
chapter 3, we used partial derivatives to treat functions of several variables
in a parallel fashion. However, when there are questions of visualization The problem of

visualizing a function
of several variables

and geometric understanding, the number of variables does matter. Every
variable adds a dimension to the problem—one way or another. For example,
if a function has two input variables instead of one, we will see that its graph
is a surface rather than a curve.

This chapter deals with the geometry of functions of two or more vari-
ables. We start with graphs and level sets. These are the basic tools for
visualization. Then we turn to microscopic views, and see what form the
microscope equation takes. Finally, we consider optimization problems using
both direct visual methods and dynamical systems.

9.1 Graphs and Level Sets
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The graph at the right comes from a model that
describes how the average daily temperature at
one place varies over the course of a year. It shows
the temperature A in ◦F, and the time t in months
from January. As we would expect, the tempera-
ture is a periodic function (which we can write as
A(t)), and its period is 12 months. Furthermore,

511
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the lowest temperature occurs in February (when t ≈ 1 or 13) and the highest
in July (when t ≈ 7 or 19). This is about what we would expect.

However, all these temperature fluctuations disappear a few feet under-Underground
temperatures
fluctuate less

ground. Below a depth of 6 or 8 feet, the temperature of the soil remains
about 55◦F year-round! Between ground level and that depth, the tempera-
ture still fluctuates, but the range from low to high decreases with the depth.
Here is what happens at some specific depths.
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Notice how the time at which the temperature peaks gets later and later
as we go farther and farther underground. For example, at d = 2 feet the
highest temperature occurs in September (t ≈ 9), not July. It literally takesThe phase shifts

with the depth time for the heat to sink in. In chapter 7 we called this a phase shift. The
lowest temperature shifts in just the same way. At a depth of 2 feet, it is
colder in March than in January.

Thus A is really a function of two variables, the depth d as well as the
time t. To reflect this addition, let’s change our notation for the function to
A(t, d). In the figure above, d plays the role of a parameter: it has a fixed
value for each graph. We can reverse these roles and make t the parameter.
This is done in the figure on the top of the next page. It shows us how the
temperature varies with the depth at fixed times of year. Notice that, inGraphing temperature

as a function of depth April and October, the extreme temperature is not found on the surface. In
October, for example, the soil is warmest at a depth of about 9 inches.

The lower figure on the page is a single graph that combines all the in-
formation in these two sets of graphs. Each point on the bottom of the box
of the box corresponds to a particular depth and a particular time. The
height of the surface above that point tells us the temperature at that depth
and time. For example, suppose you want to find the temperature 4 feet
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below surface at the beginning of July. Working from the bottom front corner Reading a
surface graphof the box, move 4 feet to the right and then 6 months toward the back. This

is the point (d, s) = (4, 6). The height of the graph above this point is the
temperature A that we want.
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There is a definite connection between this surface and the two collections
of curves. Imagine that the box containing the surface graph is a loaf of bread.Grid lines are slices of

the surface that show
how the function
depends on each
variable separately

If you slice the loaf parallel to the left or right side, this slice is taken at a
fixed depth. The cut face of the slice will look like one of the graphs on
page 512. These show how the temperature depends on the time at fixed
depths. If you slice the loaf the other way—parallel to the front or back
face—then the time is fixed. The cut face will look like one of the graphs on
page 513. They show how the temperature depends on the depth at fixed
times. The grid lines on the surface are precisely these “slice” marks.

depth

months

te
m

pe
ra

tu
re

0
2

4

6

8

10

0 3 6 9 12 15 18 21 24

30

40

50

60

70

0
2

4

6

8

10

0 3 6 9 12 15 18 21 24

30

40

50

60

70

Here is the same graph seen from a
different viewpoint. Now time is mea-
sured from the left, while depth is mea-
sured from the back. The temperature
is still the height, though. One advan-
tage of this view is that it shows more
clearly how the peak temperature is
phase-shifted with the depth.

We now have two ways to visualize
how the average daily temperature
depends on the time of year and
the depth below ground. One is the
surface graph itself, and the other is a
collection of curves that are slices of
the surface. The surface gives us an

overall view, but it is not so easy to read the surface graph to determine the
temperature at a specific time and depth. Check this yourself: what is theComparing the surface

to its slices temperature 2 feet underground at the beginning of April? The slices are
much more helpful here. You should be able to read from either collection of
slices that A ≈ 44◦F.

Examples of Graphs

x
x

y

y

y = x2

y = −x2

The purpose of this section is to get some experience constructing and in-
terpreting surface graphs. To work in a context, look first at the functions
y = x2 and y = −x2. They provide us with standard examples of a mini-
mum and a maximum when there is just one input variable. Let’s consider
now the corresponding examples for two input variables. Besides an ordi-
nary maximum and an ordinary minimum, we will find a third type—called
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a minimax—that is completely new. It arises because a function can have
a minimum with respect to one of its input variables and a maximum with
respect to the other.

A minimum: z = x2 + y2
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At the origin (x, y) = (0, 0), z = 0. At any other
point, either x or y is non-zero. Its square is positive,
so z > 0. Consequently, z has a minimum at the
origin. The graph of this function is a parabolic bowl
whose lowest point sits on the origin. As always, the
grid lines are slices, made by fixing the value of x or
y. For example, if y = c, then the slice is z = x2 +c2.
This is an ordinary parabolic curve.

A maximum: z = −x2 − y2
x y
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For any x and y, the value of z in this example is

the opposite of its value in the previous one. Thus,
z is everywhere negative, except at the origin, where
its value is 0. Thus z has a maximum at the origin.
Its graph is an upside-down bowl, or peak, whose
highest point reaches up and touches the origin. Grid
lines are the curves z = −x2 − c2 and z = −c2 − y2.
These are parabolic curves that open downward.

A minimax: z = x2 − y2
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Suppose we fix y at y = 0. This slice has the
equation z = x2, so it is an ordinary parabola
(that opens upward). Thus, as far as the input x is
concerned, z has a minimum at the origin. Suppose,
instead, that we fix x at x = 0. Then we get a slice
whose equation is z = −y2. It is also an ordinary
parabola, but this one opens downward. As far as y
is concerned, z has a maximum at the origin. It is
clear from the graph how upward-opening slices in the x-direction fit together
with downward-opening slices in the y-direction. Because of the shape of the
surface, a minimax is commonly called a saddle, or a saddle point.
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Here are two slices of z = x2 −y2 shown in more detail. Points in the box
have three coordinates: (x, y, z). If we set y = 0 we are selecting the points
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of the form (x, 0, z). These make up the x, z-plane.
On this plane the equation z = x2 − y2 becomes
simply z = x2. The graph of this equation is a
curve in the x, z-plane—specifically, the parabola
shown. The situation is similar if y is given some

other fixed value. For example, y = −4 specifies the points (x,−4, z). These

The points where
y = c form a vertical
plane parallel to the
x, z-plane

describe the plane that forms the front face of the box. The equation z =
x2 − y2 becomes z = x2 − 16. The curve tracing out the intersection of the
saddle with the front of the box is precisely the graph of z = x2 − 16.

If x = 0 we get the points (0, y, z) that make up the y, z-plane. On this
plane the equation simplifies to z = −y2, and its graph is the parabolic curve
shown. Giving x a different fixed value leads to similar results. A goodThe points where

x = c form a vertical
plane parallel to the
y, z-plane

example is x = −4. The points (−4, y, z) lie on the plane that forms the left
side of the box. The equation becomes z = 16 − y2 there, and this is the
parabolic curve marking the intersection of the saddle with the left side of
the box.

As you can see, it is valuable for you to be able to generate surface graphs yourself. There are
now a number of computer utilities which will do the job. Some can even rotate the surface while
you watch, or give you a stereo view. However, even without one of these powerful utilities, you
should try to generate the slicing curves that make up the grid lines of the surface.
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A cubic: z = x3 − 4x − y2

Slices of this graph are downward-opening parabolas (when x = c) and
are cubic curves that have the same shape (when y = c). Notice that
each cubic curve has a maximum and a minimum, and each parabola has
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a maximum. The surface graph itself has a peak where the cubics have their The surface
has a saddlemaximum, but it has a saddle where the cubics have a minimum. Do you see

why? The saddle point is a minimax for z = x3 − 4x− y2: z has a minimum
there as a function of x alone but a maximum as a function of y alone.
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The small figures on the right show the same surface as the large figure; See the graph from
different viewpointsthey just show it from different viewpoints. As a practical matter, you should

look at these surfaces the way you would look at sculpture: “walk around
them” by generating diverse views.
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Energy of the pendulum: E = 1 − cos θ + 1
2
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This function first came up in chapter 7, where
it was used to demonstrate that a dynamical sys-
tem describing the motion of a frictionless pen-
dulum had periodic solutions. It was used again
in chapter 8 to clarify the phase portrait of that
dynamical system. The function E varies pe-
riodically with θ, and you can see this in the
graph. The minimum at the origin is repeated
at (θ, v) = (2π, 0), and so on. The graph also has
a saddle at the point (θ, v) = (−π, 0). This too
repeats with period 2π in the θ direction.

The figure at the left is the same surface with
part cut away by a slice of the form v = c. These
slices are sine curves: E = 1 − cos θ + 1

2
c2. Slices

of the form θ = c are upward-opening parabolas.
From this viewpoint, the saddle points show up
clearly.

One way to describe what happens to a real pendulum—that is, one governed by frictional forces
as well as gravity—is to say that its energy “runs down” over time. Now, at any moment the
pendulum’s energy is a point on this graph. As the energy runs down, that point must work its
way down the graph. Ultimately, it must reach the bottom of the graph—the minimum energy
point at the origin (θ, v) = (0, 0). This is the stable equilibrium point. The pendulum hangs
straight down (θ = 0) and is motionless (v = 0). The graph gives us an abstract—but still vivid
and concrete—way of thinking of the dissipation of energy.
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From Graphs to Levels

x

y

-2
-1

0
1

2
-2

-1

0
1

2

-2
-1

0
1

2
-2

-1

0
1

2

x

y

z

-2 -1 0 1 2-2
-1

0
1

2 -10

-5

0

5

-2 -1 0 1 2-2
-1

0
1

2 -10

-5

0

5There is still another way to picture a function of
two variables. To see how it works we can start
with an ordinary graph. On the right is the graph
of

z = f(x, y) = x3 − 4x − y2,

the cubic function we considered on page 517.
This graph looks different, though. The differ-
ence is that points are shaded according to their
height. Points at the bottom are lightest, points
at the top are darkest.

Notice that the flat x, y-plane is shaded
exactly like the graph above it. For instance, the
dark spot centered at the point (x, y) = (−1, 0)
is directly under the peak on the graph. The other

dark patch, near the right edge of the plane, is under the highest visible part
of the surface. Consequently, the shading on the x, y-plane gives us the same
information as the graph. In other words, the intensity of shading at (x, y)
is proportional to the value of the function f(x, y).

The figure in the x, y-plane is called a density plot. Think of the in- Density plots

tensity of shading as the density of ink on the page. Here are density plots
of the standard minimum, maximum, and minimax. Compare these with the

y
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z = x2 + y2 z = −x2 − y2 z = x2 − y2

graphs on page 515. The third density plot is the most interesting. From the
center of the x, y-plane, the shading increases to the right and left. Therefore,
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z has a minimum in the horizontal direction. However, the shading decreases
above and below the center. Therefore, z has a maximum in the vertical
direction. Thus, you really can see there is a minimax at the origin.

Try your hand at reading the density plot on the left below. You shouldA sample plot

see two maxima (directly above and below the origin), a minimum (at the
origin itself), and two saddles (to the right and the left of the origin). The
function defining the plot is

f(x, y) = (x2 + (y − 1)2 − 3)(3 − x2 − (y + 1)2).
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Can you visualize what the graph looks like? This density plot should help
you, and you can also construct slices by setting x = c and y = c. The slices
x = 0 and y = 0 are especially useful. With them you could determine the
exact coordinates of the maxima and the saddles.

These density plots show a “checkerboard” pattern because Mathematica (the computer program
that produces them) shades each little square according to the value of the function at the center
of the square. This pattern is an artefact; it is not inherent to a density plot.

In a density plot, the shading varies smoothly with the value of the func-
tion. This is accurate, but it may be a bit difficult to read. On the right you
see a modified density plot. There is still shading, but there are now just a
few distinct shades. This makes a sharp boundary between one shade andFrom densities

to contours the next. The boundary is called a contour, or a level. The figure itself is
called a contour plot. The two maxima on the vertical line x = 0 stand
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out more clearly on the contour plot. Also, the contour lines around the two
saddles help us see that the function has a minimum in the vertical direction
and a maximum in the horizontal direction.
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-1

0

1

2

Once we have contour lines to separate one
density level from the next, we can even dispense
with the shading. The figure on the right is just
the contour plot from the opposite page, minus
the shading. The contour lines, or level curves,
now stand out clearly. On each contour, the
value of the function is constant. This is also
called a contour plot.

There is some loss of information here, how-
ever. For example, we can’t tell where the value
of the function is large and where it is small.
Nevertheless, the nested ovals on the vertical line
x = 0 do tell us that there is either a maximum
or a minimum at the center of each nest.

For reference purposes, here are the contour plots for the standard min-
imum, maximum, and saddle. In the first two cases, the contours are con-
centric ovals. These look the same, so only one is illustrated. The other two Contours of the

standard functionspictures show a saddle. In general, the contours around a saddle are a family
of hyperbolas. However, it is possible for one of the contour lines to pass
exactly through the minimax point. That contour is a pair of crossed lines,
as shown in the version on the right. You should compare these contour
plots with the density plots of the same functions on page 519, and with
their graphs on page 515.
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There is a direct connection between the contour plot of a function andContours are
horizontal slices
of a graph

its graph. Contours are horizontal slices of the graph, just as grid lines
are vertical slices. Below, we use the standard functions z = x2 − y2 and
z = x2 + y2 to illustrate the connection. Notice that every contour down
in the x, y-plane lies exactly below, and has the same shape as, a horizontal
slice of the graph. This picture explains why contours are called level curves.
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To get some more experience with contour plots, we return to the energyEnergy of the
pendulum, again function of the pendulum:

E(θ, v) = 1 − cos θ + 1
2
v2.

From the contour plot alone you should be able to see that E has either
a minimum or a maximum at (θ, v) = (0, 0), and another at (2π, 0). The
contours also provide evidence that there is a saddle (minimax) near (θ, v) =
(−π, 0) and (π, 0). It is also apparent that E is a periodic function of θ.
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What you should find most striking about this plot, however, is the way
it resembles the phase portrait of the pendulum (chapter 8, pages 471–474).
Every level curve here looks like a trajectory of the dynamical system. This Energy contours

are trajectories
of the dynamics

is no accident. We know from chapter 8 that the energy is a first integral for
the dynamics. In other words, energy is constant along each trajectory—this
is the law of conservation of energy. But each level curve shows where the
energy function has some fixed value. Therefore, each trajectory must lie on
a single energy level.

v

θ

medium energy oscillation
low energy oscillation

counter-clockwise spin
high energy

high energy clockwise spin

We can carry the connection between con-
tours and trajectories even further. Closed tra-
jectories correspond to oscillations of the pen-
dulum. But the closed trajectories are the
closed contours, and these are the ones that
surround the minimum. In particular, they are
low energy levels. By contrast, at higher ener-
gies (E > 2, in fact), the pendulum will just
continue to spin in what ever direction it was
moving initially. Thus, each high energy level
is occupied by two trajectories—one for clock-
wise spinning and one for counter-clockwise.

Technical Summary

The examples we have seen so far were meant to introduce some of the com-
mon ways of visualizing a function z = f(x, y). To use them most effectively,
though, you need to know more precisely how each is defined. We review
here the definition of a graph, a density plot, a contour plot, and a terraced
density plot.

x
y

z

(x, y, f(x, y))

(x, y, 0)

Graph. The graph of z = f(x, y) lies in the
3-dimensional space with coordinates (x, y, z).
To construct it, take any input (x, y). Identify
this with the point (x, y, 0) in the x, y-plane
(which is defined by the condition z = 0).
The corresponding point on the graph lies at
the height z = f(x, y) above the x, y-plane.
This point has coordinates (x, y, f(x, y)). The
graph is the set of all points of the form
(x, y, f(x, y)). This is a 2-dimensional surface.
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x

y

x

y

f(x, y) = c

Density plot. The density plot of z = f(x, y) lies in
the 2-dimensional x, y-plane. Choose any rectangle
where the function is defined, and let m and M be
the minimum and maximum values, respectively, of
f(x, y) on the rectangle. Define

ρ(x, y) =
f(x, y) − m

M − m
.

Then ρ satisfies 0 ≤ ρ(x, y) ≤ 1 on the rectangle; it
is called a density function (ρ is the Greek letter
rho). In the density plot, the density of ink—
or darkness—at (x, y) is ρ(x, y).

Contour plot. A contour of z = f(x, y) is the set
of points in the x, y-plane where f has some fixed
value:

f(x, y) = c.

That fixed value c is called the level of the contour.
(The two solid ovals in the figure at the left make
up a single contour.) A contour is also called a level
curve. A contour plot of f is a collection of
curves f(x, y) = cj in the x, y-plane. In the plot
it is customary to use constants c1, c2, . . . that are
equally spaced; that is, the interval between one cj

and the next always has the same value ∆c.

Terraced density plot. This is a contour plot in
which the region between two adjacent contours is
shaded with ink of a single density. If the contours
are at levels c1 and c2, then the density that is typi-
cally chosen is the one for the level half-way between
these two—that is, for their average (c1+c2)/2. Each
region is called a terrace. Often, a terraced density
plot is drawn in color, using different colors for each
terrace. Television weather programs use terraced
density plots to describe the temperature forecast
for a large region.

We find density plots everywhere. A photograph is a density plot of the light that fell on the film
when it was exposed. A newspaper ‘half-tone’ illustration is also a density plot of an image.
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The pros and cons

Each of these modes of visualization has advantages and disadvantages. All
are reasonably good at indicating the extremes (the maxima and minima) of
a function. A contour plot needs some additional information—for example,
a label on each contour to indicate its level—to distinguish between maxima
and minima. However, if you want to know the numerical value of f(x, y)
at a particular point (x, y), a contour plot with labels offers more precision
than a density plot. It’s usually better than a graph, too.

Overall, a graph has the biggest visual impact, but there is a cost. It takes Plots are visually
economical in

comparison to graphs
three dimensions to represent the graph of a function of two variables, but
only two to represent a plot. The cost is that extra dimension. It means that
we cannot draw the graph of a function of three variables. That would take
four mutually perpendicular axes—an impossibility in our three-dimensional
space. However, we can produce a contour plot.

Contours of a Function of Three Variables

We pause here for a brief glimpse of a large subject. By analogy with the
definition for a function of two variables, we say that a contour of the Contours and levels

function f(x, y, z) is the set of points (x, y, z) that satisfy the equation

f(x, y, z) = c,

for some fixed number c. We call c the level of the contour.
Let’s find the contours of w = x2 + y2 + z2. This is completely analogous The standard minimum

to the function x2 + y2 with two inputs. (What do the contours of x2 + y2

look like?) In particular, w has a minimum when (x, y, z) = (0, 0, 0). As the
following diagram shows, w = x2 + y2 + z2 is the square of the distance from
the origin to (x, y, z). (We use the Pythagorean theorem twice: once for p2

and once for q2.) Consequently, all points (x, y, z) where w has a fixed value

x axis

y axis

z axis

x
y

z
p

q
(x, y, z) p2 = x2 + y2,

q2 = p2 + z2

= x2 + y2 + z2

= w.
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lie a fixed distance from the origin. Specifically, w = x2 + y2 + z2 = c is the
following set:

• c > 0: the sphere of radius
√

c entered at the origin;

• c = 0: the origin itself;

• c < 0: the empty set.

The contour plot of w = x2 + y2 + z2 is thus a nest of concentric spheres, asThe contours
are spheres shown in the illustration below. The value of w is constant on each sphere.

(The tops of the spheres have been cut away so you can see how the spheres
nest; the whole thing resembles an onion.)
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Below is the contour plot of another standard function with three input A standard minimax

variables:
w = f(x, y, z) = x2 + y2 − z2.

A quarter of each surface has been cut away so you can see how the surfaces
nest together. Note that w = 0 is a cone, and every surface with w < 0
consists of two disconnected (but congruent) pieces—an upper half and a
lower half.

You should compare this function to the standard minimax x2−y2 in two
variables. The three-variable function w has a minimum with respect to both
of the variables x and y, while it has a maximum with respect to z. (Do you
see why? The arguments are exactly the same as they were for two input
variables on page 515.) Furthermore, the contours of x2 − y2 are a family of The contours

are hyperbolic shapeshyperbolas, and the contours of x2 +y2−z2 are surfaces obtained by rotating
these hyperbolas about a common axis.

w = −4
upper half

w = 9

w = 4

w = 0

w = −4
lower half

x

y

z
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It is a general fact—and our two examples provide good evidence for it—When there are three
input variables, the
contours are surfaces

that a single contour of a function of three variables is a surface. Thus a
contour is a curve or a surface, depending on the number of input variables.
We often use the term level set (rather than a level curve or a level surface)
as a generic name for a contour.

Exercises

In many of these exercises it will be essential to have a computer program
to make graphs, terraced density plots, and contour plots of functions of two
variables.

1. a) Use a computer to obtain a graph of the function z = sin x sin y on
the domain 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π. How many maximum points do you
see? How many minimum points? How many saddles?

b) Determine, as well as you can from the graph, the location of the maxi-
mum, minimum, and saddle points.

2. Continuation. Make the domain −2π ≤ x ≤ 2π, −2π ≤ y ≤ 2π and
answer the same questions you did in the previous exercise. (Does the graph
look like an egg carton?)

3. Obtain a terraced density plot (or a contour plot) of z = sin x sin y on
the domain −2π ≤ x ≤ 2π, −2π ≤ y ≤ 2π. Locate the maximum, minimum,
and saddle points of the function. Do these results agree with those from the
previous exercise?

4. Obtain the graph of z = sin x cos y on the domain 0 ≤ x ≤ 2π, 0 ≤ y ≤
2π. How does this graph differ from the one in exercise 1? In what ways is
it similar?

5. Obtain the graph of z = 2x+4x2−x4−y2 when −2 ≤ x ≤ 2, −4 ≤ y ≤ 4.
Locate all the minimum, maximum, and saddle points in this domain. [Note:
the minimum is on the boundary!]

6. Continuation. Obtain a terraced density plot (or contour plot) for the
function in the previous exercise, using the same domain. Use the plot to
locate all the minimum, maximum, and saddle points. Compare your results
with those of the previous exercise.
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7. a) Obtain the graph of z = 2x − y on the domain −2 ≤ x ≤ 2, −2 ≤
y ≤ 2. What is the shape of the graph?

b) Graph the same function of the domain 2 ≤ x ≤ 6, 0 ≤ y ≤ 4. What
is the shape of the graph? How does this graph compare to the one in part
(a)?

8. a) Continuation. Sketch three different slices of the graph of z = 2x− y
in the y-direction. What do the slices have in common? How are they
different?

b) Answer the same questions for slices in the x-direction.

9. a) Obtain the graph of z = .3x + .8y + 2.3; choose the domain yourself.
Where does the graph intercept the z-axis?

b) Describe the vertical slices of this graph in the y-direction and in the
x-direction.

10. Describe the vertical slices of the graph of z = px + qy + r in the
y-direction and in the x-direction.

11. a) Compare the contours of the function z = x2 + 2y2 to those of
z = x2 + y2.

b) What is the shape of the graph of z = x2 + 2y2? Decide this first using
only the information you have about the contours. Then use a computer to
obtain the graph.

12. a) Compare the contours of the function z = x2 − 2y2 to those of
z = x2 − y2.

b) What is the shape of the graph of z = x2 − 2y2? Decide this first using
only the information you have about the contours. Then use a computer to
obtain the graph.

13. a) Obtain a contour plot of the function z = x2 + xy + y2.

b) What is the shape of the graph of z = x2+xy+y2? Decide this first using
only the information you have about the contours. Then use a computer to
obtain the graph.

14. a) Obtain a contour plot of the function z = x2 + 3xy + y2.
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b) What is the shape of the graph of z = x2+3xy+y2? Decide this first using
only the information you have about the contours. Then use a computer to
obtain the graph.

15. a) Obtain a contour plot of the function z = x2 + 2xy + y2.

b) What is the shape of the graph of z = x2+2xy+y2? Decide this first using
only the information you have about the contours. Then use a computer to
obtain the graph.

16. Complete this statement: The function f(x, y; p) = x2 + pxy + 4y2,
which depends on the parameter p, has a minimum at the origin when
and a minimax when .

17. a) Obtain the graph and a terraced density plot of the function z =
3x2 + 17xy + 12y2. What is the shape of the graph?

b) What is the shape of the contours? Indicate how the contours fit on the
graph.

18. a) Obtain the graph and a terraced density plot of the function z =
3x2 + 7xy + 12y2. What is the shape of the graph?

b) What is the shape of the contours? Indicate how the contours fit on the
graph.

19. a) Obtain the graph and a terraced density plot of the function z =
3x2 + 12xy + 12y2. What is the shape of the graph?

b) What is the shape of the contours? Indicate how the contours fit on the
graph.

20. Obtain the graph of z = f(x, y) = xy on the domain −3 ≤ x ≤ 3,
−3 ≤ y ≤ 3. Does this function have a maximum or a minimum or a saddle
point? Where?

21. a) Continuation. Sketch slices of the graph of z = xy in the y-direction,
for each of the values x = −2, −1, 0, 1, and 2. What is the general shape of
each of these slices?

b) Repeat part (a), but make the five slices in the x-direction—that is, fix
y instead of x.
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22. Continuation. Show how the slices you obtained in the previous exercise
fit (or appear) on the graph you obtained in the exercise just before that one.

23. a) Continuation. Let x = u + v and y = u− v. Express z in terms of u
and v, using the fact that z = xy. Then obtain the graph of z as a function
of the new variables u and v.

b) What is the shape of the graph you just obtained? Compare it to the
graph of z = xy you obtained earlier.

24. Can you draw a network of straight lines on the saddle surface z =
x2 − y2?

25. Obtain a terraced density plot of z = xy. How do the contours of this
plot fit on the graph of z = xy you obtained in a previous exercise?

26. The graphs of z = x2 +5xy +10y2 and z = 3 intersect in a curve. What
is the shape of that curve?

27. The graphs of z = x2 + y3 and z = 0 intersect in a curve. What is the
shape of that curve?

28. The graphs of z = 2x − y and z = .3x + .8y + 2.3 intersect in a curve.
What is the shape of that curve?

First integrals

29. A hard spring described by the dynamical system

dx

dt
= v,

dv

dt
= −cx − βx3,

has a first integral of the form

E(x, v) = 1
2
cx2 + 1

2
βx4 + 1

2
v2.

This is the energy of the spring. (See chapter 7.3, especially exercise 13,
page 454.)

a) Let c = 16 and β = 1. Obtain the graph of E(x, v) on a domain that
has the origin at its center. Locate all the minimum, maximum, and saddle
points in this domain.
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b) What is the state of the spring (that is, its position x and its velocity v)
when it has minimum energy?

30. A soft spring described by the dynamical system

dx

dt
= v,

dv

dt
=

−25x

1 + x2
,

has an energy integral of the form

E(x, v) = 25
2

ln(1 + x2) + 1
2
v2.

(See exercise 16, page 455.)

a) Obtain the graph of E(x, v). Experiment with different possibilities for
the domain until you get a good representation.

b) Obtain a terraced density plot of E(x, v) over the same domain you chose
in part (a). Compare the two representations of E.

c) Does the spring have a state of minimum energy? If so, where is it?

d) Does the spring have a state of maximum energy? Explain your answer.

31. a) The Lotka–Volterra equations. According to exercise 33 of chap-
ter 7.3 (page 458), the function

E(x, y) = .1 ln y + .04 lnx − .005 y − .004 x

is a first integral of the dynamical system

x′ = .1x − .005 xy,

y′ = .004 xy − .04 y.

Obtain the graph of E on the domain 1 ≤ x ≤ 50, 1 ≤ y ≤ 50. (Why not
enlarge the domain to 0 ≤ x ≤ 50, 0 ≤ y ≤ 50?)

b) Find all maximum, minimum, and saddle points on this graph. What is
the connection between the maximum of E and the equilibrium point of the
dynamical system?

c) Obtain a contour plot of E on the same domain as in part (a). Compare
the contours of E and the trajectories of the dynamical system. (This reveals
a conservation of “energy” for the solutions of the Lotka-Volterra equations.)
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32. a) Continuation. Here is another first integral of the same dynamical
system as in the previous exercise:

H(x, y) =
x0.04y0.1

exp(.005 y + .004 x)
.

Obtain the graph of H and compare it to the graph of E in the previous
exercise.

b) Obtain a contour plot of H , and compare the contours to the trajectories
of the dynamical system.
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9.2 Local Linearity

Local linearity is the central idea of chapter 3: it says that a graph looks
straight when viewed under a microscope. Using this observation we were
able to give a precise meaning to the rate of change of a function and, as
a consequence, to see why Euler’s method produces solutions to differential
equations. At the time we concentrated on functions with a single input
variable. In this section we explore local linearity for functions with two or
more input variables.

Microscopic Views

Consider the cubic f(x, y) = x3 − 4x− y2 that we used as an example in the
previous section. We’ll examine both the graph and the plot of f under a
microscope. In the figure below we see successive magnifications of the graphMagnifying

a graph near the point where (x, y) = (1.5,−1). The initial graph, in the left rear, is
drawn over the square

−2.5 ≤ x ≤ 2.5, −2.5 ≤ y ≤ 2.5.

With each magnification, the portion of the surface we see bends less and
less. The graph approaches the shape of a flat plane.
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Contour plots for f(x, y) = x3−4x−y2 appear below. Again, we magnify
near the point (x, y) = (1.5,−1). Each window below is a small part of the
window to its left. In the large scale plot, which is the first one on the left,
the contours are quite variable in their direction and spacing. With each
magnification, that variability decreases. The contours become straight,
parallel, and equally spaced.
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The process of magnification thus leads us to functions whose graphs are
flat and whose contours are straight, parallel, and equally-spaced. As we
shall now see, these are the linear functions.

Linear Functions

A linear function is defined by the way its output responds to changes in the Responses to
changes in inputinput. Specifically, in chapter 1 we said

y = f(x) is linear if ∆y = m · ∆x.

This is the simplest possibility: changes in output are strictly proportional
to changes in input. The multiplier m is both the rate at which y changes
with respect to x and the slope of the graph of f .

Exactly same idea defines a linear function of two or more variables: the The definition

change in output is strictly proportional to the change in any one of the
inputs.

Definition. The function z = f(x1, x2, . . . , xn) is linear
if there are multipliers p1, p2, . . . , pn for which

∆z = p1 · ∆x1, ∆z = p2 · ∆x2, . . . , ∆z = pn · ∆xn.
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There is one multiplier for each input variable. The multipliers are constants
and they are, in general, all different.

The definition describes how z responds to each input separately. WePartial and
total changes call each pj · ∆xj a partial change. The multiplier pj = ∆z/∆xj is the

corresponding partial rate of change. Of course, several input variables
may change simultaneously. In that case, the total change in z will just be
the sum of the individual changes produced by the several variables:

∆z = p1 · ∆x1 + p2 · ∆x2 + · · ·+ pn · ∆xn.

Of course, if the total change of a function satisfies this condition, thenAnother way
to describe a
linear function

each partial change has the form pj · ∆xj . (If only xj changes, then all the
other ∆xk must be 0. So ∆z becomes simply pj · ∆xj .) Consequently, the
function must be linear. In other words, we can use the formula for the total
change as another way to define a linear function.

Alternate definition. The function z = f(x1, x2, . . . , xn)
is linear if there are multipliers p1, p2, . . . , pn for which

∆z = p1 · ∆x1 + p2 · ∆x2 + · · · + pn · ∆xn.

Formulas for linear functions

When z = f(x1, x2, . . . , xn) is a linear function, we know how ∆z dependsFrom the definition
to a formula on the changes ∆xj , but that doesn’t tell us explicitly how z itself is related

to the input variables xj . There are several ways to express this relation
as a formula, depending on the nature of the information we have about
the function. For the sake of clarity, we’ll develop these formulas first for a
function of two variables: z = f(x, y).

• The initial-value form. Suppose we know the value of a linear functionGiven the partial
rates of change and
an initial point

at some given point—called the initial point—and we also know its partial
rates of change. Can we construct a formula for the function? Suppose z = z0

when (x, y) = (x0, y0), and suppose the partial rates of change are

p =
∆z

∆x
and q =

∆z

∆y
.

If we let
∆x = x − x0, ∆y = y − y0, ∆z = z − z0,
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then we can write

z − z0 = ∆z = p · ∆x + q · ∆y

= p · (x − x0) + q · (y − y0).

This is the initial-value form of a linear function. For example, if the initial
point is (x, y) = (4, 3), z = 5, and the partial rates of change are ∆z/∆x =
−1

2
, ∆z/∆y = +1, the equation of the linear function can be written

z − 5 = −1
2
(x − 4) + (y − 3).

• The intercept form. This is a special case of the initial-value form, in Given the partial
rates of change and

the z-intercept
which the initial point is the origin: (x, y) = (0, 0), z = r. The formula
becomes

z − r = px + qy, or z = px + qy + r.

As we shall see, the graph of this function in x, y, z-space passes through the
point (x, y, z) = (0, 0, r) on the z-axis. This point is called the z-intercept
of the graph. Sometimes we simply call the number r itself the z-intercept.

Notice that, with a little algebra, we can convert the previous example
to the form z = −1

2
x + y + 4. This is the intercept form, and the z-intercept

is z = 4.

If there are n input variables, x1, x2, . . . , xn, instead of two, and an initial

The form of
a linear function

of n variables

point has coordiantes x0
1, x0

2, . . . , x0
n, then a linear equation has the following

forms:

initial-value: z − z0 = p1(x1 − x0
1) + p2(x2 − x0

2) + · · · + pn(xn − x0
n),

z-intercept: z = p1x1 + p2x2 + · · · + pnxn + r.

The graph of a linear function

On the left at the top of the next page is the graph of the linear function

z = 1
2
x + y + 4.

The graph is a flat plane. In particular, grid lines parallel to the x-axis (which
represent vertical slices with y = c) are all straight lines with the same slope
∆z/∆x = −1

2
. The other grid lines (with x = c) are all straight lines with

the same slope ∆z/∆y = +1.
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x

y r
slope = p

slope = q

z = −1
2x + y + 4 z = px + qy + r

On the right, above, is the graph of the general linear function written in
intercept form: z = px+qy+r. The graph is the plane that can be identified
by three distinguishing features:

• it has slope p in the x-direction;

• it has slope q in the y-direction.

• it intercepts the z-axis at z = r;

Let’s see how we can deduce that the graph must be this plane. First ofThe definition of
a linear function
implies that its graph
is a flat plane

all, the partial rate ∆z/∆x tells us how z changes when y is held fixed. But
if we fix y = c, we get a vertical slice of the graph in the x-direction. The
slope if that vertical slice is ∆z/∆x = p. Since p is constant, the slice is a
straight line. The value of y = c determines which slice we are looking at.
Since ∆z/∆x doesn’t depend on y, all the slices in the x-direction have the
same slope. Similarly, all the slices in the y-direction are straight lines with
the same slope q. The only surface that can be covered by a grid of straight
lines in this way is a flat plane. Finally, since z = r when (x, y) = (0, 0), the
graph intercepts the z-axis at z = r.

Contours of a linear function

A contour of any function f(x, y) is the set of points in the x, y-plane whereEach contour is
a straight line f(x, y) = c, for some given constant c. If f = px + qy + r, then a contour

has the equation

px + qy + r = c or y = −p

q
x +

c − r

q
.
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This is an ordinary straight line in the x, y-plane. Its slope is −p/q and its
y-intercept is (c − r)/q. (If q = 0 we can’t do these divisions. However, this
causes no problem; you should check that the contour is just the vertical line
x = (c − r)/p.)

x

y
y = cj − r

q

∆c
q

px + qy + r =
 c j

px + qy + r =
 c j + 1

px + qy + r =
 c j + 2

To construct a contour plot, we must give the
constant c a sequence of equally-spaced values cj,
with cj+1 = cj +∆c. This generates a sequence of
straight lines

px + qy + r = cj , or y = −p

q
x +

cj − r

q
.

These lines all have the same slope −p/q, so they
are parallel. (Notice the value of c doesn’t affect
the slope.) The y-intercept of the j-th contour is
(cj−r)/q. Therefore, the distance along the y-axis

between one intercept and the next is ∆c/q. The contours are thus straight,
parallel, and equally-spaced. (You should check that this is still true if q = 0.)
Note that the figure at the left, above, is drawn with ∆c > 0 but q < 0.

Geometric interpretation of the partial rates

What happens to the graph or the contour plot if you double one of the
partial rates of change of a linear function? The graph on the right, be- Partial rates and

partial slopeslow, shows the effect of doubling the partial rate with respect to x of the
function z = −1

2
x + y + 4. As you can see, the slope in the x-direction
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is doubled (from −1
2

to −1). Had we increased the partial rate by a factor
of 10, the slope would have increased by a factor of 10 as well. Notice that
the slope in the y-direction is not affected. Nevertheless, the overall ‘tilt’ ofThe overall tilt

of a graph is altered the graph has been altered. We shall have more to say about this feature in
a moment, when we introduce the gradient of a linear function to describe
the overall tilt.

A change in the partial rates has a more complex effect on the contour
plot. Perhaps it is more surprising, too. To make valid comparisons, we
have constructed all three plots below with the same spacing between levels
(namely ∆z = 1). Notice how the levels meet the x- and y-axes in the plot
on the left (z = −tfrac12x + y + 4). For each unit step we take along thePartial rate and the

spacing of contours y-axis, the z-value increases by 1. This is the meaning of ∆z/∆y = +1. By
contrast, we have to take two unit steps along the x-axis to produce the same
size change in z. Moreover, z decreases by 1 when x increases by 2. This
is the meaning of ∆z/∆x = −1

2
. In particular, the relatively wide spacing

between z-levels along the x-axis reflects the relative smallness of ∆z/∆x.
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Therefore, when we double the size of ∆z/∆x—as we do in the middle
plot—we should cut in half the spacing between z-levels along the x-axis. AsThe larger

the partial rate,
the closer
the contours

you can see, this is exactly what happens. Notice that the spacing along the
y-axis is not altered. Consequently, the contours change direction and they
get packed more closely together.

Suppose we double both partial rates—as we do in the plot on the right.
Then the spacing between contours is cut in half along both axes. Because
the change is uniform, the contours keep their original direction.
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The Gradient of a Linear Function

By making use of the concept of a vector, introduced in the last chapter, we
can construct still another geometric interpretation of the partial rates of a The vector of

partial rateslinear function. This vector is called the gradient, and it is defined in the
following way.

Definition. The gradient of a linear function z = f(x, y) is
the vector whose components are its partial rates of change:

grad z = ∇z =

(
∆z

∆x
,
∆z

∆y

)

.

The gradient is perhaps the most concise and useful tool for describing
the growth of a function of several variables. To get an idea of the role that it The direction of

most rapid growthplays, consider this question: In what direction should we move from a given
point in the x, y-plane so that the value of a linear function increases most
rapidly?
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Of course, the answer will depend on the linear function. Let’s use z = z = − 1

2
x + y + 4

−1
2
x + y + 4 and start from the point (x, y) = (2.4, 1.6). We can make

z undergo a very large change simply by moving very far from this point.
Therefore, to make valid comparisons, we will restrict ourselves to motions
that carry us exactly one unit of distance in various directions. The vectors
in the figure at the right show some of the possibilities. Their tips lie on a
circle of radius 1.

Thus, to choose the direction in which z increases most rapidly, we must
simply find the point on this circle where the value of z is largest. The contour
line at this level must be tangent to the circle. The vector perpendicular to
this contour line (see the second figure) therefore points in the direction of
most rapid growth. Since perpendiculars have negative reciprocal slopes, and
since all the contour lines have slope +1/2, it follows that the vector must
have slope −2/1.

At the left is a magnified view of this vector. We know

∆x < 0,
∆y

∆x
= −2, and (∆x)2 + (∆y)2 = 1.

Thus ∆y = −2 · ∆x, so (∆x)2 + 4 (∆x)2 = 1. This implies

5 (∆x)2 = 1, so ∆x =
−1√

5
, ∆y =

2√
5
.
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Thus, among all the motions (∆x, ∆y) we have considered, we obtain the
greatest change in z by choosing

(∆x, ∆y) =

(−1√
5
,

2√
5

)

.

To determine how large this change is, we can use the alternate definition ofThe magnitude of
most rapid growth a linear function (see page 536)

∆z =
∆z

∆x
· ∆x +

∆z

∆y
· ∆y = −1

2
· −1√

5
+ 1 · 2√

5
=

5

2
√

5
=

√
5

2
.

x

y
grad z
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4 The gradient vector quickly gives us all this information. First of all, the
gradient vector has the value

grad z =

(
∆z

∆x
,
∆z

∆y

)

=
(
−1

2
, 1
)
.

Since its slope is 1/− 1
2

= −2, we see that it does indeed point in the direction
of most rapid growth. Consequently, it is also perpendicular to the contourInformation from

the gradient line. Furthermore, its length gives the maximum growth rate. We can see
this by calculating the length using the Pythagorean theorem:

length =

√
(

∆z

∆x

)2

+

(
∆z

∆y

)2

=

√

1

4
+ 1 =

√

5

4
=

√
5

2
.

Our findings with this example point to the following conclusion.

Theorem. The gradient of the linear function z = px + qy + r
is perpendicular to its contour lines. It points in the direction
in which z increases most rapidly, and its length is equal to the
maximum rate of increase.

Let’s see why this is true. According to the observation on the previousA proof

page, the direction of most rapid increase will be perpendicular to the contour
lines. The gradient of z = px + qy + r is the vector ∇z = (p, q). Its slope is
q/p. On page 539 we saw that the slope of the contour lines is −p/q. Since
these slopes are negative reciprocals, the gradient is indeed perpendicular to
the contour lines.
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To determine the maximum rate of increase, we must see how much z
increases when we move exactly 1 unit of distance in the gradient direction.
The gradient vector is (p, q), and its length is

√

p2 + q2. Therefore, the vector

(∆x, ∆y) =

(

p
√

p2 + q2
,

q
√

p2 + q2

)

is 1 unit long and in the same direction as the gradient. The increase in z
along this vector is

∆z = p ·∆x+ q ·∆y = p · p
√

p2 + q2
+ q · q

√

p2 + q2
=

p2 + q2

√

p2 + q2
=
√

p2 + q2.

This is the length of the gradient vector, so we have confirmed that the End of the proof

length of the gradient is equal to the maximum rate of increase.
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Shown above are the three linear functions we’ve already examined. In
each case the gradient vector is perpendicular to the contours, and it gets Contour spacing and

the length
of the gradient

longer as the space between the contours decreases. This is to be expected
because the space between contours is also an indicator of the maximum
rate of growth of the function. Widely-spaced contours tell us that z changes
relatively little as x and y change; closely-spaced contours tell us that z
changes a lot as x and y change.

The connection between the gradient and the graph is particularly simple. The gradient points
directly uphillSince the gradient (which is a vector in the x, y-plane) points in the direction

of greatest increase, it points in the direction in which the graph is tilted up.
If we project the gradient vector onto the graph, as in the figure at the top
of the next page, it points directly “uphill”. Putting it another way, we can
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8 say that the gradient shows us the “overall tilt” of
the graph. There are two parts to this information.
First, the direction of the gradient tells us which
way the graph is tilted. Second, the length tells us
how steep the graph is.

The figure at the left combines all the visual ele-
ments we have introduced to analyze a linear func-
tion: contours, graph, and gradient. Study it to see
how they are related.

The Microscope Equation

Local linearity

Let’s return to arbitrary functions of two variables—that is, ones that are
not necessarily linear. First we looked at magnifications of their graphsLocal linearity

and contour plots under a microscope. We found that the graph becomes a
plane, and the plot becomes a series of parallel, equally-spaced lines. Next,
we saw that it is precisely the linear functions which have planar graphs and
uniformly parallel contour plots. Hence this function is locally linear.

Of course, not every function is locally linear, and even a function that isExceptions

locally linear at most points may fail to be so at particular points. We have
already seen this with functions of a single variable in chapter 3. For example,
g(x) = x2/3 is locally linear everywhere except the origin. It has a sharp spike
there. The two-variable function f(x, y) = (x2 + y2)1/3 has the same sort of
spike at the origin. The two graphs help make it clear that g is just a slice of f
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(constructed by taking y = 0). (Compare chapter 3.2, pages 113–114.) The
spike is just one example; there are many other ways that a function can fail
to be locally linear.

Functions that are nowhere locally linear are now being used in science to The relation between
calculus and fractalsconstruct what are called fractal models. However, calculus does not deal

with fractals. On the contrary, we remind you of the stipulation first made
in chapter 3:

Calculus studies functions that are
locally linear almost everywhere.

The microscope equation with two input variables

If the function z = f(x, y) is locally linear, then its graph looks like a plane The equation of a
microscopic viewwhen we view it under a microscope. The linear equation that describes that

plane is the microscope equation. Since the plane is part of the graph of
f , f itself must determine the form of the microscope equation. Let’s see
how that happens.

The idea is to reduce f to a function of one variable and then use
the microscope equation for one-variable functions (described in chapter 3.3
and 3.7). Suppose the microscope is focused at the point (x, y) = (a, b). If
we fix y (at y = b), then z depends on x alone: z = f(x, b). The microscope
equation for this function at x = a is just

The microscope
equation in the
x-direction. . .

∆z ≈ ∂f

∂x
(a, b) · ∆x.

The multiplier ∂f/∂x is the rate of change of f with respect to x. We need
to write it as a partial derivative because f is a function of two variables.
Geometrically, the multiplier tells us the slope of a vertical slice of the graph
in the x-direction.

Now reverse the roles of x and y, fixing x = a. The microscope equation
for the function z = f(a, y) at y = b is

. . . and in the
y-direction

∆z ≈ ∂f

∂y
(a, b) · ∆y.

The multiplier ∂f/∂y in this equation is the slope of a vertical slice of the
graph in the y-direction. The slopes of the two vertical slices are indicated
in the microscope window that appears in the foreground of the following
figure.
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The separate microscope equations for the x- and y-directions give us theFrom partial changes
to total change partial changes in z. However, as we saw when we were defining linear func-

tions (page 536), when we know all the partial changes, we can immediately
write down the total change:

The microscope equation:

∆z ≈ ∂f

∂x
(a, b) · ∆x +

∂f

∂y
(a, b) · ∆y

As always, the origin of the microscope window corresponds to the point
(a, b, f(a, b)) on which the microscope is focused. The microscope coordinates
∆x, ∆y, and ∆z measure distances from this origin. For the sake of clarity in
the figure above, we put the origin at one corner of the (three-dimensional)
window.

Incidentally, the function shown above is f(x, y) = x3 − 4x− y2, and theAn example

microscope is focused at (a, b) = (1.5,−1). Since

∂f

∂x
= 3x2 − 4 = 2.75,

∂f

∂y
= −2y = 2
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when (x, y) = (1.5,−1), the microscope equation is

∆z ≈ 2.75 ∆x + 2 ∆y.

Linear Approximation

The microscope equation describes a linear function that approximates the The microscope
equation gives

a linear approximation
original function near the point on which the microscope is focused. It is easy
to see exactly how good the approximation is by comparing contour plots of
the two functions. This is done below. In the window on the right, which
shows the highest magnification, the solid contours belong to the original
function f = x3 −4x−y2. They are curved, but only slightly so. The dotted
contours belong to the linear function

(z + 3.625) = 2.75(x − 1.5) + 2(y + 1) or z = 2.75 x + 2 y − 5.75.

(This is the microscope equation expressed in terms of the original vari-
ables x, y and z instead of the microscope coordinates ∆x = x − 1.5,
∆y = y − (−1) and ∆z = z − (−3.625).)

The difference between the two sets of contours shows us just how good Comparing the
contours . . .the approximation is. As you can see, the two functions are almost indistin-

guishable near the center of the window, which is the point (x, y) = (1.5,−1).
As we look farther from the center, we find the contours of f depart more
and more from strict linearity.
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We can also compare the graphs of a function and its linear approxima- . . . and the graph
of the function and its

linear approximation
tion. The graph of the linear approximation is a plane, of course. It is, in
fact, the plane that is tangent to the graph of the function.
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In the left figure immediately below we see the tangent plane to the graph
of z = f(x, y) = x3 − 4x − y2 at the point where (x, y) = (1.5,−1). On the
right is a magnified view at the point of tangency. The graph of f is almost
flat.
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The grid helps us distinguish it from the tangent plane, which is solid gray.
Such close agreement between the graph and the plane demonstrates how
good the linear approximation is near the point. Notice, however, that the
plane diverges from the graph as we move away from the point of tangency.

At first glance you may not think that the plane in the figures above isTangent planes

tangent to the surface. The word “tangent” comes from the Latin tangere,
to touch. We sometimes take this to mean “touch at one point”, like the
plane in the figure at the left, below. More properly, though, two objects are
tangent if they have the same direction at a point where they meet. The
plane in the figures above does meet this condition—as the microscopic view
helps make clear.
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There are many different ways that a tangent plane can intersect a surface.Elliptic points. . .

What happens depends on the shape of the surface at the point of tangency.
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The surface could bend the same way in all directions at that point, or it
could bend up in some directions and down in others. In the first case, it will
bend away from its tangent plane, so the two will meet at only one point.
This is called an elliptic point, because the intersection turns into an ellipse
if we push the plane in a bit. The figure on the right, above, shows what
happens.
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Suppose, on the other hand, that the surface bends up in some directions
but down in others. Then, in some intermediate directions, it will not be
bending at all. In those directions it will meet its tangent plane—which . . . and

hyperbolic pointsdoesn’t bend, either. Typically, there are two pairs of such directions. The
surface and the tangent plane then intersect in an X. This always happens
at a minimax (or saddle point) on a graph. and it also happens at the first
point we considered on the graph of z = x3 − 4x − y2. This is shown again
in the figure on the left above. It is called a hyperbolic point, because
the intersection turns into a hyperbola if we push the plane a bit—as on the
right. The lines where the tangent plane itself intersects the surface are called
asymptotic lines, because they are the asymptotes of the hyperbolas. (To
make it easier to see the elliptical and hyperbolic intersections we made the
surface grid finer.)

The curve of intersection between a surface and a shifted tangent plane is called the Dupin

indicatrix. The Dupin indicatrix can take many forms besides the ones we have described here.
However, at almost all points on almost all surfaces it turns out to be an ellipse or a hyperbola.
More precisely, the indicatrix is approximately an ellipse or a hyperbola—in the same way that
the surface itself is only approximately flat.

Most points on a surface fall into one of two regions; one region consists of
elliptic points, the other of hyperbolic. Points on the boundary between these Parabolic points

two regions are said to be parabolic. On the graph of z = x3 − 4x − y2,
if x < 0 the point is elliptic; if x > 0 it is hyperbolic; and if x = 0, it is
parabolic. Try to confirm this yourself, just by looking at the surface.
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The classification of the points into elliptical, parabolic, and hyperbolic types is one of the first
steps in studying the curvature of a surface. This is part of differential geometry ; calculus provides
an essential language and tool. Differential geometry is used to model the physical world at both
the cosmic scale (general relativity) and the subatomic (string theory).

The Gradient

Local linearity is a powerful principle. It says that an arbitrary functionConsequences of
local linearity looks linear when we view it on a sufficiently small scale. In particular, all

these statements are approximately true in a microscope window:
• the contours are straight, parallel, and equally spaced;
• the graph is a flat plane (the tangent plane);
• the function has a linear formula (the microscope equation);
• the partial derivatives are the slopes of the graph in the

directions of the axes.
There is one more aspect of a linear function for us to interpret—the gradient.Extending the gradient

to non-linear functions Since partial rates become partial derivatives, we can make the following
definition for an arbitrary locally linear function.

Definition. The gradient of a function z = f(x, y) is
the vector whose components are the partial derivatives:

grad f = ∇f = (fx, fy) =

(
∂f

∂x
,
∂f

∂y

)

.

The partial derivatives are functions, so the gradient varies from point
to point. Thus, gradients form a vector field in the same sense thatThe gradient

vector field a dynamical system does (see chapter 8). We draw the gradient vector
(fx(x, y), fy(x, y)) as an arrow whose tail is at the point (x, y).

Example. f(x, y) = x3 − 4x − y2, grad f = (3x2 − 4,−2y)

Contours and gradient
vectors together

−2 −1 0 1 2

−2

−1

0

1

2
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There is one thing you should notice about the previous figure: we drew the The vectors are
rescaled for claritygradient vectors much shorter than they actually are. For instance, at the

origin grad f = (−4, 0), but the arrow as drawn is closer to (−.25, 0). The
purpose of rescaling is to keep the vectors out of each other’s way, so the
overall pattern easier to see.

The example shows contours as well as gradients so we can see how the
two are related. The result is very striking. Even though the vectors vary in
length and direction, and the contours vary in direction and spacing, the two
are related the same way they were for a linear function (page 542ff). First of The relation between

gradients and contoursall, each vector is perpendicular to the level curve that passes through its tail.
Second, the vectors get longer where the spacing between level curves gets
smaller. The similarity is no accident, of course; it is a consequence of local
linearity. We can summarize and extend our observations in the following
theorem. It is just a modification of the earlier theorem on the gradient of a
linear function (page 542).

Theorem. The gradient vector field of the function z = f(x, y)
is perpendicular to its contour lines. At each point, the direction
of the gradient is the direction in which z increases most rapidly;
the length is equal to the maximum rate of increase.

To see why this theorem is true, just look in a microscope. The gradient A proof

and the contours become the gradient and the contours of the linear approx-
imation at the point where the microscope is focused. But we already know
the theorem is true for linear functions, so there is nothing more to prove.

There is a direct connection between the gradient field of a function The gradient
points uphillz = f(x, y) and its graph. Since the gradient (which is a vector in the

x, y-plane) points in the direction in which z in-
creases most rapidly, it points in the direction in
which the graph is tilted up. Thus, if we project
the gradient onto the graph, as we do in the fig-
ure at the left, it points directly “uphill”. Since
f is not a linear function, both the steepness and
the uphill direction vary from point to point. The
gradient vector field also varies; in this way, it
keeps track of the steepness of the graph and the
direction of its tilt.
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The Gradient of a Function of Three Variables

Let’s take a brief glance at the gradient of a function f(x, y, z). It has three
components:

gradf = ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

= (fx, fy, fz),

and it defines a vector field in x, y, z-space. At each point, the gradient of
f is perpendicular to the level set through that point, and it points in the
direction in which f increases most rapidly.

Example. In the two boxes below you can compare the gradient field
of f(x, y, z) = x2 + y2 − z2 with its level sets. At first glance, you may notVisualizing a

three-dimensional
vector field

find a clear pattern to the gradient vectors. After all, the picture is three-
dimensional, and it is difficult to tell whether an arrow is near the front of the
box or the back. However, there is a pattern: at the top and the bottom of the

x2 + y2 − z2 = c ∇f = (2x, 2y,−2z)

box, arrows point inward; closer to the middle of the box, they flare outward.
The lowest values of the function occur along the z-axis, inside the shallow
bowls that sit at the top and the bottom of the box. The highest values
occur outside the “equatorial belt” formed by the outermost level set. This
is where the x, y-plane meets the middle of the box. Notice also that the
level sets are symmetric around the z-axis. The gradient field has the same
symmetry, though this is harder to see.
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Exercises

In many of these exercises it will be essential to have a computer program to
make graphs and contour plots of functions of two variables.

1. a) Obtain the graph of z = x3 − 4x − y2 on a domain centered at the
point (x, y) = (1.5,−1), and magnify the graph until it looks like a plane.

b) Estimate, by eye, the slopes in the x-direction and the y-direction of the
plane you found in part (a). [You should find numbers between +2 and +3
in both cases.]

2. Obtain a contour plot of z = x3 − 4x − y2 on a domain centered at
the point (x, y) = (1.5,−1), and magnify the plot until the contours look
straight, parallel, and equally spaced. Compare your results with the plots
on page 535.

3. Continuation. The purpose of this exercise is to estimate the rate of
change ∆z/∆x at (x, y) = (1.5,−1), using the most highly magnified contour
plot you constructed in the last exercise. ∆x

z1 z2
∆z = z2 − z1

(1.5, −1)a) What is the horizontal spacing ∆x between the two contours closest to
the point (1.5,−1)? See the illustration at the right.

b) Find the z-levels z1 and z2 of those contours, and then compute ∆z =
z2 − z1.

c) Compare the value of ∆z/∆x you now obtain with the slope in the x-
direction that you estimated in exercise 1.

4. Continuation. Repeat all the work of the last exercise, this time for
∆z/∆y.

Linear functions

5. a) Find the z-intercept of the graph of the linear function given by the
formula

z − 3 = 2(x − 4) − 3(y + 1).

b) Write the formula for this linear function in intercept form.

6. a) Write, in initial-value form, the formula for the linear function z =
L(x, y) for which ∆z/∆x = 3, ∆z/∆y = −2, and L(1, 4) = 0.
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b) Write the intercept form of the same function. What is the z-intercept
of the graph of L?

7. a) Suppose z is a linear function of x and y, and ∆z/∆x = −7, ∆z/∆y =
12. If (x, y) changes from (35, 24) to (33, 33), what is the total change in z?

b) Suppose z = 29 when (x, y) = (35, 24). What value does z have when
(x, y) = (33, 33)? What value does z have when (x, y) = (0, 0)?

c) Write the intercept form of the formula for z in terms of x and y.

8. Suppose z is a linear function of x and y for which we have the following
information:

x 5 7 0 4 0 4

y 9 1 4 6 7 0 −1

z 2 12 −7 2 20 20

a) Fill in the blanks in this table.

b) Write the formula for z in intercept form.

9. a) Sketch the graph of z = x − 2y + 7 on the domain 0 ≤ x ≤ 3,
0 ≤ y ≤ 3.

b) Determine the slope of this graph in the x-direction, and indicate on your
sketch where this slope can be found.

c) Determine the slope of this graph in the y-direction, and indicate on your
sketch where this slope can be found.

10. Continuation. Draw the gradient vector of z = x − 2y + 7 in the x, y-
plane, and then lift it up so it sits on the graph you drew in the previous
exercise. Does the gradient point directly “uphill”?

11. Sketch the graph of the linear function z = L(x, y) for which

∆z

∆x
= −1,

∆z

∆y
= .6, L(1, 1) = 8.

Be sure your graph shows clearly the slopes in the x-direction and the y-
direction, and the z-intercept.
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12. Continuation. Draw the gradient of the function L from the previous
exercise, and lift it up so it sits on the graph of L you drew there. Does the
gradient point directly uphill?

13. What is the equation of the linear function z = L(x, y) whose graph (a)
has a slope of −4 in the x-direction, (b) a slope of +5 in the y-direction, and
(c) passes through the point (x, y, z) = (2,−9, 0)?

14. Suppose z = L(x, y) is a linear function whose graph contains the three
points

(1, 1, 2), (0, 5, 4), (−3, 0, 12).

a) Determine the partial rates of change ∆z/∆x and ∆z/∆y.

b) Where is the z-intercept of the graph?

c) If (4, 1, c) is a point on the graph, what is the value of c?

d) Is the point (2, 2, 4) on the graph? Explain your position.
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15. The figure on the left above is the contour plot of a function z =
L1(x, y).

a) What are the values of L1(1, 0), L1(2, 0), L1(3, 0), L1(0, 3), L1(2, 3), and
L1(0, 0)?

b) What are the partial rates ∆L1/∆x and ∆L1/∆y?
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16. Continuation. Find the values of L1(3, 2), L1(7, 0), L1(7, 7), L1(1.4, 2.9),
L1(−2, 9), L(−10,−100).

a) Find x so that L1(x, 0) = 0. Find y so that L1(0, y) = 0.

17. Continuation. Write the intercept form of the formula for L1(x, y).

18. a) Find the partial rates ∆L2/∆x and ∆L2/∆y of the linear function
L2 whose contour plot is shown at the right on the previous page.

b) Obtain the intercept form of the formula for L2(x, y).

x

y
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4

01234
01234

x

y

1
2

3
4

01234
01234

19. The figures above are the graphs of L1 and L2. Which is which? Explain
your choice. (Note that both graphs are shown from the same viewpoint. The
x-axis is on the right, and the y-axis is in the foreground. The z-axis has no
scale on it.)

20. Determine the gradient vectors of L1 and L2.

a) Sketch the gradient vector of each function on the x, y-plane and on its
own graph. Does the gradient point directly uphill in each case?

21. Suppose the gradient vector of the linear function p = L(q, r) is grad
p = ∇p = (5,−12). If L(9, 15) = 17, what is the value of L(11, 11)?

22. a) What is the gradient vector of the function w = 2u + 5v?

b) At what point on the circle u2 + v2 = 1 does w have its largest value?
What is that value?
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23. a) Write the formula of a linear function z = L(x, y) whose gradient
vector is grad z = ∇z = (−3, 4)

b) Using your formula for L, calculate the total change in L when ∆x = 2,
∆y = 1.

24. a) Continuation; in particular, continue to use your formula for z =
L(x, y). What is the value of L(0, 0)?

b) What is the maximum value of z on the circle x2 + y2 = 1? At what
point (x, y) does z achieve that value?

c) Determine the difference between the maximum and minimum values of
L on the circle x2 + y2 = 1.

[Answer: The difference is 10, independent of the formula you use.]

25. a) What value does z = 7x + 3y + 31 have when x = 5 and y = 2?

b) If x increases by 2, how must y change so that the value of z doesn’t The concept of
a trade-offchange. (The change in y needed to keep z fixed when x changes is called

the trade-off. See also chapter 3, page 174.)

c) What is the trade-off in y when x increases by α?

d) What is the trade-off in x when y increases by β?

26. a) Suppose z = L(x, y) is a linear function for which ∆z/∆x = 5 and
∆z/∆y = −2. What is the trade-off in y when x increases by 50?

b) What is the trade-off in x when y increases by 1?

27. Suppose z = L(x, y) is a linear function and suppose the trade-off in y
when x increases by 1 is −4.

a) What is the trade-off in y when x is decreased by 3?

b) What is the trade-off in x when y is increased by 10? [Note that x and
y are reversed here, in comparison to the earlier parts of this question.]

28. Suppose z = L(x, y) is a linear function for which we know

L(3, 7) = −2,
∆z

∆x
= 2.

Suppose also that the trade-off in y when x increases by 10 is −4.

a) What is the value of L(7, 7)?
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b) If L(7, β) = −2, what is the value of β?

c) What is the value of ∆z/∆y?

d) Write the formula for L(x, y) in intercept form.

29. a) Suppose the graph of the linear function z = L(x, y) has a slope of
−1.5 in the x-direction and −2.4 in the y-direction. What is the trade-off
between x and y? That is, how much should y change when x is increased
by the amount α?

b) Suppose the partial slopes become +1.5 and +2.4 in the x- and y-directions,
respectively. How does that affect the trade-off? Explain.

30. a) Sketch in the x, y-plane the set of points where z = 2x + 3y + 7 has
the value 34.

b) If x = 10 then what value must y have so that the point (x, y) is on the
set in part (a)?

c) If x increases from 10 to 14, how must y change so that the point (x, y)
stays on the set in part (a)? In other words, what is the trade-off?

The set in the last question is called a trade-off line. Do you see that it is just a contour line by
another name?

31. a) Write, in intercept form, the formula for the linear function

w − 4 = 3(x − 2) − 7(y + 1) − 2(z − 5).

b) What is the gradient vector of the linear function in part (a)?

32. Suppose the gradient of the linear function w = L(x, y, z) is ∇w =
(1,−1, 4). If L(3, 0, 5) = 10, what is the value of L(1, 2, 3, )?

33. Describe the level sets of the function w = f(x, y, z) = x + y + z.

The microscope equation

34. Find the microscope equation for the function f(x, y) = 3x2 + 4y2 at
the point (x, y) = (2,−1).

35. a) Continuation. Use the microscope equation to estimate the values
of f(1.93,−1.05) and f(2.07,−.99)
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b) Calculate the exact values of the quantities in part (a), and compare
those values with the estimates. In particular, indicate how many digits of
accuracy the estimates have.

36. Find the microscope equation for the function f(x, y, z) = x2y sin z at
the point (x, y, z) = (1, 1, π).

37. Suppose f(87, 453) = 1254 and

∂f

∂x
(87, 453) = −3.4,

∂f

∂y
(87, 453) = 4.2.

Estimate the following values: f(90, 453), f(87, 450), f(90, 450), and f(100, 500).
Explain how you got your estimates.

38. a) Continuation. Find an estimate for y to solve the equation f(87, y) =
1250.

b) Find an estimate for x to solve f(x, 450) = 1275.

39. Continuation: a trade-off. Go back to the starting values x = 87,
y = 453, and f(87, 453) = 1254. If x increases from 87 to 88, how should y
change to keep the value of the function fixed at 1254?

40. a) Suppose Q(27.3, 31.9) = 15.7 and Q(27.9, 31.9) = 15.2. Estimate
the value of ∂Q/∂x(27.6, 31.9).

b) Estimate the value of Q(27, 31.9).

41. Suppose S(105, 93) = 10, S(110, 93) = 10.7, S(105, 95) = 9.3. Estimate
the value of S(100, 100). Explain how you made your estimate.

42. Let P be the point (x, y, z) = (173,−29, 553). Suppose f(P ) = 48 and

∂f

∂x
(P ) = 7,

∂f

∂y
(P ) = −2,

∂f

∂z
(P ) = 5.

Estimate the value of f(175,−30, 550), and explain what you did.

43. a) What is the equation of the tangent plane to the graph of z = xy at
the point (x, y) = (2,−3)?

b) Which has a higher z-intercept: the graph or the tangent plane?
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44. a) Suppose the function H(x, y) has the microscope equation

∆H ≈ 2.53 ∆x− 1.19 ∆y

at the point (x, y) = (35, 26). Sketch the gradient vector ∇H at that point.

b) Pick the point exactly one unit away from (35, 26) at which you estimate
H has the largest possible value.

[Answer: At (35.324, 25.848), H is about 2.796 units larger than it is at
(35, 26).]

45. Write the microscope equation for the function V (x, y) = x2y at the
point (x, y) = (25, 10).

46. a) Continuation. Suppose a cardboard carton has a square base that isRefer to the discussion
of error propagation in
chapter 3.4

25 inches on a side and a height of 10 inches. If there is an error of ∆x inches
in measuring the base and an error of ∆y inches in measuring the height,
how much error will there be in the calculated volume?

b) Why is this a continuation of the previous question?

47. Continuation. Which causes a larger percentage error in the calculated
volume: a 1% error in the measurement of the length of the base, or a 1%
error in the measurement of the height?

h

r
48. A large basin in the shape of a cone is to be
used as a water reservoir. If the radius r is 186
meters and the depth h is 31 meters, how much
water can the basin hold, in cubic meters?

49. a) Continuation. If there were a 3% error in the measurement of the
radius, how much error would that lead to in the calculation of the capacity
of the basin?

b) If there were a 5% error in the measurement of the depth, how much
error would there in the calculated capacity of the basin?

c) If both errors are present in the measurements, what is the total error in
the calculated capacity of the basin?

50. Continuation. Suppose the measured radius of the basin (r = 186 me-
ters) is assumed to be accurate to within 2%. The depth has been measured
at 31 meters. Is it possible to make that measurement so accurate that the
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calculated capacity is known to within 5%? How accurate does the depth
measurement have to be?

51. Continuation. Suppose the accuracy of the radius measurement can
only be guaranteed to be 3%. Is it still possible to measure the depth accu-
rately enough to guarantee that the calculated capacity is accurate to within
5%? Explain.

h

r

52. Let’s give the basin the more realistic shape
of a parabolic bowl. If the radius r is still 186 me-
ters and the depth h is still 31 meters, what is the
capacity of the basin now? Is it larger or smaller
than the conical basin of the same dimensions?

53. Continuation. Determine the error in the calculated capacity of the
bowl if there were a 3% error in the measurement of the radius and, at the
same time, a 5% error in the measurement of the depth.

54. Continuation. Is it possible for the calculated capacity to be accurate to
within 5% when the measured radius is accurate to within 2%? How accurate
does the measurement of the depth have to be to achieve this?

55. The energy of a certain pendulum whose position is x and velocity is v
can be given by the formula

E(x, v) = 1 − cos x + 1
2
v2.

Suppose the position of the pendulum is known to be x = π/2 with a possible
error of 5% and its velocity is v = 2 with possible error of 10%. What is the
calculated value of the energy, and how accurately is that value known?

56. a) A frictionless pendulum conserves energy: as the pendulum moves, The conservation
of energy leads to

a trade-off
the value of E does not change. Suppose x = π/2 and v = 2, as in the
previous exercise. When x decreases by π/180 (this is 1 degree), does v
increase or decrease to conserve energy?

b) Approximately how much does v change when x decreases by π/180?

Linear approximations

57. a) Write the linear approximation to f(x, y) = sin x cos y at the point
(x, y) = (0, π/2).
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b) Write the equation of the tangent plane to the graph of f(x, y) at the
point (x, y) = (0, π/2).

c) Where does the tangent plane in part (b) meet the x, y-plane?

58. Suppose w(3, 4) = 2 while

∂w

∂x
(3, 4) = −1,

∂w

∂y
(3, 4) = 3.

Write the equation of the tangent plane of w at the point (3, 4).

59. a) Write the equation of the tangent plane to the graph of the function
ϕ(x, y) = 3x2 + 7xy − 2y2 − 5x + 3y at an arbitrary point (x, y) = (a, b).

b) At what point (a, b) is the tangent plane horizontal?

c) Magnify the graph of ϕ at the point you found in part (b) until it looks
flat. Is it also horizontal?

The next few exercises concern the Lotka–Volterra differential equations
and their linear approximations at an equilibrium point. Specifically, consider
the bounded growth system from chapter 4.1 (pages 187–189):

R′ = .1 R − .00001 R2 − .005 RF,

F ′ = .00004 RF − .04 F.

60. Confirm that the system has an equilibrium point at (R, F ) = (1000, 18).
Then obtain the phase portrait of the system near that point. What kind of
equilibrium is there at (1000, 18)?

61. Obtain the linear approximations of the functions

g1(R, F ) = .1 R − .00001 R2 − .005 RF,

g2(R, F ) = .00004 RF − .04 F,

at the point (r, F ) = (1000, 18). Call them ℓ1(R, F ) and ℓ2(R, F ), respec-
tively.

62. Obtain the phase portrait of the linear dynamical system

R′ = ℓ1(R, F ),

F ′ = ℓ2(R, F ).

a) Does this system have an equilibrium at (1000, 18)? Compare this phase
portrait to the phase portrait of the original non-linear system.
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The gradient field

63. a) Make a sketch of the gradient vector field of f(x, y) = x2−y2 on the
domain −2 ≤ x ≤ 2, −2 ≤ y ≤ 2.

b) Mark on your sketch where the gradient field indicates the maximum and
the minimum values of f are to be found in the domain.

64. Repeat the previous exercise, using f(x, y) = 2x + 4x2 − x4 − y2 and
the domain −2 ≤ x ≤ 2, −4 ≤ y ≤ 4. (See exercises 5 and 6 in the previous
section, page 528.)

65. Continuation. Add to your sketch in the previous exercise a contour
plot of the function f(x, y) = 2x + 4x2 − x4 − y2 and confirm that each
gradient vector is perpend1 of 82icular to the contour that passes through its
base. (Note: most vectors have no contour passing through their bases, so
you have to infer the shape and position of such a contour from the contours
that are drawn.)

66. Draw a plausible set of contour lines for the function whose gradient
vector field is plotted on the left below.

67. Draw a plausible gradient vector field for the function whose contour
plot is shown on the right below. H marks a local maximum and L a local
minimum.

H

H

H

HL

L

L
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9.3 Optimization

Optimization is the process of making the best choice from a range of
possibilities. (“Optimum” is the Latin word for best.) We are all familiarThe contexts

for optimization with optimization in the economic arena: managers of an enterprise typically
seek to to maximize profit or minimize cost by making conscious choices. It is
perhaps more surprising to learn that we sometimes use the same language
to describe physical processes. For instance, the atoms in a molecule are
arranged so that their total energy is minimized. A light ray travels from
one point to another along the path that takes the least time. Of course
atoms and photons don’t make conscious choices. Nevertheless, the imagery
of optimization is so vivid and useful that we try to invoke it whenever we
can.

Usually, there is a restriction—called a constraint—on the choices that
can be made to achieve to best possible outcome. For instance, consider aConstrained

optimization factory that makes tennis rackets. We can expect that the factory managers
are instructed to minimize cost while producing a given number of rackets.
This is their constraint. Production cost is a function of many quantities that
the managers can control—the number of workers, the wage scale, and the
cost of the raw materials are just a few. When the managers choose values
for these quantities that minimize the cost function, they must be sure those
values will also satisfy the constraint.

In mathematical terms, optimization is the process of finding the mini-Mathematical
optimization mum or maximum value of a function. The presence of constraints compli-

cates this task, as you shall see.

Visual Inspection

minimum

maximum

x

y

z
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3
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The maximum value of a function is the high-
est point on its graph; the minimum value is
the lowest. Shown at the right is the graph of
z = x3 − 4x − y2 on the domain

−2 ≤ x ≤ 3 − 2 ≤ y ≤ 3.

The maximum occurs where (x, y) = (3, 0), and it
has the value z = 15. The minimum is z ≈ −12.1,
when (x, y) ≈ (1.2, 3). Confirm this yourself by
inspecting the graph and then calculating z.
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We’ll use the term extreme to refer to either a maximum or a minimum. Extremes, and local
extremesIn the example we see several local extremes. These are points where the

value of the function is larger or smaller than it is at any nearby point.
There are local minima at both left-hand corners of the graph, at (−2,−2)
and (−2, 3). There is another along the front edge, near (1.2,−2). There
is a local maximum in the interior, near (−1.2, 0). To decide which local
minimum is the true minimum, we must simply look. It is the same for local
maxima.

In our example, the domain of definition of the function acts as a con- The domain is
a constraintstraint. If we change the domain, the positions of the extreme points can

change. For example, suppose we change the position of the right-hand bor-
der in stages: first, x ≤ 3; second, x ≤ 2.5; third, x ≤ 2. (Since the graph
itself doesn’t change, we use a grid to show the part of the graph that satisfies

minimum

maximum
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the constraint in each case below.) At the start, the maximum is on the
boundary. When we first move the boundary to the left (from x = 3 to
x = 2.5), the maximum just moves with it. However, when we move the The maximum moves

—it even jumpsboundary farther (from x = 2.5 to x = 2), the maximum jumps from the
boundary to an interior point (near (−1.2, 0)). During these changes the
minimum is not affected. It stays at the same place.

The sudden jump in the maximum is called a catastrophe. The figures Catastrophes

explain what happens. We impose a constraint x ≤ a, and then we reduce
the value of the parameter a. At first, the maximum is at the boundary point
(a, 0). The position of this point changes smoothly with a, causing a gradual
drop in the value of the maximum. Eventually, the maximum reaches the
same value as the interior local maximum. (This happens when a = 4/

√
3;
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see the exercises.) If a continues to decrease, the local maximum at (a, 0)
then has a lower value than the local maximum at the interior point, so the
true maximum jumps to the interior.

There are many variations on this pattern. Whenever a function depends
on a parameter the positions of its extremes do, too. There are many ways for
the position of an extreme to jump suddenly while the parameter is changing
gradually. Any such jump is called a catastrophe.

Catastrophes make the task of optimization more interesting. If the maximum of a certain
function gives the optimal solution to a problem, and that maximum jumps to a new position,
then the optimal solution changes radically. For example, suppose the problem is to determine
the minimum-energy configuration of atoms in a molecule. When the minimum jumps catas-
trophically, there is a new configuration of the same atoms, producing an isomeric form of the
molecule.
The quest for an optimum does not have to involve mathematical tools. A good example is John
Stuart Mill’s philosophy of “the greatest good for the greatest number”. In politics a catastrophe
is called a revolution. Even scientific research pursues an optimum in raising the question: “What
is the best way to explain certain phenomena?” The consensus in the scientific community can
change catastrophically, in what is called a paradigm shift or an intellectual revolution. The
geological theory of plate tectonics is a familiar example. Though proposed in the 1920s, it was
dismissed until the 1960s, when it was suddenly and overwhelmingly accepted.

maximum
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Density plots

We can also solve optimization problems by inspect-
ing density plots. Suppose z is the yield from a pro-
cess that is controlled by two inputs x and y, and

z = 3xy − 2y2.

Initially we take 0 ≤ x ≤ 4, 0 ≤ y ≤ 4. The maxi-
mum yield is at the darkest spot in the upper density
plot. It occurs on the right boundary, near y = 3.

The position of the maximum is subject to change
if we have to impose further constraints. For instance,
suppose the resource y is more limited than we first
assumed, requiring us to set y ≤ 2.3. With this added
constraint we see that the maximum shifts to the cor-
ner (x, y) = (4, 2.3). (The points shown in a lighter
gray are the ones that have been removed from con-
sideration by the new constraint.)
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maximum
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y
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4

0
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Besides limits on individual resources, we are
often faced with a limit on total resources. In our
case, let’s suppose the limit has the form

x + y ≤ 4.

That means all points above the line x + y = 4
must be removed from consideration. (They are
shown in lighter gray.) This new constraint causes
the maximum to shift yet again. It now appears
near the point (x, y) = (3, 1).

As we add constraints that force the maximum to move, the density at
each new maximum is less than it was at the previous one. Thus, the value of
the maximum itself decreases. In other words, each added constraint makes Constraints

reduce optimalitythe optimal solution slightly “less optimal” than it had been. This is only to
be expected.

Of course the extremes may appear in the interior of the domain as well as Extremes
on the interior

of a density plot
on the boundary—and density plots can show this. Here are the density plots
that correspond to the graphs of z = x3−4x−y2 that we saw on page 565. The
maximum jumps to the interior when the value of a in the constraint x ≤ a
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drops below a = 4/
√

3. In all three plots the minimum appears as the bright
spot at the top of the rectangle near where x = 1. (The exact location is
(x, y) = (2/

√
3, 3).) We can also see a local minimum at the bottom of the

rectangle near x = 1. From the graph we know there are two more at the left
corners of the rectangle, but they are harder to notice in the density plots.
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Contour plots

A density plot is useful for showing the general location of the highs and
lows, but we can get a more precise picture by switching to a contour plot.
Let’s look at the contour plots of the same problems we just analyzed using
density plots.

0

1

2

0

1

2

3

4

HIGH

LOW

maximum

minimum
y = 2.3 x + y = 4

0 1 2 3 4
0

1

2

3

4 We’ll start with the function z = 3xy − 2y2

we first considered on page 566 and search for its
extremes subject to the constraints

0 ≤ x,

0 ≤ y ≤ 2.3,

x + y ≤ 4,

that we introduced earlier. From the density
plot on page 566 it was obvious that the values of z

increase steadily from the upper left corner of the large square to the upper
part of the right side. In the contour plot, though, we need some sort of
labels to show us where the low and high values of z are to be found.

To locate the extremes within the constrained region, we need to find
contours that carry the lowest and the highest values of z. We can do this
quite precisely. The contour that just passes through the upper left corner—An extreme can occur

where a contour
is tangent to
the boundary

and meets the region at that point alone—carries the lowest value of z. If
you study the plot you can see that the contour carrying the highest value
of z also touches the boundary at just a single point. It is the contour that
is tangent to the line x + y = 4, and elsewhere lies outside the constrained
region.
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Suppose the extreme is in the interior of the
constrained region, rather than on the boundary.
For example, the function z = x3−4x−y2 has an
interior maximum when

−2 ≤ x ≤ 2

−2 ≤ y ≤ 3.

Around the maximum there is a nest of concentric
ovals. This pattern is characteristic for an interior
extreme. Notice the local maximum where a con-
tour is tangent to the boundary line x = 2.
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These examples demonstrate that there are characteristic patterns that Contour patterns
at an extremecontour lines make near an extreme point. One pattern appears along a con-

straint curve; another pattern appears at interior points of a domain. We first

along a constraint curve

a minimum or maximum

constraint
curve

in the interior

a minimum or maximum

Patterns of contour lines at an extreme point

met the pattern that appears at an interior extreme point when we discussed
the ‘standard’ minimum (x2 + y2) and maximum (−x2 − y2) in section 1
(pages 519–522). Caution: the patterns you see here are “typical”, but
they do not guarantee the presence of an extreme point. The exercises give
you a chance to explore some of the subtleties.

Dimension-reducing Constraints

Constraints appear frequently in optimization problems. Thus far, however, How a constraint can
reduce the dimension

of a problem
the constraints we considered have been described by inequalities, like x+y ≤
4. Initially, x and y give us the coordinates of a point in a two-dimensional
plane. The effect of the constraint x+ y ≤ 4 is to restrict the points (x, y) to
just a part of that plane—but it is still a two-dimensional part. Sometimes,
though, the constraint is given by an equality, like x + y = 4. In that case,
the points (x, y) are restricted to lie on a line—which is a one-dimensional
set in the plane. The second constraint therefore reduces the dimension of
the problem.

x

y

x + y ≤ 4

two-dimensional constraint

−1 1 2 3 4 5
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x + y = 4
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There is a standard form for any constraint that reduces a two-dimensionalA standard form

optimization problem to a one-dimensional problem. The form is this:

constraint: g(x, y) = 0.

For instance, the constraint x + y = 4 can be written this way by setting
g(x, y) = x + y − 4. We’ll look at another example in a moment.

First, though, notice that g(x, y) = 0 is one of the contour lines of the
function g(x, y), namely, the contour at level zero. Since the contours of g
are curves, we often call g(x, y) = 0 a constraint curve. This curve is one-A comment

on dimension dimensional, even though it might twist and turn in a two-dimensional plane.
We say the curve is one-dimensional because it looks like a straight line under
a microscope. Likewise, a curved surface is two-dimensional because it looks
like a flat plane under a microscope.

Example. Find the extreme values of f(x, y) = x2 + 8xy + 3y2 − 5x subject
to the constraint g(x, y) = x2 + y2 − 4 = 0. The constraint curve is a circle
of radius 2, and the level curves of z = f(x, y) form a set of hyperbolas. We
need to find the highest and the lowest z-levels on the constraint curve.
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0
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x

y

z = 60 40 20 0 −20

−30

−10
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30
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maximum

minimum

constraint:

level curves of

z = x2 + 8xy + 3y2 − 5x

x2 + y2 − 4 = 0

The z-levels are labelled around the right and the bottom edges of the
figure. It is in the third quadrant, near the point (−1.4,−1.5), that theFinding the highest

and lowest levels on
the constraint curve

constraint curve meets the highest z-level. At that point z is slightly more
than 30. The constraint curve is evidently tangent to the contour there. The
lowest z-level that the constraint curve meets is about z = −16, near the
point (1.6,−1.2). Picture in your mind how the contours between z = −10
and z = −20 fit together. Can you see that the constraint curve is tangent
to contour at the minimum?
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Example, continued. There is still more to say about the way the con- Locate points on the
constraint circle with a

single variable t
straint x2 + y2−4 = 0 reduces the dimension of our problem. First of all, we
can describe the coordinates of any point on the constraint circle by using
the circular functions:

x = 2 cos t, y = 2 sin t.

We need the factor 2 because the circle has radius 2. These equations mean
that x and y are now functions of a single variable, t. Next, consider the
function

z = f(x, y) = x2 + 8xy + 3y2 − 5x

that we seek to optimize subject to the constraint. But the constraint makes z becomes a
function of tx and y functions of t. Thus, when we take the constraint into account, z

itself becomes a function of t:

z = f(2 cos t, 2 sin t)

= (2 cos t)2 + 8 (2 cos t)(2 sin t) + 3(2 sin t)2 − 5(2 cos t).

The graph of this function is thus just an ordinary curve in the t, z-plane. It
is shown on the right, below. A value of t determines a point on the circle, as
shown in the contour plot on the left. (We have taken t ≈ π/3.) The value
of z at that point then determines the height of the graph on the right. As
you can see, our chosen value of t puts z near a local maximum.
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x y

z

z = x2 + 8xy + 3y2 − 5x
x2 + y2 − 4 = 0
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Example, continued. Let’s look at the graph
of z = x2 + 8xy + 3y2 − 5x. The constraint tells
us that we should look only at the points on the
graph that lie above the circle x2 + y2 − 4 = 0.
These are the points where the graph intersects
the cylinder that you see at the right. The inter-
section is a curve that goes up and down around
the cylinder. At some point on the curve z has
a maximum, and at some other point it has a
minimum. (In fact, both the maximum and the
minimum are visible in this view.)

Since the intersection curve lies on the cylinder, we can get a better viewUnwrap the cylinder

of the curve if we slit open the cylinder and unwrap it. Follow the sequence
clockwise from the upper left. We can use coordinates to describe the curve
on the flattened cylinder. The t variable takes us around the cylinder, so it
becomes the horizontal coordinate. The z variable measures vertical height.
The z-range in the figure above is larger than we need: it goes from −50 to
+100. In the bottom row on the left we have rescaled the z-axis so it runs
from −20 to +35. Compare this graph with the one on the opposite page.
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The example shows us how a constraint works to reduce the dimension of A general view of the
dimension-reducing

effect of a constraint
a problem in general. Suppose we want to maximize the value of the function
z = f(x, y), subject to the constraint g(x, y) = 0. Then:

• Without the constraint, we would look for the highest point on a two-
dimensional surface in three-dimensional space.

• With the constraint, we would restrict our search to the vertical “cur-
tain” that lies above the constraint curve. The graph intersects this
curtain in a curve, so we end up looking for the highest point on a
one-dimensional curve in a two-dimensional plane. We can think of
this plane as the curtain after it has been unwrapped and straightened
out.

constraint curve: g(x, y) = 0

graph of z = f(x, y)

the "curtain"

curve of intersection
the value of z = f(x, y)

when (x, y) is subject to
the constraint g(x, y) = 0

This is just a picture of the relation between the function and the constraint.
We may still have to determine analytically the form that the function f(x, y)
takes when we impose the constraint g(x, y) = 0. You can find a number of
possibilities in the exercises.

Extremes and Critical Points

bowl:
locally linear

spike: 
not locally linear

Suppose that a function f(x, y) has a maximum or
a minimum at an interior point (a, b). Suppose
also that the function is locally linear at (a, b), so
we have a “bowl” rather than a “spike” or some
other irregularity in the graph. Then we must have

gradf(a, b) =

(
∂f

∂x
(a, b),

∂f

∂y
(a, b)

)

= (0, 0).
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Here is why. The gradient vector gradf(a, b) tells us how the graph of z =A proof

f(x, y) is tilted at the point (a, b). (We discuss the geometric meaning of the
gradient on page 551.) At a maximum or a minimum, though, the graph is
not tilted; it must be flat. Therefore, the gradient must be the zero vector.

The ideas here carry over to functions that have any number of inputMoving to
an arbitrary number
of input variables

variables. First, we give a name to a point where the gradient is zero.

Definition. A critical point of a locally linear function
is one where the gradient vector is zero. Equivalently, all
the first partial derivatives of the function are zero.

The observation we just made can now be restated as a theorem that connects
extreme points and critical points.

Theorem. If a locally linear function has a maximum or
a minimum at an interior point of its domain, then that
point must be a critical point.

The direction of the implication in this theorem is important. Here is theA statement and
its converse theorem, written in a very abbreviated form:

statement : extreme =⇒ critical.

When we reverse the direction of the implication, we get a new statement,
abbreviated the same way:

converse : critical =⇒ extreme.

The converse says that a critical point must be an extreme point. But that isThe converse of this

theorem is not true just not true. For example, an ordinary saddle point (a minimax) is a critical
point, but it is not a minimum or a maximum.

The theorem and the observation about its converse are both important

Searching
critical points
for extremes

in the optimization process—that is, the search for extremes. Together they
offer us the following guidance:

• Search for the extremes of a function among its critical points.

• A critical point may be neither a maximum nor a minimum.
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To see how we can find extremes by searching among the critical points
of a function, we’ll do a few examples. All the examples use the same basic
idea. However, as the details get more complicated we bring in more powerful
techniques.

Example 1. We’ll start with the function

z = f(x, y) = x3 − 4x − y2

we have frequently used as a test case in this chapter.
The critical points of f are the points that simultaneously satisfy the two

equations

∂f

∂x
= 3x2 − 4 = 0,

∂f

∂y
= −2y = 0.

x

y

local maximum saddle

contour plot of
z = x3 − 4x − y2
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It is clear that y = 0 and x = ±
√

4/3 ≈ ±1.1547.
The two critical points are therefore

(

+
√

4/3, 0
)

and
(

−
√

4/3, 0
)

.

If you check the contour plot you can see that
(−
√

4/3, 0) is a local maximum and (+
√

4/3, 0)
is a saddle point.

Example 2. Here is a somewhat more complicated function:

g(x, y) = 2x2y − y2 − 4x2 + 3y.

The critical points are the solutions of the equations

∂g

∂x
= 4xy − 8x = 0,

∂g

∂y
= 2x2 − 2y + 3 = 0.

Algebraic methods will still work, even though both variables appear in both
equations. For example, we can rewrite ∂g/∂y = 0 as

2y = 2x2 + 3 or y = x2 + 3
2
.

We can then substitute this expression for y into ∂g/∂x = 0 and get

4x
(
x2 + 3

2

)
− 8x = 4x

(
x2 + 3

2
− 2
)

= 4x
(
x2 − 1

2

)
= 0.
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This implies x = 0 or x = ±
√

1/2. For each x we can then find the corre-
sponding y by from the equation y = x2 + 3

2
.

Let’s work through this a second time using a geometric approach. The
equations ∂g/∂x = 0 and ∂g/∂y = 0 both define curves in the x, y-plane.
The curve ∂g/∂y = 0 is a parabola: y = x2 + 3

2
. The equation ∂g/∂x = 0

factors as

4x(y − 2) = 0 or x(y − 2) = 0.

∂g/∂x = 0
∂g/∂y = 0

−2 −1 0 1 2
0

1

2

3

4 Now a product equals 0 precisely when one of its
factors equals 0, so ∂g/∂x = 0 implies that either
x = 0 or y − 2 = 0. In other words, the “curve”
∂g/∂x = 0 consists of two lines:

x = 0, a vertical line,

y = 2, a horizontal line.

The two curves are shown in the figure at the
right. They intersect in three points. (The place
where the horizontal and vertical lines cross is not
one of the intersection points.)

One of the immediate benefits of the geometric approach is to make it
clear that the y-coordinate of a critical point is either 2 or 3

2
. The critical

points are therefore

saddles

maximum
−2 −1 0 1 2

0

1

2

3

4

(

−
√

1/2, 2
)

,
(

0, 3
2

)

,
(

+
√

1/2, 2
)

.

A glance at the contour plot of g makes it clear
that the first and third of these are saddle points.
The middle point is a local maximum. There are
several ways to determine this. One is to look at
the graph of g. Another is to look at a vertical
slice of the graph through the line x = 0. Then
z = g(0, y) = −y2 + 3y. Here z has a maximum
when y = 3

2
.

We first identified the local maximum of the function z = x3−4x−y2 on page 565. At the time,
though, we could only estimate its position by eye. Now, however, we can specify its location
exactly, because we have analytical tools for finding critical points. As the next example shows,
these tools are useful even when we can’t carry out the algebraic manipulations.
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Example 3. Here is a function whose critical points we can’t find using just
algebraic computations:

z = h(x, y) = x2y2 − x4 − y4 − 2x2 + 5xy + y

The equations for the critical points are

∂h/∂x = 0

∂h/∂y = 0

this window is magnified below

−2 −1 0 1 2
−2

−1

0

1

2

contours of z = h(x, y)

−2 −1 0 1 2
−2

−1

0

1

2

∂h

∂x
= 2xy2 − 4x3 − 4x + 5y = 0,

∂h

∂y
= 2x2y − 4y3 + 5x + 1 = 0.

Even though we can’t solve the equations alge-
braically, we can plot the curves they define by using
the contour-plotting program of a computer. This is
done at the right. The curves intersect in three points.
(If you draw the plots on a large scale, you will find
that these are still the only intersections.)

A contour plot of z = h(x, y) itself reveals that the
middle point is a saddle and the outer two are local
maxima. Let’s focus on the maximum in the upper
right and determine its position more precisely.

We can always use a microscope. But if we magnify
the contour plot, we just get a set of nested ovals. The
maximum would lie somewhere inside the smallest—
but we wouldn’t know quite where. By contrast, the
curves ∂h/∂x = 0 and ∂h/∂y = 0 give us a pair
of “crosshairs” to focus on. Even with relatively lit-
tle magnification we can see that the maximum is at
(1.202 . . . , 1.404 . . .).

∂h/∂x = 0

∂h/∂y = 0

1 1.1 1.2 1.3 1.4
1.2

1.3

1.4

1.5

1.6

1.18 1.19 1.2 1.21 1.22
1.38

1.39

1.4

1.41

1.42

1.2 1.201 1.202 1.203 1.204
1.402

1.403

1.404

1.405

1.406
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The Method of Steepest Ascent

Here is yet another way to find the maximum of a function z = f(x, y).Walk uphill to get
to a maximum Imagine that the graph of f is a landscape that you’re standing on. You

want to get to the highest point. To do that you just walk uphill. But the
uphill direction on the landscape is given by the gradient vector field of f
(see page 551). So you move to higher ground by following the gradient field.

In fact, the gradient field defines a dynamical system of exactly theTrajectories of the
gradient dynamical
system. . .

sort we studied in chapter 8. The differential equations are

dx

dt
=

∂f

∂x
(x, y),

dy

dt
=

∂f

∂y
(x, y).

Because the gradient points uphill, the trajectories of this dynamical system. . . lead to
the local maxima also go uphill. Trajectories flow to the attractors of the system; these are the

local maxima of the function. Furthermore, since the gradient points in the
direction f increases most rapidly, the trajectories follow paths of steepest
ascent to the maxima. This explains the name of the method.

Example 1. Let’s see how the method of steepest ascent will find the
local maxima of the function

z = h(x, y) = x2y2 − x4 − y4 − 2x2 + 5xy + y

maximum

local maximum
−2 −1 0 1 2

−2

−1

0

1

2

we considered in the previous example. The gradient
field is

dx

dt
= 2xy2 − 4x3 − 4x + 5y.

dy

dt
= 2x2y − 4y3 + 5x + 1.

As you can see at the left, some of the trajectories
flow to a local maximum near (−1,−1), while other
flow to the maximum whose position we determine on
the opposite page. Each attractor has its own basin
of attraction (as described in chapter 8). Therefore,
the maximum found by the method of steepest ascent
depends on the initial point of the trajectory.
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If we replace the gradient vectors by their negatives, the new field will The method of
steepest descentpoint directly downhill—to the local minima. Using the trajectories of the

negative gradient field to find the minima is thus called the method of steepest
descent. In the following example we use this method to investigate an
economic question.

A

B

C

X ?

2 4 6 8 10 12

2

4

6

8

10

12Example 2. Manufacturing companies ship their products to regional ware-
houses from large distribution centers. Suppose a company has regional
warehouses at A, B, and C, as shown on the map at the right. Where should
it put its distribution center X so as to minimize the total cost of supplying
the three regional warehouses?

This is a complicated problem that depends on many factors. For exam-
ple, X probably should be put near major roads. The managers may also
want to choose a location where labor costs are lower. Certainly, the total
distance between the center and the three warehouses is important. Let’s
simply get a first approximation to a solution by concentrating on the last
factor. We will find the position for X that minimizes the total straight-line Minimize the

total distancedistance (the distance “as the crow flies”) from X to the three points A, B,
and C. The map shows these distances as three dotted lines.

To describe the various positions we have introduced a coordinate system
in which

A : (0, 0), B : (6, 9), C : (10, 2).

The coordinates here are arbitrary. That is, they don’t represent miles, or
kilometers, or any of the usual units of distance—but they are proportional
to the usual units, so we can measure with them. If we let the unknown
position of X be (x, y), then we seek to minimize the function

S(x, y) =
√

x2 + y2 +
√

(x − 6)2 + (y − 9)2 +
√

(x − 10)2 + (y − 2)2.

According to the method of steepest descent, we want to find the attractor
of this dynamical system:

dx

dt
= − x

√

x2 + y2
− x − 6
√

(x − 6)2 + (y − 9)2
− x − 10
√

(x − 10)2 + (y − 2)2
,

dy

dt
= − y

√

x2 + y2
− y − 9
√

(x − 6)2 + (y − 9)2
− y − 2
√

(x − 10)2 + (y − 2)2
.
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0 2 4 6 8 10 12
0
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A

B

C

X: (6.2212, 3.9658)

the optimum location for
the distributiuon center

2 4 6 8 10 12

2

4

6

8

10

12

As you can see from the vector field of the dynamical system (aboveThe attractor is
a global minimum left), there is a single attractor, near the point (6, 4). This implies the total

distance function S(x, y) has a single global minimum—which is what our
intuition about the problem would lead us to expect.

To find the position of X more exactly, you can do the following. First,
obtain a solution (x(t), y(t)) to the system of differential equations with an
arbitrary initial condition—for example,

x(0) = 1, y(0) = 1.

Then, obtain the coordinates of the attractor by evaluating (x(t), y(t)) forThe attractor is the
limit point of a solution larger and larger values of t, stopping when the values of x(t) and y(t) sta-

bilize. You will find that

X = lim
t→∞

(x(t), y(t)) = (6.22120 . . . , 3.96577 . . .).

The important point to note here is that it is not necessary to plot the
vector field—or any other graphic aid, like a contour plot or graph. YouThe method needs only

a differential equation
solver

simply need to solve a system of differential equations. For example, the
values above were found by modifying the computer program SIRVALUE
we introduced in chapter 2. In summary: the method of steepest descent
(or ascent) requires no graphical tools, but only a basic differential equation
solver.
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Lagrange Multipliers

In searching for the interior extremes of a function f(x, y), we have seen that
it is helpful to solve the critical point equations:

∂f

∂x
= 0,

∂f

∂y
= 0.

There is a similar set of equations we can use in the search for the constrained Equations for a
constrained extremeextremes of f . These equations involve a new variable called a Lagrange

multiplier.
So, suppose the function f(x, y) has an extreme on the constraint curve

g(x, y) = 0 at the point (a, b). According to the following diagram, the gra-
dient vectors ∇f and ∇g must be parallel at (a, b). (This means they are in ∇f and ∇g must be

parallel at a point
where f has an

extreme along the
constraint curve g = 0

the same direction or in opposite directions.) Here is why. We already know
(see page 569) that the level curve of f that passes through the constrained
maximum or minimum must be tangent to the constraint curve. Now, the
gradient vector ∇f at any point is perpendicular to the level curve of f
through that point—and the same is true for g. At a point where the level
curves are tangent, the gradients ∇f and ∇g are perpendicular to the same
curve, and must therefore be parallel.

(a, b)

the constraint curve
g(x, y) = 0

level curves of f(x, y)

f has an extreme on the constraint curve at this point

here is a typical 
non-extreme point of f
on the constraint curve

∇ g

∇ f

∇ g
∇ f

Parallel vectors are multiples of each other. Specifically, at a point (a, b) The multiplier equation

where ∇f and ∇g are parallel, there must be a number λ for which

∇g(a, b) = λ · ∇f(a, b).

The multiplier λ is called a Lagrange multiplier. In the figure above,
λ ≈ 1/2. If ∇g and ∇f were in opposite directions, then λ would be negative.
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Joseph Louis Lagrange (1736–1813) was a French mathematician and a younger contemporary of
Leonhard Euler. Like Euler he played an important role in making calculus the primary analytical
tool for study the physical world. He is particularly noted for his contributions to celestial
mechanics, the field where Isaac Newton first applied the calculus.

If we write out the multiplier equation using the components of ∇f and
∇g, we get
(

∂g

∂x
(a, b),

∂g

∂y
(a, b)

)

= λ

(
∂f

∂x
(a, b),

∂f

∂y
(a, b)

)

=

(

λ
∂f

∂x
(a, b), λ

∂f

∂y
(a, b)

)

.

In a vector equation, the vectors are equal component by component. Thus,

∂g

∂x
(a, b) = λ

∂f

∂x
(a, b)

∂g

∂y
(a, b) = λ

∂f

∂y
(a, b)

Let’s return to the main question, which can be stated this way: HowHow can we find a
constrained maximum
or minimum?

do we determine where the function f(x, y) has a maximum or a minimum,
subject to the constraint g(x, y) = 0? If we let (a, b) denote the point we
seek, then we see that a and b satisfy three equations:

the constraint equation : g(a, b) = 0,

the multiplier equations :







∂g

∂x
(a, b) = λ

∂f

∂x
(a, b),

∂g

∂y
(a, b) = λ

∂f

∂y
(a, b).

In fact, there are three unknowns in these equations: a, b, and λ. When
we solve the three equations for the three unknowns, we will determine the
location of the constrained extreme. (We’ll also have a piece of information
we can throw away: the value of λ.)

Example. Find the maximum of f(x, y) = xpy1−p subject to the constraint
x + y = c. There are two parameters in this problem: p and c. We assume
that 0 < p < 1 and 0 < c. We introduce parameters to remind you that
analytic methods (such as Lagrange multipliers) are especially valuable in
solving problems that depend on parameters.

We let g(x, y) = x + y − c. Then

∇g = (1, 1), ∇f =
(
pxp−1y1−p, (1 − p)xpy−p

)
,
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so the three equations we must solve are

x + y − c = 0,

1 = λpxp−1y1−p,

1 = λ(1 − p)xpy−p.

Since the second and third equations both equal 1, we can set them equal to
each other:

λpxp−1y1−p = λ(1 − p)xpy−p.

We can cancel the two λs and combine the powers of x and y to get

px−1y = 1 − p or
y

x
=

1 − p

p
.

According to the first of the three equations, y = c − x. If we substitution
this expression in for y into the last equation, we get

c − x

x
=

1 − p

p
or p(c − x) = (1 − p)x.

This equation reduces to pc = x, which gives us the x-coordinate of the
maximum. To get the y-coordinate, we use y = c − x = c − pc = c(1 − p).
To sum up, the maximum is at

(x, y) = (cp, c(1 − p)) = c(p, 1 − p).

Exercises

When searching for an extreme, be sure to zoom in on the graph or plot you
are using as you narrow down the location of the point you seek.

1. Inspect the graph of z = xy to find the maximum value of z subject to
the constraints

x ≥ 0, y ≥ 0, 3x + 8y ≤ 120.

2. Inspect the graph of z = 5x +2y to find the minimum value of z subject
to the constraints

x ≥ 0, y ≥ 0, xy ≥ 10.
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3. Inspect a contour plot of z = 3xy − y2 to find the maximum value of z
subject to the constraints

x ≥ 0, y ≥ 0, x + y ≤ 5.

4. Continuation. Add the constraint x ≤ a to the preceding three, where
a is a parameter that takes values between 0 and 5. Find the maximum
value of z subject to all four constraints. Describe how the position of the
constraint depends on the value of the parameter a.

[Answer: The maximum is found at (x, y) = (25/8, 15/8), as long as a ≥
25/8. When a < 25/8, the maximum is at (x, y) = (a, 5 − a).]

5. Find the maximum and minimum values of z = 12x − 5y when (x, y) is
exactly 1 unit from the origin.

6. Find the maximum and minimum value of z = px + qy when (x, y) isHow is the gradient
involved here? exactly 1 unit from the origin.

a) At what point is the maximum achieved; at what point is the minimum
achieved?

7. Use a graph to locate the maximum value of the function

z = 2xy − 5x2 − 7y2 + 2x + 3y.

There are no constraints.

8. Use a graph to find the maximum value of z = 6x+12y−x3−y3, subject
to the constraints

x ≥ 0, y ≥ 0, x2 + y2 ≤ 100.

9. a) Locate the position of the minimum of x4−2x2−αx+y2 as a function
of the parameter α.

b) The position of the minimum jumps catastrophically when α passes
through a certain value. At what value of α does this happen, and what
jump occurs in the minimum?

10. a) Locate the maximum of x3 + y3 − 3x − 3y subject to

x ≤ 3, y ≤ 0, x + y ≤ β.
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The position of the maximum depends on the value of the parameter β, which
you can assume lies between 0 and 5.

b) The position of the maximum jumps catastrophically when β crosses a
certain threshold value β0. What is β0?

11. Find the maximum value of x2y in the first quadrant, subject to the
constraint x + 5y = 10.

12. Find the maximum and minimum values of z = 3x + 4y subject to the
single constraint x2 + 4xy + 5y2 = 10.

13. Find all the critical points of the following functions.

a) 3x2 + 7xy + 2y2 + 5x − 6y + 3.

b) sin x sin y on the domain −4 ≤ x ≤ 4, −4 ≤ y ≤ 4.

c) sin xy on the domain −4 ≤ x ≤ 4, −4 ≤ y ≤ 4.

d) exp(x2 + y2).

e) x3 + y3 − 3x − 3y.

f) x3 − 3xy2 − x2 − y2. [There are four critical points; three are saddles.]

14. a) Find the nine critical points of the function

C(x, y) = (x2 + xy + y2 − 1)(x2 − xy + y2 − 1).

Four are minima, four are saddles, and one is a maximum.

b) Mark the locations of the critical points on a suitable contour plot of
C(x, y).

15. Locate and classify the critical points of the energy integral of a pen-
dulum:

E(x, v) = 1 − cos x + 1
2
v2.

a) Compare the critical points of E with the equilibrium points of the dy-
namical system associated with this energy integral.

16. Use the method of steepest descent to find the minimum of the function

z = p(x, y) = e2+y−x2−y2

sin x.
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The distribution problem

The next two exercises are modifications of the distribution problem on pages
579–580. In the example we assumed that deliveries from the center X to
each of the regional warehouse A, B, and C happened equally often. These
exercises assume that deliveries to some warehouses are more frequent than
others.

17. Suppose that one truck makes deliveries to A 5 times each week, while
a second truck is used to make 3 deliveries to B and 2 to C each week. It
makes sense to locate X so that the total weekly travel is minimized, rather
than just the total distance to the three warehouses. To get the total weekly
travel, we should:

• multiply the distance from X to A by 5;
• multiply the distance from X to B by 3;
• multiply the distance from X to C by 2.

(Actually, the total round-trip distances are twice these values, but the pro-
portions would remain the same, so we can use these numbers.) Thus, the
function to minimize is

T (x, y) = 5
√

x2 + y2 + 3
√

(x − 6)2 + (y − 9)2 + 2
√

(x − 10)2 + (y − 2)2.

a) Use the method of steepest descent to find the minimum of T .

b) Compare the location of the distribution center X as determined by T to
its location determined by the function S of example 2 in the text. Would
you expect the location to change? In what direction? Does the calculated
change in position agree with your intuition?

18. Suppose that deliveries to A are twice as frequent as deliveries to either
B or C. (For example, two trucks make the round-trip to A each day, but
only one truck to B and one to C.) Where should the distribution center X
be located in these circumstances? Explain how you got your answer.

[Answer: X should be at A. Does this surprise you?]

19. A company which has four offices around the country holds an annual
meeting for its top executives. The location of each office, and the number of
executives at that office, are given in the following table. (The coordinates
x and y of the position are given in arbitrary units.)
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office executives x y

A 32 200 300
B 17 1920 1100
C 20 2240 450
D 41 2875 1150

Where should the meeting be held if the location depends solely on the total
travel cost for all the participants? Assume that the travel cost, per mile, is
the same for every participant.

The best-fitting line

Suppose we’ve taken measurements of two quantities x and y, and obtained
the results shown in the table and graph below. We assume that y depends
on x according to some rule that we don’t happen to know. In particular,
we’d like to know what y is when x = 5. We have no data. Can we predict
what y should be?

x

y

?

0 1 2 3 4 5

1

2

3

4

5

6
x y

0 1
1 3
2 4
3 3
4 5
5 ?

x

y

Y = mx + b

e0

e1

e2 e3

e4

0 1 2 3 4 5

1

2

3

4

5

6Here is a common approach to the question.
We assume there is a simple underlying relation
between y and x. However, the measurements
that give us the data contain errors or “noise” of
some sort that obscure the relationship. The sim-
plest relation is a linear function, so we assume
that there is a formula Y = mx+ b that describes
the connection between x and y.

Which line should we choose? In other words, how should we choose
m and b? Since the data points don’t lie on a line, there is no perfect
solution. For any choices, we must expect a difference ej between the the
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j-th data value yj and the value Yj = m j+b predicted by the formula. These
differences are the errors we assume are present.

A reasonable way to proceed is to minimize the total error. Even this
involves choices. In the figure above, e0 and e3 are negative, so the ordinary
total could be zero, or nearly so, even if the individual errors were large. We
need a total that ignores the signs of the errors. Here is one:

absolute error: |e0| + |e1| + |e2| + |e3| + |e4| = AE.

Here is another:

squared error: e2
0 + e2

1 + e2
2 + e2

3 + e2
4 = SE.

In the following table we compare the data yj with the calculated values Yj

and the resulting errors ej .

x y Y e = y − Y

0 1 b 1 − b
1 3 m + b 3 − m − b
2 4 2m + b 4 − 2m − b
3 3 3m + b 3 − 3m − b
4 5 4m + b 5 − 4m − b

To get the values of AE and SE, we take either the absolute values or theThe total errors are
functions of m and b squares of the elements of the rightmost column, and then add. In particular,

the table makes it clear that both total errors are functions of m and b. The
absolute error is

AE(m, b) = |1− b|+ |3−m− b|+ |4− 2m− b|+ |3− 3m− b|+ |5− 4m− b|.

20. Inspect a graph and a contour plot to determine the values of m and b
which minimize AE(m, b).

[Answer: Remarkable as is may seem, there is an entire line segment of
solutions to this problem in the m, b-plane. One end of the line is near
(m, b) = (.67, 2.3), the other is near (m, b) = (1, 1).]

21. a) Using a best-fitting line from the previous question, find the pre-
dicted value of y when x = 5.
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b) Since there is a range of best-fitting lines, there should be a range of
predicted values for y when x = 5. What is that range?

22. Write down the function SE(m, b) that describes the squared error in
the fit of a straight line to the data given above.

23. a) Use a graph and a contour plot to locate the minimum of the function
SE(m, b) from the previous exercise. Indicate how many digits of accuracy
your answer has.

b) Use the method of steepest descent to locate the minimum. How many
digits of accuracy does this method yield?
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9.4 Chapter Summary

The Main Ideas

• The graph of a function of two variables is a two-dimensional surface
in a three-dimensional space.

• A function of two variables can also be viewed using a density plot,
a terraced density plot, or a contour plot. The latter is a set of
level curves drawn on a flat plane.

• A contour plot of a function of three variables is a collection of level
surfaces in three-dimensional space.

• The graph of a linear function is a flat plane, and its contour plot
consists of straight, parallel, and equally-spaced lines.

• The gradient of a linear function is a vector whose components are
the partial rates of change of the function.

• Under a microscope, the graph of a function of two variables becomes
a flat plane. A contour plot turns into a set of straight, parallel, and
equally-spaced lines.

• The multipliers in the microscope equation for a function are its
partial derivatives:

∆z =
∂f

∂x1
(a, b)∆x1 + · · ·+ ∂f

∂xn
(a, b)∆xn.

• The gradient of a function is a vector whose components are the par-
tial derivatives of the function. Its magnitude and direction give the
greatest rate of increase of the function at each point.

• Optimization is a process that involves finding the maximum or
minimum value of a function. There may be constraints present
that limit the scope of the search for an extreme.

• Extremes can be found at critical points, where all partial derivatives
of a locally linear function are zero.

• The method of steepest ascent introduces the power of dynamical
systems into the optimization process.
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Expectations

• Using appropriate computer software, you should be able to make a
graph, a terraced density plot, and a contour plot of a function
of two variables.

• Using appropriate graphical representations of a function of two vari-
ables, you should be able to recognize the maxima, minima, and
saddle points.

• You should be able to estimate the partial rates of change of a
function of two variables at a point by zooming in on a contour plot.

• You should be able to recognize the various forms of a linear function
of several variables and transform the representation of the function
from one form to another.

• You should be able to describe the geometric meaning of the partial
rates of change of a linear function of two variables.

• You should be able to find the gradient of a function of several vari-
ables at a point.

• You should know how the gradient of a function of two variables is
related to its level curves.

• You should be able to write the microscope equation for a function
of two variables at a point.

• You should be able to use the microscope equation for a function of
two variables at a point to estimate values of the function at nearly
points, to find the trade-off in one variable when the other changes
by a fixed amount, and to estimate errors.

• You should be able to find the linear aprroximation to a function of
two variables at a point.

• You should be able to find the equation of the tangent plane to the
graph of a function of two variables at a point.

• You should be able to sketch the gradient vector field of a function
of two variables in a specified domain.
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• You should be able to sketch a plausible set of contour lines for a
function whose gradient vecctor field is given; you should be able to
sketch a plaausible gradient vector field for a ffunction whose contour
plot is given.

• You should be able to find the critical points of a function of two
variables, and you should be able to determine whether a critical point
is an extreme by inspecting a graph or a contour plot.

• You should be able to find a local maximum of a function of two vari-
ables by the method of steepest descent.

• You should be able to find an extreme of a function of two variables
subject to a constraint either by inspecting a graph or contour plot, or
by the method of Lagrange multipliers.
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Chapter 10

Series and Approximations

An important theme in this book is to give constructive definitions of math-
ematical objects. Thus, for instance, if you needed to evaluate

∫ 1

0

e−x2

dx,

you could set up a Riemann sum to evaluate this expression to any desired
degree of accuracy. Similarly, if you wanted to evaluate a quantity like e.3

from first principles, you could apply Euler’s method to approximate the
solution to the differential equation

y′(t) = y(t), with initial condition y(0) = 1,

using small enough intervals to get a value for y(.3) to the number of decimal
places you needed. You might pause for a moment to think how you would
get sin(5) to 7 decimal places—you wouldn’t do it by drawing a unit circle
and measuring the y-coordinate of the point where this circle is intersected
by the line making an angle of 5 radians with the x-axis! Defining the sine
function to be the solution to the second-order differential equation y′′ = −y
with initial conditions y = 0 and y′ = 1 when t = 0 is much better if we
actually want to construct values of the function with more than two decimal
accuracy.

What these examples illustrate is the fact that the only functions our Ordinary arithmetic
lies at the heart

of all calculations
brains or digital computers can evaluate directly are those involving the
arithmetic operations of addition, subtraction, multiplication, and division.
Anything else we or computers evaluate must ultimately be reducible to these

593
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four operations. But the only functions directly expressible in such terms are
polynomials and rational functions (i.e., quotients of one polynomial by an-
other). When you use your calculator to evaluate ln 2, and the calculator
shows .69314718056, it is really doing some additions, subtractions, multipli-
cations, and divisions to compute this 11-digit approximation to ln 2 . There
are no obvious connections to logarithms at all in what it does. One of the
triumphs of calculus is the development of techniques for calculating highly
accurate approximations of this sort quickly. In this chapter we will explore
these techniques and their applications.

10.1 Approximation Near a Point or

Over an Interval

Suppose we were interested in approximating the sine function—we might
need to make a quick estimate and not have a calculator handy, or we might
even be designing a calculator. In the next section we will examine a number
of other contexts in which such approximations are helpful. Here is a third
degree polynomial that is a good approximation in a sense which will be
made clear shortly:

P (x) = x − x3

6
.

(You will see in section 2 where P (x) comes from.)
If we compare the values of sin(x) and P (x) over the interval [0, 1] we get

the following:

x sin x P (x) sin x − P (x)

0.0
.2
.4
.6
.8

1.0

0.0
.198669
.389418
.564642
.717356
.841471

0.0
.198667
.389333
.564000
.714667
.833333

0.0
.000002
.000085
.000642
.002689
.008138

The fit is good, with the largest difference occurring at x = 1.0, where the
difference is only slightly greater than .008.

If we plot sin(x) and P (x) together over the interval [0, π] we see the ways
in which P (x) is both very good and not so good. Over the initial portion



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

10.1. APPROXIMATION NEAR A POINT OROVER AN INTERVAL595

of the graph—out to around x = 1—the graphs of the two functions seem to
coincide. As we move further from the origin, though, the graphs separate
more and more. Thus if we were primarily interested in approximating sin(x)
near the origin, P (x) would be a reasonable choice. If we need to approximate
sin(x) over the entire interval, P (x) is less useful.

1 2 3

1

x

y

y = sin(x)
y = P(x)

On the other hand, consider the second degree polynomial

Q(x) = −.4176977x2 + 1.312236205x− .050465497

(You will see how to compute these coefficients in section 6.) When we graph
Q(x) and sin(x) together we get the following:

1 2 3

1

x

y

y = sin(x)

y = Q(x)

While Q(x) does not fits the graph of sin(x) as well as P (x) does near the
origin, it is a good fit overall. In fact, Q(x) exactly equals sin(x) at 4 values
of x, and the greatest separation between the graphs of Q(x) and sin(x) over
the interval [0, π] occurs at the endpoints, where the distance between the
graphs is .0505 units.

What we have here, then, are two kinds of approximation of the sine
function by polynomials: we have a polynomial P (x) that behaves very much
like the sine function near the origin, and we have another polynomial Q(x) There’s more than one

way to make the ”best
fit” to a given curve

that keeps close to the sine function over the entire interval [0, π]. Which
one is the “better” approximation depends on our needs. Each solves an
important problem. Since finding approximations near a point has a neater
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solution—Taylor polynomials—we will start with this problem. We will turn
to the problem of finding approximations over an interval in section 6.

10.2 Taylor Polynomials

The general setting. In chapter 3 we discovered that functions were lo-
cally linear at most points—when we zoomed in on them they looked more
and more like straight lines. This fact was central to the development of
much of the subsequent material. It turns out that this is only the initial
manifestation of an even deeper phenomenon: Not only are functions locally
linear, but, if we don’t zoom in quite so far, they look locally like parabolas.
From a little further back still they look locally like cubic polynomials, etc.
Later in this section we will see how to use the computer to visualize these
“local parabolizations”, “local cubicizations”, etc. Let’s summarize the idea
and then explore its significance:

The functions of interest to calculus look locally like polynomi-
als at most points of their domain. The higher the degree of
the polynomial, the better typically will be the fit.

Comments The “at most points” qualification is because of exceptions like
those we ran into when we explored locally linearity. The function |x|, for
instance, was not locally linear at x = 0—it’s not locally like any polynomial
of higher degree at that point either. The issue of what “goodness of fit”
means and how it is measured is a subtle one which we will develop over
the course of this section. For the time being, your intuition is a reasonable
guide—one fit to a curve is better than another near some point if it “shares
more phosphor” with the curve when they are graphed on a computer screen
centered at the given point.

The fact that functions look locally like polynomials has profound impli-
cations conceptually and computationally. It means we can often determineThe behavior of a

function can often be
inferred from the
behavior of a local
polynomialization

the behavior of a function locally by examining the corresponding behavior
of what we might call a “local polynomialization” instead. In particular,
to find the values of a function near some point, or graph a function near
some point, we can deal with the values or graph of a local polynomialization
instead. Since we can actually evaluate polynomials directly, this can be a
major simplification.
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There is an extra feature to all this which makes the concept particularly
attractive: not only are functions locally polynomial, it is easy to find the We want the

best fit at x = 0coefficients of the polynomials. Let’s see how this works. Suppose we had
some function f(x) and we wanted to find the fifth degree polynomial that
best fit this function at x = 0. Let’s call this polynomial

P (x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5.

To determine P , we need to find values for the six coefficients a0, a1, a2, a3,
a4, a5.

Before we can do this, we need to define what we mean by the “best” fit to
f at x = 0. Since we have six unknowns, we need six conditions. One obvious
condition is that the graph of P should pass through the point (0, f(0)). But The best fit should

pass through the point
(0, f(0))

this is equivalent to requiring that P (0) = f(0). Since P (0) = a0, we thus
must have a0 = f(0), and we have found one of the coefficients of P (x). Let’s
summarize the argument so far:

The graph of a polynomial passes through the point (0, f(0)) if
and only if the polynomial is of the form

f(0) + a1x + a2x
2 + · · · .

But we’re not interested in just any polynomial passing through the right The best fit should
have the right slope at

(0, f(0))
point; it should be headed in the right direction as well. That is, we want
the slope of P at x = 0 to be the same as the slope of f at this point—we
want P ′(0) = f ′(0). But

P ′(x) = a1 + 2a2x + 3a3x
2 + 4a4x

3 + 5a5x
4,

so P ′(0) = a1. Our second condition therefore must be that a1 = f ′(0).
Again, we can summarize this as

The graph of a polynomial passes through the point (0, f(0))
and has slope f ′(0) there if and only if it is of the form

f(0) + f ′(0)x + a2x
2 + · · · .
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Note that at this point we have recovered the general form for the local linear
approximation to f at x = 0: L(x) = f(0) + f ′(0)x.

But there is no reason to stop with the first derivative. Similarly, we
would want the way in which the slope of P (x) is changing—we are now
talking about P ′′(0)—to behave the way the slope of f is changing at x = 0,
etc. Each higher derivative controls a more subtle feature of the shape of the
graph. We now see how we could formulate reasonable additional conditions
which would determine the remaining coefficients of P (x):

Say that P (x) is the best fit to f(x) at the point x = 0 if

P (0) = f(0), P ′(0) = f ′(0), P ′′(0) = f ′′(0), . . . , P (5)(0) = f (5)(0).

Since P (x) is a fifth degree polynomial, all the derivatives of P beyond
the fifth will be identically 0, so we can’t control their values by altering
the values of the ak. What we are saying, then, is that we are using as our
criterion for the best fit that all the derivatives of P as high as we can controlThe final criterion

for best fit at x = 0 them have the same values at x = 0 as the corresponding derivatives of f .
While this is a reasonable definition for something we might call the

“best fit” at the point x = 0, it gives us no direct way to tell how good the fit
really is. This is a serious shortcoming—if we want to approximate function
values by polynomial values, for instance, we would like to know how many
decimal places in the polynomial values are going to be correct. We will
take up this question of goodness of fit later in this section; we’ll be able to
make measurements that allow us to to see how well the polynomial fits the
function. First, though, we need to see how to determine the coefficients of
the approximating polynomials and get some practice manipulating them.

Note on Notation: We have used the notation f (5)(x) to denote theNotation for
higher derivatives fifth derivative of f(x) as a convenient shorthand for f ′′′′′(x), which is harder

to read. We will use this throughout.

Finding the coefficients We first observe that the derivatives of P at
x = 0 are easy to express in terms of a1, a2, . . . . We have

P ′(x) = a1 + 2 a2x + 3 a3x
2 + 4 a4x

3 + 5 a5x
4,

P ′′(x) = 2 a2 + 3 · 2 a3x + 4 · 3 a4x
2 + 5 · 4 a5x

3,

P (3)(x) = 3 · 2 a3 + 4 · 3 · 2 a4x + 5 · 4 · 3 a5x
2,

P (4)(x) = 4 · 3 · 2 a4 + 5 · 4 · 3 · 2 a5x,

P (5)(x) = 5 · 4 · 3 · 2 a5.
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Thus P ′′(0) = 2 a2, P (3)(0) = 3 · 2 a3, P (4)(0) = 4 · 3 · 2 a4, and P (5)(0) =
5 · 4 · 3 · 2 a5 .

We can simplify this a bit by introducing the factorial notation, in which
we write n! = n · (n−1) · (n−2) · · ·3 ·2 ·1 . This is called “n factorial”. Thus, Factorial notation

for example, 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040. It turns out to be convenient to
extend the factorial notation to 0 by defining 0! = 1. (Notice, for instance,
that this makes the formulas below work out right.) In the exercises you will
see why this extension of the notation is not only convenient, but reasonable
as well!

With this notation we can express compactly the equations above as The desired rule for
finding the coefficientsP (k)(0) = k! ak for k = 0, 1, 2, . . . 5 . Finally, since we want P (k)(0) = f (k)(0),

we can solve for the coefficients of P (x):

ak =
f (k)(0)

k!
for k = 0, 1, 2, 3, 4, 5.

We can now write down an explicit formula for the fifth degree polynomial
which best fits f(x) at x = 0 in the sense we’ve put forth:

P (x) = f(0) + f ′(0)x +
f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (5)(0)

5!
x5.

We can express this more compactly using the Σ–notation we introduced in
the discussion of Riemann sums in chapter 6:

P (x) =
5∑

k=0

f (k)(0)

k!
xk.

We call this the fifth degree Taylor polynomial for f(x). It is sometimes
also called the fifth order Taylor polynomial.

It should be obvious to you that we can generalize what we’ve done above
to get a best-fitting polynomial of any degree. Thus

General rule for
the Taylor polynomial

at x = 0

The Taylor polynomial of degree n approximating
the function f(x) at x = 0 is given by the formula

Pn(x) =

n∑

k=0

f (k)(0)

k!
xk.
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We also speak of the Taylor polynomial centered at x = 0.

Example. Consider f(x) = sin(x). Then for n = 7 we have

f(x) = sin(x), f(0) = 0,

f ′(x) = cos(x), f ′(0) = +1,

f (2)(x) = − sin(x), f (2)(0) = 0,

f (3)(x) = − cos(x), f (3)(0) = −1,

f (4)(x) = sin(x), f (4)(0) = 0,

f (5)(x) = cos(x), f (5)(0) = +1,

f (6)(x) = − sin(x), f (6)(0) = 0,

f (7)(x) = − cos(x), f (7)(0) = −1.

From this we can see that the pattern 0, +1, 0 , −1, . . . will repeat forever.
Substituting these values into the formula we get that for any odd integer n
the n-th degree Taylor polynomial for sin(x) is

Pn(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · · ± xnn!.

Note that P3(x) = x−x3/6, which is the polynomial we met in section 1.
We saw there that this polynomial seemed to fit the graph of the sine function
only out to around x = 1. Now, though, we have a way to generate poly-
nomial approximations of higher degrees, and we would expect to get better
fits as the degree of the approximating polynomial is increased. To see how
closely these polynomial approximations follow sin(x), here’s the graph of
sin(x) together with the Taylor polynomials of degrees n = 1, 3, 5, . . . , 17
plotted over the interval [0, 7.5]:

n = 3

n = 5

n = 7

n = 9

n = 11

n = 13

n = 15

n = 17n = 1

x

y
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While each polynomial eventually wanders off to infinity, successive poly- The higher the degree
of the polynomial,
the better the fit

nomials stay close to the sine function for longer and longer intervals—the
Taylor polynomial of degree 17 is just beginning to diverge visibly by the
time x reaches 2π. We might expect that if we kept going, we could find
Taylor polynomials that were good fits out to x = 100, or x = 1000. This is
indeed the case, although they would be long and cumbersome polynomials
to work with. Fortunately, as you will see in the exercises, with a little clev-
erness we can use a Taylor polynomial of degree 9 to calculate sin(100) to 5
decimal place accuracy.

Other Taylor Polynomials: In a similar fashion, we can get Taylor poly- Approximating
polynomials for

other basic functions
nomials for other functions. You should use the general formula to verify the
Taylor polynomials for the following basic functions. (The Taylor polynomial
for sin(x) is included for convenient reference.)

f(x) Pn(x)

sin(x) x − x3

3!
+

x5

5!
− x7

7!
+ · · · ± xn

n!
(n odd)

cos(x) 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · ± xn

n!
(n even)

ex 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+ xn

n!

ln (1 − x) −
(

x +
x2

2
+

x3

3
+

x4

4
+ · · · + xn

n

)

1

1 − x
1 + x + x2 + x3 + · · ·+ xn

Taylor polynomials at points other than x = 0. Using exactly the General rule for
the Taylor polynomial

at x = a
same arguments we used to develop the best-fitting polynomial at x = 0,
we can derive the more general formula for the best-fitting polynomial at
any value of x. Thus, if we know the behavior of f and its derivatives at
some point x = a, we would like to find a polynomial Pn(x) which is a good
approximation to f(x) for values of x close to a.

Since the expression x−a tells us how close x is to a, we use it (instead of
the variable x itself) to construct the polynomials approximating f at x = a:

Pn(x) = b0 + b1(x − a) + b2(x − a)2 + b3(x − a)3 + · · ·+ bn(x − a)n.
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You should be able to apply the reasoning we used above to derive the fol-
lowing:

The Taylor polynomial of degree n centered at x = a approx-
imating the function f(x) is given by the formula

Pn(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · + fn(a)

n!
(x − a)n

=
n∑

k=0

f (k)(a)

k!
(x − a)k.

Program: TAYLOR

Set up GRAPHICS

DEF fnfact(m)

P = 1

FOR r = 2 TO m

P = P * r

NEXT r

fnfact = P

END DEF

DEF fnpoly(x)

Sum = x

Sign = -1

FOR k = 3 TO 17 STEP 2

Sum = Sum + Sign * x^k/fnfact(k)

Sign = (-1) * Sign

NEXT k

fnpoly = Sum

END DEF

FOR x = 0 TO 3.14 STEP .01

Plot the line from (x, fnpoly(x)) to (x + .01, fnpoly(x + .01))
NEXT x

A computer program for graphing Taylor polynomials Shown above
is a program that evaluates the 17-th degree Taylor polynomial for sin(x) and
graphs it over the interval [0, 3.14]. The first seven lines of the program con-
stitute a subroutine for evaluating factorials. The syntax of such subroutines
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varies from one computer language to another, so be sure to use the format
that’s appropriate for you. You may even be using a language that already
knows how to compute factorials, in which case you can omit the subroutine.
The second set of 9 lines defines the function poly which evaluates the 17-
th degree Taylor polynomial. Note the role of the variable Sign—it simply
changes the sign back and forth from positive to negative as each new term
is added to the sum. As usual, you will have to put in commands to set up
the graphics and draw lines in the format your computer language uses. You
can modify this program to graph other Taylor polynomials.

New Taylor Polynomials from Old

Given a function we want to approximate by Taylor polynomials, we could
always go straight to the general formula for deriving such polynomials. On
the other hand, it is often possible to avoid a lot of tedious calculation of
derivatives by using a polynomial we’ve already calculated. It turns out that
any manipulation on Taylor polynomials you might be tempted to try will
probably work. Here are some examples to illustrate the kinds of manipula-
tions that can be performed on Taylor polynomials.

Substitution in Taylor Polynomials. Suppose we wanted the Taylor
polynomial for ex2

. We know from what we’ve already done that for any
value of u close to 0,

eu ≈ 1 + u +
u2

2!
+

u3

3!
+

u4

4!
+ · · · + un

n!
.

In this expression u can be anything, including another variable expression.
For instance, if we set u = x2, we get the Taylor polynomial

ex2

= eu

≈ 1 + u +
u2

2!
+

u3

3!
+

u4

4!
+ · · ·+ un

n!

= 1 + (x2) +
(x2)2

2!
+

(x2)3

3!
+

(x2)4

4!
+ · · ·+ (x2)n

n!

= 1 + x2 +
x4

2!
+

x6

3!
+

x8

4!
+ · · ·+ x2n

n!
.

You should check to see that this is what you get if you apply the general
formula for computing Taylor polynomials to the function ex2

.
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Similarly, suppose we wanted a Taylor polynomial for 1/(1 + x2). We
could start with the approximation given earlier:

1

1 − u
≈ 1 + u + u2 + u3 + · · · + un.

If we now replace u everywhere by −x2, we get the desired expansion:

1

1 + x2
=

1

1 − (−x2)
=

1

1 − u

≈ 1 + u + u2 + u3 + · · · + un

= 1 + (−x2) + (−x2)2 + (−x2)3 + · · ·+ (−x2)n

= 1 − x2 + x4 − x6 + · · · ± x2n.

Again, you should verify that if you start with f(x) = 1/(1 + x2) and apply
to f the general formula for deriving Taylor polynomials, you will get the
preceding result. Which method is quicker?

Multiplying Taylor Polynomials. Suppose we wanted the 5-th degree
Taylor polynomial for e3x · sin(2x). We can use substitution to write down
polynomial approximations for e3x and sin(2x), so we can get an approxima-
tion for their product by multiplying the two polynomials:

e3x · sin(2x)

≈
(

1 + (3x) +
(3x)2

2!
+

(3x)3

3!
+

(3x)4

4!
+

(3x)5

5!

)(

(2x) − (2x)3

3!
+

(2x)5

5!

)

≈ 2x + 6x2 +
23

3
x3 + 5x4 − 61

60
x5.

Again, you should try calculating this polynomial directly from the general
rule, both to see that you get the same result, and to appreciate how much
more tedious the general formula is to use in this case.

In the same way, we can also divide Taylor polynomials, raise them to
powers, and chain them by composition. The exercises provide examples of
some of these operations.

Differentiating Taylor Polynomials. Suppose we know a Taylor polyno-
mial for some function f . If g is the derivative of f , we can immediately get a
Taylor polynomial for g (of degree one less) by differentiating the polynomial
we know for f . You should review the definition of Taylor polynomial to see
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why this is so. For instance, suppose f(x) = 1/(1−x) and g(x) = 1/(1−x)2.
Verify that f ′(x) = g(x). It then follows that

1

(1 − x)2
=

d

dx

(
1

1 − x

)

≈ d

dx
(1 + x + x2 + · · ·+ xn)

= 1 + 2x + 3x2 + · · ·+ nxn−1.

Integrating Taylor Polynomials. Again suppose we have functions f(x)
and g(x) with f ′(x) = g(x), and suppose this time that we know a Taylor
polynomial for g. We can then get a Taylor polynomial for f by antidifferen-
tiating term by term. For instance, we find in chapter 11 that the derivative
of arctan(x) is 1/(1 + x2), and we have seen above how to get a Taylor
polynomial for 1/(1 + x2). Therefore we have

arctanx =

∫ x

0

1

1 + t2
dt ≈

∫ x

0

(
1 − t2 + t4 − t6 + · · · ± t2n

)
dt

= t − 1

3
t3 +

1

5
t5 − · · · ± 1

2n + 1
t2n+1

∣
∣
∣
∣

x

0

= x − 1

3
x3 +

1

5
x5 − · · · ± 1

2n + 1
x2n+1.

Goodness of fit

Let’s turn to the question of measuring the fit between a function and one of Graph the difference
between a function and

its Taylor polynomial
its Taylor polynomials. The ideas here have a strong geometric flavor, so you
should use a computer graphing utility to follow this discussion. Once again,
consider the function sin(x) and its Taylor polynomial P (x) = x − x3/6.
According to the table in section 1, the difference sin(x) − P (x) got smaller
as x got smaller. Stop now and graph the function y = sin(x) − P (x) near
x = 0. This will show you exactly how sin(x) − P (x) depends on x. If
you choose the interval −1 ≤ x ≤ 1 (and your graphing utility allows its
vertical and horizontal scales to be set independently of each other), your
graph should resemble this one.

x

y

y = sin(x) − P(x)

−1 1

−0.008

0.008



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

606 CHAPTER 10. SERIES AND APPROXIMATIONS

This graph looks very much like a cubic polynomial. If it really is a cubic,The difference looks
like a power of x we can figure out its formula, because we know the value of sin(x) − P (x) is

about .008 when x = 1. Therefore the cubic should be y = .008 x3 (because
then y = .008 when x = 1). However, if you graph y = .008 x3 together
with y = sin(x) − P (x), you should find a poor match (the left-hand figure,
below.) Another possibility is that sin(x) − P (x) is more like a fifth degree
polynomial. Plot y = .008 x5; it’s so close that it “shares phosphor” with
sin(x) − P (x) near x = 0.

x

y

y = sin(x) − P(x)
y = .008x3

−1 1

−0.008

0.008

x

y

y = sin(x) − P(x)

y = .008x5

−1 1

−0.008

0.008

If sin(x) − P (X) were exactly a multiple of x5, then (sin x − P (x))/x5Finding the multiplier

would be constant and would equal the value of the multiplier. What we
actually find is this:

x
sin x − P (x)

x5

1.0 .0081377
0.5 .0082839
0.1 .0083313
0.05 .0083328
0.01 .0083333

suggesting lim
x→0

sin x − P (x)

x5
= .008333 . . . .

Thus, although the ratio is not constant, it appears to converge to a definiteHow P (x) fits sin(x)

value—which we can take to be the value of the multipier:

sin x − P (x) ≈ .008333 x5 when x ≈ 0.

We say that sin(x) − P (x) has the same order of magnitude as x5 as x → 0.
So sin(x) − P (x) is about as small as x5. Thus, if we know the size of x5 we
will be able to tell how close sin(x) and P (x) are to each other.

A rough way to measure how close two numbers are is to count the numberComparing
two numbers of decimal places to which they agree. But there are pitfalls here; for instance,

none of the decimals of 1.00001 and 0.99999 agree, even though the difference
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between the two numbers is only 0.00002. This suggests that a good way to
compare two numbers is to look at their difference. Therefore, we say

A = B to k decimal places means A − B = 0 to k decimal places

Now, a number equals 0 to k decimal places precisely when it rounds off to
0 (when we round it to k decimal places). Since X rounds to 0 to k decimal
places if and only |X| < .5× 10−k, we finally have a precise way to compare
the size of two numbers:

A = B to k decimal places means |A − B| < .5 × 10−k.

Now we can say how close P (x) is to sin(x). Since x is small, we can take What the fit means
computationallythis to mean x = 0 to k decimal places, or |x| < .5 × 10−k. But then,

|x5 − 0| = |x − 0|5 < (.5 × 10−k)5 < .5 × 10−5k−1

(since .55 = .03125 < .5 × 10−1). In other words, if x = 0 to k decimal
places, then x5 = 0 to 5k + 1 places. Since sin(x)−P (x) has the same order
of magnitude as x5 as x → 0, sin(x) = P (x) to 5k + 1 places as well. In fact,
because the multiplier in the relation

sin x − P (x) ≈ .008333 x5 (x ≈ 0)

is .0083. . . , we gain two more decimal places of accuracy. (Do you see why?)
Thus, finally, we see how reliable the polynomial P (x) = x − x3/6 is for
calculating values of sin(x):

When x = 0 to k decimal places of accuracy, we can use P (x)
to calculate the first 5k+3 decimal places of the value of sin(x).

Here are a few examples comparing P (x) to the exact value of sin(x):

x P (x) sin(x)

.0372 .0371914201920 .037194207856 . . .

.0086 .0085998939907 .008599893991 . . .

.0048 .0047999815680000 .0047999815680212 . . .

The underlined digits are guaranteed to be correct, based on the number of
decimal places for which x agrees with 0. (Note that, according to our rule,
.0086 = 0 to one decimal place, not two.)



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

608 CHAPTER 10. SERIES AND APPROXIMATIONS

Taylor’s theorem

Taylor’s theorem is the generalization of what we have just seen; it describesOrder of magnitude

the goodness of fit between an arbitrary function and one of its Taylor poly-
nomials. We’ll state three versions of the theorem, gradually uncovering
more information. To get started, we need a way to compare the order of
magnitude of any two functions.

We say that ϕ(x) has the same order of magnitude as q(x)
as x → a, and we write ϕ(x) = O(q(x)) as x → a, if there is a
constant C for which

lim
x→a

ϕ(x)

q(x)
= C.

Now, when limx→a ϕ(x)/q(x) is C, we have

ϕ(x) ≈ Cq(x) when x ≈ a.

We’ll frequently use this relation to express the idea that ϕ(x) has the same
order of magnitude as q(x) as x → a.

The symbol O is an upper case “oh”. When ϕ(x) = O(q(x)) as x → a,‘Big oh’ notation

we say ϕ(x) is ‘big oh’ of q(x) as x approaches a. Notice that the equal sign
in ϕ(x) = O(q(x)) does not mean that ϕ(x) and O(q(x)) are equal; O(q(x))
isn’t even a function. Instead, the equal sign and the O together tell us that
ϕ(x) stands in a certain relation to q(x).

Taylor’s theorem, version 1. If f(x) has derivatives up to
order n at x = a, then

f(x) = f(a) +
f ′(a)

1!
(x − a) + · · ·+ f (n)(a)

n!
(x − a)n + R(x),

where R(x) = O((x − a)n+1) as x → a. The term R(x) is called
the remainder.

This version of Taylor’s theorem focusses on the general shape of theInformal language

remainder function. Sometimes we just say the remainder has “order n+1”,
using this short phrase as an abbreviation for “the order of magnitude of the
function (x − a)n+1”. In the same way, we say that a function and its n-th
degree Taylor polynomial at x = a agree to order n + 1 as x → a.
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Notice that, if ϕ(x) = O(x3) as x → 0, then it is also true that ϕ(x) = O(x2) (as x → 0). This
implies that we should take ϕ(x) = O(xn) to mean “ϕ has at least order n” (instead of simply
“ϕ has order n”). In the same way, it would be more accurate (but somewhat more cumbersome)
to say that ϕ = O(q) means “ϕ has at least the order of magnitude of q”.

As we saw in our example, we can translate the order of agreement be- Decimal places
of accuracytween the function and the polynomial into information about the number of

decimal places of accuracy in the polynomial approximation. In particular, if
x−a = 0 to k decimal places, then (x−a)n = 0 to nk places, at least. Thus,
as the order of magnitude n of the remainder increases, the fit increases, too.
(You have already seen this illustrated with the sine function and its various
Taylor polynomials, in the figure on page 600.)

While the first version of Taylor’s theorem tells us that R(x) looks like A formula for
the remainder(x − a)n+1 in some general way, the next gives us a concrete formula. At

least, it looks concrete. Notice, however, that R(x) is expressed in terms of
a number cx (which depends upon x), but the formula doesn’t tell us how cx

depends upon x. Therefore, if you want to use the formula to compute the
value of R(x), you can’t. The theorem says only that cx exists; it doesn’t say
how to find its value. Nevertheless, this version provides useful information,
as you will see.

Taylor’s theorem, version 2. Suppose f has continuous
derivatives up to order n + 1 for all x in some interval contain-
ing a. Then, for each x in that interval, there is a number cx

between a and x for which

R(x) =
f (n+1)(cx)

(n + 1)!
(x − a)n+1.

This is called Lagrange’s form of the remainder.

We can use the Lagrange form as an aid to computation. To see how, Another formula for
the remainderreturn to the formula

R(x) ≈ C(x − a)n+1 (x ≈ a)

that expresses R(x) = O((x− a)n+1) as x → a (see page 608). The constant
here is the limit

C = lim
x→a

R(x)

(x − a)n+1
.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

610 CHAPTER 10. SERIES AND APPROXIMATIONS

If we have a good estimate for the value of C, then R(x) ≈ C(x − a)n+1

gives us a good way to estimate R(x). Of course, we could just evaluate the
limit to determine C. In fact, that’s what we did in the example; knowing
C ≈ .008 there gave us two more decimal places of accuracy in our polynomial
approxmation to the sine function.

But the Lagrange form of the remainder gives us another way to deter-Determining C
from f at x = a mine C:

C = lim
x→a

R(x)

(x − a)n+1
= lim

x→a

f (n+1)(cx)

(n + 1)!

=
f (n+1)(limx→a cx)

(n + 1)!

=
f (n+1)(a)

(n + 1)!
.

In this argument, we are permitted to take the limit “inside” f (n+1) because
f (n+1) is a continuous function. (That is one of the hypotheses of version 2.)
Finally, since cx lies between x and a, it follows that cx → a as x → a;
in other words, limx→a cx = a. Consequently, we get C directly from the
function f itself, and we can therefore write

R(x) ≈ f (n+1)(a)

(n + 1)!
(x − a)n+1 (x ≈ a).

The third version of Taylor’s theorem uses the Lagrange form of theAn error bound

remainder in a similar way to get an error bound for the polynomial approx-
imation based on the size of f (n+1)(x).

Taylor’s theorem, version 3. Suppose that |f (n+1)(x)| ≤ M
for all x in some interval containing a. Then, for each x in that
interval,

|R(x)| ≤ M

(n + 1)!
|x − a|n+1.

With this error bound, which is derived from knowledge of f(x) near x = a,
we can determine quite precisely how many decimal places of accuracy a
Taylor polynomial approximation achieves. The following example illustrates
the different versions of Taylor’s theorem.
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Example. Consider
√

x near x = 100. The second degree Taylor polynomial
for

√
x, centered at x = 100, is

Q(x) = 10 +
(x − 100)

20
− (x − 100)2

8000
.

x

y
y = √x

y = Q(x)

0 50 100 150 200

5

10

15

x

y

y = √x − Q(x)

95 100 105 110

−0.0005

0.0005

Plot y = Q(x) and y =
√

x together; the result should look like the figure on Version 1:
the remainder is
O((x − 100)3)

the left, above. Then plot the remainder y =
√

x−Q(x) near x = 100. This
graph should suggest that

√
x − Q(x) = O((x − 100)3) as x → 100. In fact,

this is what version 1 of Taylor’s theorem asserts. Furthermore,

lim
x→100

√
x − Q(x)

(x − 100)3
≈ 6.25 × 10−7;

check this yourself by constructing a table of values. Thus
√

x − Q(x) ≈ C(x − 100)3 where C ≈ 6.25 × 10−7.

We can use the Lagrange form of the remainder (in version 2 of Tay- Version 2:
determining C in terms

of
√

x at x = 100
lor’s theorem) to get the value of C another way—directly from the third
derivative of

√
x at x = 100:

C =
(x1/2)′′′

3!

∣
∣
∣
∣
x=100

=
1
2
· −1

2
· −3

2
· (100)−5/2

6
=

1

24 · 105
= 6.25 × 10−7.

This is the exact value, confirming the estimate obtained above.
Let’s see what the equation

√
x − Q(x) ≈ 6.25 × 10−7(x − 100)3 tells us Accuracy of

the polynomial
approximation

about the accuracy of the polynomial approximation. If we assume |x−100| <
.5 × 10−k, then

|
√

x − Q(x)| < 6.25 × 10−7 × (.5 × 10−k)3

= .78125 × 10−(3k+7) < .5 × 10−(3k+6).

Thus
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x = 100 to k decimal places =⇒ √
x = Q(x) to 3k + 6 places.

For example, if x = 100.47, then k = 0, so Q(100.47) =
√

100.47 to 6 decimal
places. We find

Q(100.47) = 10.0234723875,

and the underlined digits should be correct. In fact,

√
100.47 = 10.0234724521 . . . .

Here is a second example. If x = 102.98, then we can take k = −1, so
Q(102.98) =

√
102.98 to 3(−1) + 6 = 3 decimal places. We find

Q(102.98) = 10.14788995,
√

102.98 = 10.147906187 . . . .

Let’s see what additional light version 3 sheds on our investigation. Sup-Version 3:
an explicit
error bound

pose we assume x = 100 to k = 0 decimal places. This means that x lies
in the open interval (99.5, 100.5). Version 3 requires that we have a bound
on the size of the third derivative of f(x) =

√
x over this interval. Now

f ′′′(x) = 3
8
x−5/2, and this is a decreasing function. (Check its graph; alter-

natively, note that its derivative is negative.) Its maximum value therefore
occurs at the left endpoint of the (closed) interval [99.5, 100.5]:

|f ′′′(x)| ≤ f ′′′(99.5) = 3
8
(99.5)−5/2 < 3.8 × 10−6.

Therefore, from version 3 of Taylor’s theorem,

|√x − Q(x)| <
3.8 × 10−6

3!
|x − 100|3

Since |x − 100| < .5, |x − 100|3 < .125, so

|
√

x − Q(x)| <
3.8 × 10−6 × .125

6
= .791667 × 10−7 < .5 × 10−6.

This proves
√

x = Q(x) to 6 decimal places—confirming what we found
earlier.
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Applications

Evaluating Functions. An obvious use of Taylor polynomials is to evaluate Now you can do
anything your

calculator can!
functions. In fact, whenever you ask a calculator or computer to evaluate
a function—trigonometric, exponential, logarithmic—it is typically giving
you the value of an appropriate polynomial (though not necessarily a Taylor
polynomial).

Evaluating Integrals. The fundamental theorem of calculus gives us a
quick way of evaluating a definite integral provided we can find an antideriva-
tive for the function under the integral (cf. chapter 6.4). Unfortunately, many
common functions, like e−x2

or (sin x)/x, don’t have antiderivatives that can
be expressed as finite algebraic combinations of the basic functions. Up until
now, whenever we encountered such a function we had to rely on a Riemann
sum to estimate the integral. But now we have Taylor polynomials, and it’s
easy to find an antiderivative for a polynomial! Thus, if we have an awkward
definite integral to evaluate, it is reasonable to expect that we can estimate it
by first getting a good polynomial approximation to the integrand, and then
integrating this polynomial. As an example, consider the error function,
erf(t), defined by

The error functionerf(t) =
2√
π

∫ t

0

e−x2

dx .

This is perhaps the most important integral in statistics. It is the basis of
the so-called “normal distribution” and is widely used to decide how good
certain statistical estimates are. It is important to have a way of obtaining
fast, accurate approximations for erf(t). We have already seen that

e−x2 ≈ 1 − x2 +
x4

2!
− x6

3!
+

x8

4!
− · · · ± x2n

n!
.

Now, if we antidifferentiate term by term:

∫

e−x2

dx ≈
∫ (

1 − x2 +
x4

2!
− x6

3!
+

x8

4!
− · · · ± x2n

n!

)

dx

=

∫

1 dx −
∫

x2 dx +

∫
x4

2!
dx −

∫
x6

3!
dx + · · · ±

∫
x2n

n!
dx

= x − x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · · ± x2n+1

(2n + 1) · n!
.
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Thus,
∫ t

0

e−x2

dx ≈ x − x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · · ± x2n+1

(2n + 1) · n!

∣
∣
∣
∣

t

0

,

giving us, finally, an approximate formula for erf(t):

A formula for
approximating the
error function

erf(t) ≈ 2√
π

(

t − t3

3
+

t5

5 · 2!
− t7

·3!
+ · · · ± t2n+1

(2n + 1) · n!

)

.

Thus if we needed to know, say, erf(1), we could quickly approximate it. For
instance, letting n = 6, we have

erf(1) ≈ 2√
π

(

1 − 1

3
+

1

5 · 2!
− 1

7 · 3!
+

1

9 · 4!
− 1

11 · 5!
+

1

13 · 6!

)

≈ 2√
π

(

1 − 1

3
+

1

10
− 1

42
+

1

216
− 1

1320
+

1

9360

)

≈ .746836
2√
π
≈ .842714,

a value accurate to 4 decimals. If we had needed greater accuracy, we could
simply have taken a larger value for n. For instance, if we take n = 12, we get
the estimate .8427007929. . . , where all 10 decimals are accurate (i.e., they
don’t change as we take larger values n).

Evaluating Limits. Our final application of Taylor polynomials makes
explicit use of the order of magnitude of the remainder. Consider the problem
of evaluating a limit like

lim
x→0

1 − cos(x)

x2
.

Since both numerator and denominator approach 0 as x → 0, it isn’t clear
what the quotient is doing. If we replace cos(x) by its third degree Taylor
polynomial with remainder, though, we get

cos(x) = 1 − 1

2!
x2 + R(x),

and R(x) = O(x4) as x → 0. Consequently, if x 6= 0 but x → 0, then

1 − cos(x)

x2
=

1 −
(
1 − 1

2
x2 + R(x)

)

x2

=
1
2
x2 − R(x)

x2
=

1

2
− R(x)

x2
.
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Since R(x) = O(x4), we know that there is some constant C for which
R(x)/x4 → C as x → 0. Therefore,

lim
x→0

1 − cos(x)

x2
=

1

2
− lim

x→0

R(x)

x2
=

1

2
− lim

x→0

x2 · R(x)

x4

=
1

2
− lim

x→0
x2 · lim

x→0

R(x)

x4
=

1

2
− 0 · C =

1

2
.

There is a way to shorten these calculations—and to make them more Extending the
‘big oh’ notationtransparent—by extending the way we read the ‘big oh’ notation. Specifi-

cally, we will read O(q(x)) as “some (unspecified) function that is the same
order of magnitude as q(x)”.

Then, instead of writing cos(x) = 1− 1
2
x2+R(x), and then noting R(x) =

O(x4) as x → 0, we’ll just write

cos(x) = 1 − 1
2
x2 + O(x4) (x → 0).

In this spirit,

1 − cos(x)

x2
=

1 −
(
1 − 1

2
x2 + O(x4)

)

x2

=
1
2
x2 − O(x4)

x2
= 1

2
+ O(x2) (x → 0).

We have used the fact that ±O(x4)/x2 = O(x2). Finally, since O(x2) → 0
as x → 0 (do you see why?), the limit of the last expression is just 1/2 as
x → 0. Thus, once again we arrive at the result

lim
x→0

1 − cos(x)

x2
=

1

2
.

Exercises

1. Find a seventh degree Taylor polynomial centered at x = 0 for the indi-
cated antiderivatives.

a)

∫
sin(x)

x
dx.

[Answer:

∫
sin(x)

x
dx ≈ x − x3

3 · 3!
+

x5

5 · 5!
− x7

7 · 7!
.]
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b)

∫

ex2

dx.

c)

∫

sin(x2) dx.

2. Plot the 7-th degree polynomial you found in part (a) above over the
interval [0, 5]. Now plot the 9-th degree approximation on the same graph.
When do the two polynomials begin to differ visibly?

3. Using the seventh degree Taylor approximation

E(t) ≈
∫ t

0

e−x2

dx = t − t3

3
+

t5

5 · 2!
− t7

7 · 3!
,

calculate the values of E(.3) and E(−1). Give only the significant digits—
that is, report only those decimals of your estimates that you think are
fixed. (This means you will also need to calculate the ninth degree Taylor
polynomial as well—do you see why?)

4. Calculate the values of sin(.4) and sin(π/12) using the seventh degree
Taylor polynomial centered at x = 0

sin(x) ≈ x − x3

3!
+

x5

5!
− x7

7!
.

Compare your answers with what a calculator gives you.

5. Find the third degree Taylor polynomial for g(x) = x3 − 3x at x = 1.
Show that the Taylor polynomial is actually equal to g(x)—that is, the re-
mainder is 0. What does this imply about the fourth degree Taylor polyno-
mial for g at x = 1 ?

6. Find the seventh degree Taylor polynomial centered at x = π for
(a) sin(x); (b) cos(x); (c) sin(3x).

7. In this problem you will compare computations using Taylor polynomials
centered at x = π with computations using Taylor polynomials centered at
x = 0.

a) Calculate the value of sin(3) using a seventh degree Taylor polynomial
centered at x = 0. How many decimal places of your estimate appear to be
fixed?
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b) Now calculate the value of sin(3) using a seventh degree Taylor polyno-
mial centered at x = π. Now how many decimal places of your estimate
appear to be fixed?

8. Write a program which evaluates a Taylor polynomial to print out sin(5◦),
sin(10◦), sin(15◦), . . . , sin(40◦), sin(45◦) accurate to 7 decimals. (Remember
to convert to radians before evaluating the polynomial!)

9. Why 0! = 1. When you were first introduced to exponential notation
in expressions like 2n, n was restricted to being a positive integer, and 2n

was defined to be the product of 2 multiplied by itself n times. Before long,
though, you were working with expressions like 2−3 and 21/4. These new
expressions weren’t defined in terms of the original definition. For instance,
to calculate 2−3 you wouldn’t try to multiply 2 by itself −3 times—that
would be nonsense! Instead, 2−m is defined by looking at the key properties
of exponentiation for positive exponents, and extending the definition to
other exponents in a way that preserves these properties. In this case, there
are two such properties, one for adding exponents and one for multiplying
them:

Property A: 2m · 2n = 2m+n for all positive m and n,

Property M: (2m)n = 2mn for all positive m and n.

a) Show that to preserve property A we have to define 20 = 1.

b) Show that we then have to define 2−3 = 1/23 if we are to continue to
preserve property A.

c) Show why 21/4 must be 4
√

2.

d) In the same way, you should convince yourself that a basic property of
the factorial notation is that (n+1)! = (n+1) ·n! for any positive integer n.
Then show that to preserve this property, we have to define 0! = 1.

e) Show that there is no way to define (−1)! which preserves this property.

10. Use the general rule to derive the 5-th degree Taylor polynomial cen-
tered at x = 0 for the function

f(x) = (1 + x)
1

2 .

Use this approximation to estimate
√

1.1. How accurate is this?
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11. Use the general rule to derive the formula for the n-th degree Taylor
polynomial centered at x = 0 for the function

f(x) = (1 + x)c where c is a constant.

12. Use the result of the preceding problem to get the 6-th degree Taylor
polynomial centered at x = 0 for 1/ 3

√
1 + x2.

[Answer: 1 − 1

3
x2 +

2

9
x4 − 14

81
x6.]

13. Use the result of the preceding problem to approximate
∫ 1

0

1
3
√

1 + x2
dx.

14. Calculate the first 7 decimals of erf(.3). Be sure to show why you think
all 7 decimals are correct. What degree Taylor polynomial did you need to
produce these 7 decimals?

[Answer: erf(.3) = .3286267 . . . .]

15. a) Apply the general formula for calculating Taylor polynomials cen-
tered at x = 0 to the tangent function to get the 5-th degree approximation.

[Answer: tan(x) ≈ x + x3/3 + 2x5/15.]

b) Recall that tan(x) = sin(x)/ cos(x). Multiply the 5-th degree Taylor
polynomial for tan(x) from part a) by the 4-th degree Taylor polynomial for
cos(x) and show that you get the fifth degree polynomial for sin(x) (discard-
ing higher degree terms).

16. Show that the n-th degree Taylor polynomial centered at x = 0 for
1/(1 − x) is 1 + x + x2 + · · · + xn.

17. Note that ∫
1

1 − x
dx = − ln(1 − x).

Use this observation, together with the result of the previous problem, to get
the n-th degree Taylor polynomial centered at x = 0 for ln(1 − x).

18. a) Find a formula for the n-th degree Taylor polynomial centered at
x = 1 for ln(x).
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b) Compare your answer to part (a) with the Taylor polynomial centered
at x = 0 for ln(1 − x) you found in the previous problem. Are your results
consistent?

19. a) The first degree Taylor polynomial for ex at x = 0 is 1 + x. Plot the
remainder R1(x) = ex − (1 + x) over the interval −.1 ≤ x ≤ .1. How does
this graph demonstrate that R1(x) = O(x2) as x → 0?

b) There is a constant C2 for which R1(x) ≈ C2x
2 when x ≈ 0. Why?

Estimate the value of C2.

20. This concerns the second degree Taylor polynomial for ex at x = 0. Plot
the remainder R2(x) = ex − (1 + x + x2/2) over the interval −.1 ≤ x ≤ .1.
How does this graph demonstrate that R2(x) = O(x3) as x → 0?

a) There is a constant C3 for which R2(x) ≈ C3x
3 when x ≈ 0. Why?

Estimate the value of C3.

21. Let R3(x) = ex −P3(x), where P3(x) is the third degree Taylor polyno-
mial for ex at x = 0. Show R3(x) = O(x4) as x → 0.

22. At first glance, Taylor’s theorem says that

sin(x) = x − 1

6
x3 + O(x4) as x → 0.

However, graphs and calculations done in the text (pages 605–607) make it
clear that

sin(x) = x − 1

6
x3 + O(x5) as x → 0.

Explain this. Is Taylor’s theorem wrong here?

23. Using a suitable formula (that is, a Taylor polynomial with remainder)
for each of the functions involved, find the indicated limit.

a) lim
x→0

sin(x)

x
[Answer: 1]

b) lim
x→0

ex − (1 + x)

x2
[Answer: 1/2]

c) lim
x→1

ln x

x − 1

d) lim
x→0

x − sin(x)

x3
[Answer: 1/6]
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e) lim
x→0

sin(x2)

1 − cos(x)

24. Suppose f(x) = 1 + x2 + O(x4) as x → 0. Show that

(f(x))2 = 1 + 2x2 + O(x4) as x → 0.

25. a) Using sin x = x − 1
6
x3 + O(x5) as x → 0, show

(sin x)2 = x2 − 1
3
x4 + O(x6) as x → 0.

b) Using cos x = 1 − 1
2
x2 + 1

24
x4 + O(x5) as x → 0, show

(cos x)2 = 1 − x2 + 1
3
x4 + O(x5) as x → 0.

c) Using the previous parts, show (sin x)2 + (cos x)2 = 1 + O(x5) as x → 0.
(Of course, you already know (sin x)2 + (cos x)2 = 1 exactly.)

26. a) Apply the general formula for calculating Taylor polynomials to the
tangent function to get the 5-th degree approximation.

b) Recall that tan(x) = sin(x)/ cos(x), so tan(x) · cos(x) = sin(x). Multiply
the fifth degree Taylor polynomial for tan(x) from part a) by the fifth degree
Taylor polynomial for cos(x) and show that you get the fifth degree Taylor
polynomial for sin(x) plus O(x6)—that is, plus terms of order 6 and higher.

27. a) Using the formulas

eu = 1 + u + 1
2
u2 + 1

6
u3 + O(u4) (u → 0),

sin x = x − 1
6
x3 + O(x5) (x → 0),

show that esinx = 1 + x + 1
2
x2 + O(x4) as x → 0.

b) Apply the general formula to obtain the third degree Taylor polynomial
for esinx at x = 0, and compare your result with the formula in part (a).

28. Using
ex − 1

x
= 1 + 1

2
x + 1

6
x2 + 1

24
x3 + O(x4) as x → 0, show that

x

ex − 1
= 1 − 1

2
x + 1

12
x2 + O(x4) (x → 0).



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

10.2. TAYLOR POLYNOMIALS 621

29. Show that the following are true as x → ∞.

a) x + 1/x = O(x).

b) 5x7 − 12x4 + 9 = O(x7).

c)
√

1 + x2 = O(x).

d)
√

1 + xp = O(xp/2).

30. a) Let f(x) = ln(x). Find the smallest bound M for which

|f (4)(x)| ≤ M when |x − 1| ≤ .5.

b) Let P3(x) be the degree 3 Taylor polynomial for ln(x) at x = 1, and let
R3(x) be the remainder R3(x) = ln(x) − P3(x). Find a number K for which

|R(x)| ≤ K |x − 1|4

for all x satisfying |x − 1| ≤ .5.

c) If you use P3(x) to approximate the value of ln(x) in the interval .5 ≤
x ≤ 1.5, how many digits of the approximation are correct?

d) Suppose we restrict the interval to |x−1| ≤ .1. Repeat parts (a) and (b),
getting smaller values for M and K. Now how many digits of the polynomial
approximation P3(x) to ln(x) are correct, if .9 ≤ x ≤ 1.1?

“Little oh” notation. Similar to the “big oh” notation is another, called
the “little oh”: if

lim
x→a

φ(x)

q(x)
= 0,

then we write φ(x) = o(q(x)) and say φ is ‘little oh’ of q as x → a.

31. Suppose φ(x) = O(x6) as x → 0. Show the following.

a) φ(x) = O(x5) as x → 0.

b) φ(x) = o(x5) as x → 0.

c) It is false that φ(x) = O(x7) as x → 0. (One way you can do this is to
give an explicit example of a function φ(x) for which φ(x) = O(x6) but for
which you can show φ(x) = O(x7) is false.)

d) It is false that φ(x) = o(x6) as x → 0.

32. Sketch the graph y = x ln(x) over the interval 0 < x ≤ 1. Explain why
your graph shows ln(x) = o(1/x) as x → 0.
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10.3 Taylor Series

In the previous section we have been talking about approximations to func-
tions by their Taylor polynomials. Thus, for instance, we were able to write
statements like

sin(x) ≈ x − x3

3!
+

x5

5!
− x7

7!
,

where the approximation was a good one for values of x not too far from
0. On the other hand, when we looked at Taylor polynomials of higher and
higher degree, the approximations were good for larger and larger values of
x. We are thus tempted to write

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · · ,

indicating that the sine function is equal to this “infinite degree” polynomial.
This infinite sum is called the Taylor series centered at x = 0 for sin(x).
But what would we even mean by such an infinite sum? We will explore thisYou have seen

infinite sums before question in detail in section 5, but you should already have some intuition
about what it means, for it can be interpreted in exactly the same way we
interpret a more familiar statement like

1

3
= .33333 . . .

=
3

10
+

3

100
+

3

1000
+

3

10000
+

3

100000
+ · · · .

Every decimal number is a sum of fractions whose denominators are powers
of 10; 1/3 is a number whose decimal expansion happens to need an infinite
number of terms to be completely precise. Of course, when a practical matter
arises (for example, typing a number like 1/3 or π into a computer) just the
beginning of the sum is used—the “tail” is dropped. We might write 1/3 as
0.33, or as 0.33333, or however many terms we need to get the accuracy we
want. Put another way, we are saying that 1/3 is the limit of the finite sums
of the right hand side of the equation.

Our new formulas for Taylor series are meant to be used exactly the sameInfinite degree
polynomials are to be
viewed like infinite
decimals

way: when a computation is involved, take only the beginning of the sum,
and drop the tail. Just where you cut off the tail depends on the input
value x and on the level of accuracy needed. Look at what happens when
we we approximate the value of cos(π/3) by evaluating Taylor polynomials
of increasingly higher degree:



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

10.3. TAYLOR SERIES 623

1 = 1.0000000

1 − 1

2!

(π

3

)2
≈ 0.4516887

1 − 1

2!

(π

3

)2
+

1

4!

(π

3

)4
≈ 0.5017962

1 − 1

2!

(π

3

)2
+

1

4!

(π

3

)4
− 1

6!

(π

3

)6
≈ 0.4999646

1 − 1

2!

(π

3

)2
+

1

4!

(π

3

)4
− 1

6!

(π

3

)6
+

1

8!

(π

3

)8
≈ 0.5000004

1 − 1

2!

(π

3

)2
+

1

4!

(π

3

)4
− 1

6!

(π

3

)6
+

1

8!

(π

3

)8
− 1

10!

(π

3

)10
≈ 0.5000000

These sums were evaluated by setting π = 3.141593. As you can see,
at the level of precision we are using, a sum that is six terms long gives
the correct value. However, five, four, or even three terms may have been
adequate for the needs at hand. The crucial fact is that these are all honest
calculations using only the four operations of elementary arithmetic.

Note that if we had wanted to get the same 6 place accuracy for cos(x)
for a larger value of x, we might need to go further out in the series. For
instance cos(7π/3) is also equal to .5, but the tenth degree Taylor polynomial
centered at x = 0 gives

1 − 1

2!

(
7π

3

)2

+
1

4!

(
7π

3

)4

− 1

6!

(
7π

3

)6

+
1

8!

(
7π

3

)8

− 1

10!

(
7π

3

)10

= −37.7302,

which is not even close to .5 . In fact, to get cos(7π/3) to 6 decimals, we need
to use the Taylor polynomial centered at x = 0 of degree 30, while to get
cos(19π/3) (also equal to .5) to 6 decimals we need the Taylor polynomial
centered at x = 0 of degree 66!

The key fact, though, is that, for any value of x, if we go out in the series
far enough (where what constitutes “far enough” will depend on x), we can
approximate cos(x) to any number of decimal places desired. For any x, the
value of cos(x) is the limit of the finite sums of the Taylor series, just as 1/3
is the limit of the finite sums of its infinite series representation.

In general, given a function f(x), its Taylor series centered at x = 0 will
be

f(0) + f ′(0)x +
f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 + · · · =

∞∑

k=0

f (k)(0)

k!
xk.
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We have the following Taylor series centered at x = 0 for some common
functions:

f(x) Taylor series for f(x)

sin(x) x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

cos(x) 1 − x2

2!
+

x4

4!
− x6

6!
+ · · ·

ex 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

ln (1 − x) −
(

x +
x2

2
+

x3

3
+

x4

4
+ · · ·

)

1

1 − x
1 + x + x2 + x3 + · · ·

1

1 + x2
1 − x2 + x4 − x6 + · · ·

(1 + x)c 1 + cx +
c(c − 1)

2!
x2 +

c(c − 1)(c − 2)

3!
x3 + · · ·

While it is true that cos(x) and ex equal their Taylor series, just as sin(x)
did, we have to be more careful with the last four functions. To see why
this is, let’s graph 1/(1 + x2) and its Taylor polynomials Pn(x) = 1 − x2 +
x4 − x6 + · · · ± xn for n = 2, 4, 6, 8, 10, 12, 14, 16, 200, and 202. Since all
the graphs are symmetric about the y-axis (why is this?), we draw only the
graphs for positive x:

n = 4
n = 8

n = 12
n = 16

n = 14
n = 10
n = 6
n = 2

n = 200

n = 202

1 2 3

1

x

y
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It appears that the graphs of the Taylor polynomials Pn(x) approach the A Taylor series
may not converge
for all values of x

graph of 1/(1 + x2) very nicely so long as x < 1. If x ≥ 1, though, it looks
like there is no convergence, no matter how far out in the Taylor series we
go. We can thus write

1

1 + x2
= 1 − x2 + x4 − x6 + · · · for |x| < 1,

where the restriction on x is essential if we want to use the = sign. We say
that the interval −1 < x < 1 is the interval of convergence for the Taylor
series centered at x = 0 for 1/(1 + x2). Some Taylor series, like those for
sin(x) and ex, converge for all values of x—their interval of convergence is
(−∞,∞). Other Taylor series, like those for 1/(1 + x2) and ln(1 − x), have
finite intervals of convergence.

Brook Taylor (1685–1731) was an English mathematician who developed the series that bears
his name in his book Methodus incrementorum (1715). He did not worry about questions of
convergence, but used the series freely to attack many kinds of problems, including differential
equations.

Remark On the one hand it is perhaps not too surprising that a function
should equal its Taylor series—after all, with more and more coefficients to
fiddle with, we can control more and more of the behavior of the associated
polynomials. On the other hand, we are saying that a function like sin(x) or
ex has its behavior for all values of x completely determined by the value of
the function and all its derivatives at a single point, so perhaps it is surprising
after all!

Exercises

1. a) Suppose you wanted to use the Taylor series centered at x = 0 to
calculate sin(100). How large does n have to be before the term (100)n/n! is
less than 1?

b) If we wanted to calculate sin(100) directly using this Taylor series, we
would have to go very far out before we began to approach a limit at all
closely. Can you use your knowledge of the way the circular functions behave
to calculate sin(100) much more rapidly (but still using the Taylor series
centered at x = 0)? Do it.
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c) Show that we can calculate the sine of any number by using a Taylor
series centered at x = 0 either for sin(x) or for cos(x) to a suitable value 0f
x between 0 and π/4.

2. a) Suppose we wanted to calculate ln 5 to 7 decimal places. An obvious
place to start is with the Taylor series centered at x = 0 for ln(1 − x):

−
(

x +
x2

2
+

x3

3
+

x4

4
+ · · ·

)

with x = −4. What happens when you do this, and why? Try a few more
values for x and see if you can make a conjecture about the interval of
convergence for this Taylor series.

[Answer: The Taylor series converges for −1 ≤ x < 1.]

b) Explain how you could use the fact that ln(1/A) = − ln A for any real
number A > 0 to evaluate ln x for x > 2. Use this to compute ln 5 to 7
decimals. How far out in the Taylor series did you have to go?

c) If you wanted to calculate ln 1.5, you could use the Taylor series for ln(1−
x) with either x = −1/2, which would lead directly to ln 1.5, or you could
use the series with x = 1/3, which would produce ln(2/3) = − ln 1.5 . Which
method is faster, and why?

3. We can improve the speed of our calculations of the logarithm function
slightly by the following series of observations:

a) Find the Taylor series centered at u = 0 for ln(1 + u).

[Answer: u − u2/2 + u3/3 − u4/4 + u5/5 + · · · ]
b) Find the Taylor series centered at u = 0 for

ln

(
1 − u

1 + u

)

.

(Remember that ln(A/B) = lnA − ln B.)

c) Show that any x > 0 can be written in the form (1− u)/(1 + u) for some
suitable −1 < u < 1.

d) Use the preceding to evaluate ln 5 to 7 decimal places. How far out in
the Taylor series did you have to go?

4. a) Evaluate arctan(.5) to 7 decimal places.
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b) Try to use the Taylor series centered at x = 0 to evaluate arctan(2)
directly—what happens? Remembering what the arctangent function means
geometrically, can you figure out a way around this difficulty?

5. a) Calculating π The Taylor series for the arctangent function,

arctanx = x − 1

3
x3 +

1

5
x5 − · · · ± 1

2n + 1
x2n+1 + · · · ,

lies behind many of the methods for getting lots of decimals of π rapidly. For
instance, since tan

(
π
4

)
= 1, we have π

4
= arctan 1. Use this to get a series

expansion for π. How far out in the series do you have to go to evaluate π
to 3 decimal places?

b) The reason the preceding approximations converged so slowly was that
we were substituting x = 1 into the series, so we didn’t get any help from the
xn terms in making the successive corrections get small rapidly. We would
like to be able to do something with values of x between 0 and 1. We can do
this by using the addition formula for the tangent function:

tan(α + β) =
tan α + tan β

1 − tan α tanβ
.

Use this to show that

π

4
= arctan

(
1

2

)

+ arctan

(
1

5

)

+ arctan

(
1

8

)

.

Now use the Taylor series for each of these three expressions to calculate π to
12 decimal places. How far out in the series do you have to go? Which series
did you have to go the farthest out in before the 12th decimal stabilized?
Why?

6. Raising e to imaginary powers One of the major mathematical de-
velopments of the last century was the extension of the ideas of calculus to
complex numbers—i.e., numbers of the form r+s i, where r and s are real
numbers, and i is a new symbol, defined by the property that i · i = −1 .
Thus i3 = i2 i = −i, i4 = i2 i2 = (−1)(−1) = 1, and so on. If we want to
extend our standard functions to these new numbers, we proceed as we did
in the previous section and look for the crucial properties of these functions
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to see what they suggest. One of the key properties of ex as we’ve now seen
is that it possesses a Taylor series:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · .

But this property only involves operations of ordinary arithmetic, and so
makes perfectly good sense even if x is a complex number

a) Show that if s is any real number, we must define ei s to be cos(s)+i sin(s)
if we want to preserve this property.

b) Show that eπ i = −1.

c) Show that if r + s i is any complex number, we must have

er+s i = er(cos s + i sin s)

if we want complex exponentials to preserve all the right properties.

d) Find a complex number r + si such that er+s i = −5.

7. Hyperbolic trigonometric functions The hyperbolic trigonometric
functions are defined by the formulas

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
.

(The names of these functions are usually pronounced “cosh” and “cinch.”) In
this problem you will explore some of the reasons for the adjectives hyperbolic
and trigonometric.

a) Modify the Taylor series centered at x = 0 for ex to find a Taylor series
for cosh(x). Compare your results to the Taylor series centered at x = 0 for
cos(x).

b) Now find the Taylor series centered at x = 0 for sinh(x). Compare your
results to the Taylor series centered at x = 0 for sin(x).

c) Parts (a) and (b) of this problem should begin to explain the trigono-
metric part of the story. What about the hyperbolic part? Recall that the
familiar trigonometric functions are called circular functions because, for
any t, the point (cos t, sin t) is on the unit circle with equation x2 + y2 = 1
(cf. chapter 7.2). Show that the point (cosh t, sinh t) lies on the hyperbola
with equation x2 − y2 = 1.
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8. Consider the Taylor series centered at x = 0 for (1 + x)c.

a) What does the series give if you let c = 2? Is this reasonable?

b) What do you get if you set c = 3?

c) Show that if you set c = n, where n is a positive integer, the Taylor series
will terminate. This yields a general formula—the binomial theorem—
that was discovered by the 12th century Persian poet and mathematician,
Omar Khayyam (c. 1050–1130), and generalized by Newton to the form you
have just obtained. Write out the first three and the last three terms of this
formula.

d) Use an appropriate substitution for x and a suitable value for c to derive
the Taylor series for 1/(1 − u). Does this agree with what we previously
obtained?

e) Suppose we want to calculate
√

17 . We might try letting x = 16 and
c = 1/2 and using the Taylor series for (1 + x)c. What happens when you
try this?

f) We can still use the series to help us, though, if we are a little clever and
write

√
17 =

√
16 + 1 =

√

16

(

1 +
1

16

)

=
√

16 ·
√

1 +
1

16
= 4 ·

√

1 +
1

16
.

Now apply the series using x = 1/16 to evaluate
√

17 to 7 decimal place
accuracy. How many terms does it take?

g) Use the same kind of trick to evaluate 3
√

30.

Evaluating Taylor series rapidly Suppose we wanted to plot the Taylor
polynomial of degree 11 associated with sin(x). For each value of x, then, we
would have to evaluate

P11(x) = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
.

Since the length of time it takes the computer to evaluate an expression
like this is roughly proportional to the number of multiplications and divi-
sions involved (additions and subtractions, by comparison, take a negligible
amount of time), let’s see how many of these operations are needed to eval-
uate P11(x). To calculate x11 requires 10 multiplications, while 11! requires
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9 (if we are clever and don’t bother to multiply by 1 at the end!), so the
evaluation of the term x11/11! will require a total of 20 operations (counting
the final division). Similarly, evaluating x9/9! requires 16 operations, x7/7!
requires 12, on down to x3/3!, which requires 4. Thus the total number of
multiplications and divisions needed is

4 + 8 + 12 + 16 + 20 = 60.

This is not too bad, although if we were doing this for many different values
of x, which would be the case if we wanted to graph P11(x), this would begin
to add up. Suppose, though, that we wanted to graph something like P51(x)
or P101(x). By the same analysis, evaluating P51(x) for a single value of x
would require

4 + 8 + 12 + 16 + 20 + 24 + · · ·+ 96 + 100 = 1300

multiplications and divisions, while evaluation of P101(x) would require 5100
operations. Thus it would take roughly 20 times as long to evaluate P51(x)
as it takes to evaluate P11(x), while P101(x) would take about 85 times as
long.

9. Show that, in general, the number of multiplications and divisions needed
to evaluate Pn(x) is roughly n2/2.

We can be clever, though. Note that P11(x) can be written as

x

(

1 − x2

2 · 3

(

1 − x2

4 · 5

(

1 − x2

6 · 7

(

1 − x2

8 · 9

(

1 − x2

10 · 11

)))))

.

10. How many multiplications and divisions are required to evaluate this
expression?

[Answer: 3 + 4 + 4 + 4 + 4 + 1 = 20.]

11. Thus this way of evaluating P11(x) is roughly three times as fast, a
modest saving. How much faster is it if we use this method to evaluate
P51(x)?

[Answer: The old way takes roughly 13 times as long.]

12. Find a general formula for the number of multiplications and divisions
needed to evaluate Pn(x) using this way of grouping.
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Finally, we can extend these ideas to reduce the number of operations
even further, so that evaluating a polynomial of degree n requires only n
multiplications, as follows. Suppose we start with a polynomial

p(x) = a0 + a1 x + a2 x2 + a3 x3 + · · ·+ an−1 xn−1 + an xn.

We can rewrite this as

a0 + x (a1 + x (a2 + . . . + x (an−2 + x (an−1 + an x)) . . .)) .

You should check that with this representation it requires only n multiplica-
tions to evaluate p(x) for a given x.

13. a) Write two computer programs to evaluate the 300th degree Taylor
polynomial centered at x = 0 for ex, with one of the programs being the
obvious, standard way, and the second program being this method given
above. Evaluate e1 = e using each program, and compare the length of time
required.

b) Use these two programs to graph the 300th degree Taylor polynomial for
ex over the interval [0, 2], and compare times.
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10.4 Power Series and Differential Equations

So far, we have begun with functions we already know, in the sense of being
able to calculate the value of the function and all its derivatives at at least
one point. This in turn allowed us to write down the corresponding Taylor
series. Often, though, we don’t even have this much information about a
function. In such cases it is frequently useful to assume that there is some
infinite polynomial—called a power series—which represents the function,
and then see if we can determine the coefficients of the polynomial.

This technique is especially useful in dealing with differential equations.
To see why this is the case, think of the alternatives. If we can approximate
the solution y = y(x) to a certain differential equation to an acceptable degree
of accuracy by, say, a 20-th degree polynomial, then the only storage space
required is the insignificant space taken to keep track of the 21 coefficients.
Whenever we want the value of the solution for a given value of x, we can
then get a quick approximation by evaluating the polynomial at x. Other
alternatives are much more costly in time or in space. We could use Euler’s
method to grind out the solution at x, but, as you’ve already discovered,
this can be a slow and tedious process. Another option is to calculate lots
of values and store them in a table in the computer’s memory. This not
only takes up a lot of memory space, but it also only gives values for a
finite set of values of x, and is not much faster than evaluating a polynomial.
Until 30 years ago, the table approach was the standard one—all scientists
and mathematicians had a handbook of mathematical functions containing
hundreds of pages of numbers giving the values of every function they might
need.

To see how this can happen, let’s first look at a familiar differential equa-
tion whose solutions we already know:

y′ = y.

Of course, we know by now that the solutions are y = aex for an arbitrary
constant a (where a = y(0)). Suppose, though, that we didn’t already know
how to solve this differential equation. We might see if we can find a power
series of the form

y = a0 + a1 x + a2 x2 + a3 x3 + · · ·+ an xn + · · ·
that solves the differential equation. Can we, in fact, determine values for
the coefficients a0, a1, a2, · · · , an, · · · that will make y′ = y?
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Using the rules for differentiation, we have

y′ = a1 + 2a2 x + 3a3 x2 + 4a4 x3 + · · ·+ nan xn−1 + · · · .

Two polynomials are equal if and only if the coefficients of corresponding
powers of x are equal. Therefore, if y′ = y , it would have to be true that

a1 = a0

2a2 = a1

3a3 = a2
...

nan = an−1
...

Therefore the values of a1, a2, a3, . . . are not arbitrary; indeed, each is de-
termined by the preceding one. Equations like these—which deal with a se-
quence of quantities and relate each term to those earlier in the sequence—are
called recursion relations. These recursion relations permit us to express
every an in terms of a0:

a1 = a0

a2 =
1

2
a1 =

1

2
a0

a3 =
1

3
a2 =

1

3
· 1

2
a0 =

1

3!
a0

a4 =
1

4
a3 =

1

4
· 1

3!
a0 =

1

4!
a0

...
...

...

an =
1

n
an−1 =

1

n
· 1

(n − 1)!
a0 =

1

n!
a0

...
...

...

Notice that a0 remains “free”: there is no equation that determines its value.
Thus, without additional information, a0 is arbitrary. The series for y now
becomes

y = a0 + a0 x +
1

2!
a0 x2 +

1

3!
a0 x3 + · · ·+ 1

n!
a0 xn + · · ·

or

y = a0

[

1 + x +
1

2!
x2 +

1

3!
x3 + · · ·+ 1

n!
x2 + · · ·

]

.
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But the series in square brackets is just the Taylor series for ex —we have
derived the Taylor series from the differential equation alone, without using
any of the other properties of the exponential function. Thus, we again find
that the solutions of the differential equation y′ = y are

y = a0e
x,

where a0 is an arbitrary constant. Notice that y(0) = a0, so the value of a0

will be determined if the initial value of y is specified.
Note In general, once we have derived a power series expression for a func-
tion, that power series will also be the Taylor series for that function. Al-
though the two series are the same, the term Taylor series is typically reserved
for those settings where we were able to evaluate the derivatives through some
other means, as in the preceding section.

Bessel’s Equation

For a new example, let’s look at a differential equation that arises in an
enormous variety of physical problems (wave motion, optics, the conduction
of electricity and of heat and fluids, and the stability of columns, to name a
few):

x2 · y′′ + x · y′ + (x2 − p2) · y = 0 .

This is called the Bessel equation of order p. Here p is a parameter
specified in advance, so we will really have a different set of solutions for each
value of p. To determine a solution completely, we will also need to specify
the initial values of y(0) and y′(0). The solutions of the Bessel equation of
order p are called Bessel functions of order p, and the solution for a given
value of p (together with particular initial conditions which needn’t concern
us here) is written Jp(x). In general, there is no formula for a Bessel function
in terms of simpler functions (although it turns out that a few special cases
like J1/2(x), J3/2(x), . . . can be expressed relatively simply). To evaluate such
a function we could use Euler’s method, or we could try to find a power series
solution.

Friedrich Wilhelm Bessel (1784–1846) was a German astronomer who studied the functions that
now bear his name in his efforts to analyze the perturbations of planetary motions, particularly
those of Saturn.

Consider the Bessel equation with p = 0. We are thus trying to solve the
differential equation

x2 · y′′ + x · y′ + x2 · y = 0.
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By dividing by x, we can simplify this a bit to

x · y′′ + y′ + x · y = 0.

Let’s look for a power series expansion

y = b0 + b1 x + b2 x2 + b3 x3 + · · · .

We have

y′ = b1 + 2b2x + 3b3x
2 + 4b4x

3 + · · ·+ (n + 1)bn+1x
n + · · ·

and

y′′ = 2b2 + 6b3x + 12b4x
2 + 20b5x

3 + · · · + (n + 2)(n + 1)bn+2x
n + · · · ,

We can now use these expressions to calculate the series for the combination
that occurs in the differential equation:

xy′′ = 2b2 x + 6b3 x2 + · · ·
y′ = b1 + 2b2 x + 3b3 x2 + · · ·
xy = b0 x + b1 x2 + · · ·

xy′′ + y′ + xy = b1 + (4b2 + b0)x + (9b3 + b1)x
2 + · · ·

In general, the coefficient of xn in the combination will be Finding the
coefficient of xn

(n + 1)n bn+1 + (n + 1) bn+1 + bn−1 = (n + 1)2 bn+1 + bn−1.

If the power series y is to be a solution to the original differential equation,
the infinite series for xy′′ + y′ + xy must equal 0. This in turn means that
every coefficient of that series must be 0. We thus get

b1 = 0,

4b2 + b0 = 0,

9b3 + b1 = 0,
...

n2bn + bn−2 = 0.
...

If we now solve these recursively as before, we see first off that since b1 = 0,
it must also be true that

bk = 0 for every odd k.
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For the even coefficients we have

b2 = − 1

22
b0,

b4 = − 1

42
b2 =

1

2242
b0,

b6 = − 1

62
b4 = − 1

224262
b0,

and, in general,

b2n = ± 1

224262 · · · (2n)2
b0 = ± 1

22n(n!)2
b0.

Thus any function y satisfying the Bessel equation of order 0 must be of
the form

y = b0

(

1 − x2

22
+

x4

24(2!)2
− x6

26(3!)2
+ · · ·

)

.

In particular, if we impose the initial condition y(0) = 1 (which requires that
b0 = 1), we get the 0-th order Bessel function J0(x):

J0(x) = 1 − x2

4
+

x4

64
− x6

2304
+

x8

147456
+ · · · .

Here is the graph of J0(x) together with the polynomial approximations ofThe graph of the
Bessel function J0 degree 2, 4, 6, . . . , 30 over the interval [0, 14]:

n = 4 n = 8 n = 12 n = 16 n = 20 n = 24 n = 28

n = 2 n = 6 n = 10 n = 14 n = 18 n = 22 n = 26 n = 30

x

y

y = J0(x)
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The graph of J0 is suggestive: it appears to be oscillatory, with de-
creasing amplitude. Both observations are correct: it can in fact be shown
that J0 has infinitely many zeroes, spaced roughly π units apart, and that
limx→∞ J0(x) = 0.

The S-I-R Model One More Time

In exactly the same way, we can find power series solutions when there are
several interacting variables involved. Let’s look at the example we’ve con-
sidered at a number of points in this text to see how this works. In the S-I-R The S-I-R model

model we basically wanted to solve the system of equations

S ′ = −aSI,

I ′ = aSI − bI,

R′ = bI,

where a and b were parameters depending on the specific situation. Let’s
look for solutions of the form

S = s0 + s1 t + s2 t2 + s3 t3 + · · · ,

I = i0 + i1 t + i2 t2 + i3 t3 + · · · ,

R = r0 + r1 t + r2 t2 + r3 t3 + · · · .

If we put these series in the equation S ′ = −a S I, we get

s1 + 2s2t + 3s3t
2 + · · · = −a(s0 + s1t + s2t

2 + · · · )(i0 + i1t + i2t
2 + · · · )

= −a(s0i0 + (s0i1 + s1i0)t + (s0i2 + s1i1 + s2i0)t
2 + · · · ).

As before, if the two sides of the differential equation are to be equal, the Finding the coefficients
of the power series

for S(t)
coefficients of corresponding powers of t must be equal:

s1 = −as0i0,

2s2 = −a(s0i1 + s1i0),

3s3 = −a(s0i2 + s1i1 + s2i0),
...

nsn = −a(s0in−1 + s1in−2 + . . . + sn−2i1 + sn−1i0)
...
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While this looks messy, it has the crucial recursive feature—each sk is ex-
pressed in terms of previous terms. That is, if we knew all the s and the iRecursion again

coefficients out through the coefficients of, say, t6 in the series for S and I,
we could immediately calculate s7. We again have a recursion relation.

We could expand the equation I ′ = aSI − bI in the same way, and getFinding the
power series
for I(t)

recursion relations for the coefficients ik. In this model, though, there is a
shortcut if we observe that since S ′ = −aSI, and since I ′ = aSI − bI, we
have I ′ = −S ′ − bI. If we substitute the power series in this expression and
equate coefficients, we get

nin = −nsn − bin−1,

which leads to

in = −sn − b

n
in−1

—so if we know sn and in−1, we can calculate in.
We are now in a position to calculate the coefficients as far out as we

like. For we will be given values for a and b when we are given the model.
Moreover, since s0 = S(0) = the initial S-population, and i0 = I(0) = the
initial I-population, we will also typically be given these values as well. But
knowing s0 and i0, we can determine s1 and then i1. But then, knowing these
values, we can determine s2 and then i2, and so on. Since the arithmetic is
tedious, this is obviously a place for a computer. Here is a program that
calculates the first 50 coefficients in the power series for S(t) and I(t):

Program: SIRSERIES

DIM S(0 to 50), I(0 to 50)

a = .00001

b = 1/14

S(0) = 45400

I(0) = 2100

FOR k = 1 TO 50

Sum = 0

FOR j = 0 TO k - 1

Sum = Sum + S(j) * I(k - j - 1)

NEXT j

S(k) = -a * SUM/k

I(k) = -S(k) - b * I(k - 1)/k

NEXT k
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Comment: The opening command in this program introduces a new feature.
It notifies the computer that the variables S and I are going to be arrays—
strings of numbers—and that each array will consist of 51 elements. The
element S(k) corresponds to what we have been calling sk. The integer k is
called the index of the term in the array. The indices in this program run
from 0 to 50.

The effect of running this program is thus to create two 51-element arrays,
S and I, containing the coefficients of the power series for S and I out to
degree 50. If we just wanted to see these coefficients, we could have the
computer list them. Here are the first 35 coefficients for S (read across the
rows):

45400 −953.4 −172.3611 −17.982061 −.86969127
5.4479852e-2 1.5212707e-2 1.4463108e-3 4.3532884e-5 −7.9100481e-6

−1.4207959e-6 −1.0846994e-7 −6.512610e-10 9.304633e-10 1.256507e-10
7.443310e-12 −2.191966e-13 −9.787285e-14 −1.053428e-14 −4.382620e-16
4.230290e-17 9.548369e-18 8.321674e-19 1.760392e-20 −5.533369e-21

−8.770972e-22 −6.101928e-23 3.678170e-25 6.193375e-25 7.627253e-26
4.011923e-27 −1.986216e-28 −6.318305e-29 −6.271724e-30 −2.150100e-31

Thus the power series for S begins

45400−953.4t−172.3611t2−17.982061t3−.86969127t4+ · · ·−2.15010×10−31t34+· · ·

In the same fashion, we find that the power series for I begins

2100+803.4t+143.66824t2+14.561389t3+.60966648t4+· · ·+2.021195×10−31t34+· · ·

If we now wanted to graph these polynomials over, say, 0 ≤ t ≤ 10, Extending SIRSERIES
to graph S and Iwe can do it by adding the following lines to SIRSERIES. We first define a

couple of short subroutines SUS and INF to calculate the polynomial approxi-
mations for S(t) and I(t) using the coefficients we’ve derived in the first part
of the program. (Note that these subroutines calculate polynomials in the
straightforward, inefficient way. If you did the exercises in section 3 which
developed techniques for evaluating polynomials rapidly, you might want to
modify these subroutines to take advantage of the increased speed available.)
Remember, too, that you will need to set up the graphics at the beginning
of the program to be able to plot.
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Extension to SIRSERIES
DEF SUS(x)

Sum = S(0)

FOR j = 1 TO 50

Sum = Sum + S(j) * x^j

NEXT j

SUS = Sum

END DEF

DEF INF(x)

Sum = I(0)

FOR j = 1 TO 50

Sum = Sum + I(j) * x^j

NEXT j

INF = Sum

END DEF

FOR x = 0 TO 10 STEP .01

Plot the line from (x, SUS(x)) to (x + .01, SUS(x + .01))

Plot the line from (x, INF(x)) to (x + .01, INF(x + .01))

NEXT x

Here is the graph of I(t) over a 25-day period, together with the polyno-
mial approximations of degree 5, 20, 30, and 70.
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t

I

I = I(x)

Note that these polynomials appear to converge to I(t) only out to values
of t around 10. If we needed polynomial approximations beyond that point,
we could shift to a different point on the curve, find the values of I and S
there by Euler’s method, then repeat the above process. For instance, when
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t = 12, we get by Euler’s method that S(12) = 7670 and I(12) = 27, 136 . If
we now shift our clock to measure time in terms of τ = t − 12, we get the
following polynomial of degree 30:

27136+143.0455τ−282.0180τ 2+23.5594τ 3+.4548τ 4+· · ·+1.2795×10−25τ 30

Here is what the graph of this polynomial looks like when plotted with
the graph of I. On the horizontal axis we list the t-coordinates with the
corresponding τ -coordinates underneath.
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t

I

I = I(x)

The interval of convergence seems to be approximately 4 < t < 20. Thus
if we combine this polynomial with the 30-th degree polynomial from the
previous graph, we would have very accurate approximations for I over the
entire interval [0, 20].

Exercises

1. Find power series solutions of the form

y = a0 + a1x + a2x
2 + a3x

3 + · · · + anx
n + · · ·

for each of the following differential equations.

a) y′ = 2xy.

b) y′ = 3x2y.

c) y′′ + xy = 0.

d) y′′ + xy′ + y = 0.
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2. a) Find power series solutions to the differential equation y′′ = −y. Start
with

y = a0 + a1x + a2x
2 + a3x

3 + · · · + anxn + · · · .

Notice that, in the recursion relations you obtain, the coefficients of the even
terms are completely independent of the coefficients of the odd terms. This
means you can get two separate power series, one with only even powers,
with a0 as arbitrary constant, and one with only odd powers, with a1 as
arbitrary constant.

b) The two power series you obtained in part a) are the Taylor series centered
at x = 0 of two familiar functions; which ones? Verify that these functions
do indeed satisfy the differential equation y′′ = −y.

3. a) Find power series solutions to the differential equation y′′ = y. As in
the previous problem, the coefficients of the even terms depend only on a0,
and the coefficients of the odd terms depend only on a1. Write down the two
series, one with only even powers and a0 as an arbitrary constant, and one
with only odd powers, with a1 as an arbitrary constant.

b) The two power series you obtained in part a) are the Taylor series cen-
tered at x = 0 of two hyperbolic trigonometric functions (see the exercises
in section 3). Verify that these functions do indeed satisfy the differential
equation y′′ = y.

4. a) Find power series solutions to the differential equation y′ = xy, start-
ing with

y = a0 + a1x + a2x
2 + a3x

3 + · · · + anxn + · · · .

What recursion relations do you get? Is a1 = a3 = a5 = · · · = 0?

b) Verify that

y = ex2/2

satisfies the differential equation y′ = xy. Find the Taylor series for this
function and compare it with the series you obtained in a) using the recursion
relations.

5. The Bessel Equation.

a) Take p = 1 . The solution satisfying the initial condition y′ = 1/2 when
x = 0 is defined to be the first order Bessel function J1(x). (It will turn out
that y has to be 0 when x = 0, so we don’t have to specify the initial value
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of y; we have no choice in the matter.) Find the first five terms of the power
series expansion for J1(x). What is the coefficient of x2n+1?

b) Show by direct calculation from the series for J0 and J1 that

J ′
0 = −J1.

c) To see, from another point of view, that J ′
0 = −J1, take the equation

x · J ′′
0 + J ′

0 + x · J0 = 0

and differentiate it. By doing some judicious cancelling and rearranging of
terms, show that

x2 · (J ′
0)

′′ + x · (J ′
0)

′ + (x2 − 1)(J ′
0) = 0.

This demonstrates that J ′
0 is a solution of the Bessel equation with p = 1.

6. a) When we found the power series expansion for solutions to the 0-th
order Bessel equation, we found that all the odd coefficients had to be 0.
In particular, since b1 is the value of y′ when x = 0, we are saying that all
solutions have to be flat at x = 0. This should bother you a bit. Why can’t
you have a solution, say, that satisfies y = 1 and y′ = 1 when x = 0?

b) You might get more insight on what’s happening by using Euler’s method,
starting just a little to the right of the origin and moving left. Use Euler’s
method to sketch solutions with the initial values

i. y = 2 y′ = 1 when x = 1,
ii. y = 1.1 y′ = 1 when x = .1,
iii. y = 1.01 y′ = 1 when x = .01.

What seems to happen as you approach the y-axis?

7. Legendre’s differential equation

(1 − x2)y′′ − 2xy′ + ℓ(ℓ + 1)y = 0

arises in many physical problems—for example, in quantum mechanics, where
its solutions are used to describe certain orbits of the electron in a hydrogen
atom. In that context, the parameter ℓ is called the angular momentum of
the electron; it must be either an integer or a “half-integer” (i.e., a number
like 3/2). Quantum theory gets its name from the fact that numbers like the
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angular momentum of the electron in the hydrogen atom are “quantized”,
that is, they cannot have just any value, but must be a multiple of some
“quantum”—in this case, the number 1/2.

a) Find power series solutions of Legendre’s equation.

b) Quantization of angular momentum has an important consequence. Specif-
ically, when ℓ is an integer it is possible for a series solution to stop—that
is, to be a polynomial. For example, when ℓ = 1 and a0 = 0 the series solu-
tion is just y = a1x—all higher order coefficients turn out to be zero. Find
polynomial solutions to Legendre’s equation for ℓ = 0, 2, 3, 4, and 5 (consider
a0 = 0 or a1 = 0). These solutions are called, naturally enough, Legendre
polynomials.

8. It turns out that the power series solutions to the S-I-R model have
a finite interval of convergence. By plotting the power series solutions of
different degrees against the solutions obtained by Euler’s method, estimate
the interval of convergence.

9. a) Logistic Growth Find the first five terms of the power series solution
to the differential equation

y′ = y(1 − y).

Note that this is just the logistic equation, where we have chosen our units
of time and of quantities of the species being studied so that the carrying
capacity is 1 and the intrinsic growth rate is 1.

b) Using the initial condition y = .1 when x = 0, plot this power series
solution on the same graph as the solution obtained by Euler’s method. How
do they compare?

c) Do the same thing with initial conditions y = 2 when x = 0.
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10.5 Convergence

We have written expressions such as

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · · ,

meaning that for any value of x the series on the right will converge to sin(x).
There are a couple of issues here. The first is, what do we even mean when
we say the series “converges”, and how do we prove it converges to sin(x)?
If x is small, we can convince ourselves that the statement is true just by
trying it. If x is large, though, say x = 100100, it would be convenient to have
a more general method for proving the stated convergence. Further, we have
the example of the function 1/(1 + x2) as a caution—it seemed to converge
for small values of x (|x| < 1), but not for large values.

Let’s first clarify what we mean by convergence. It is, essentially, the Convergence means
essentially that

“decimals stabilize”
intuitive notion of “decimals stabilizing” that we have been using all along.
To make explicit what we’ve been doing, let’s write a “generic” series

b0 + b1 + b2 + · · · =

∞∑

m=0

bm.

When we evaluated such a series, we looked at the partial sums

S1 = b0 + b1 =

1∑

m=0

bm,

S2 = b0 + b1 + b2 =
2∑

m=0

bm,

S3 = b0 + b1 + b2 + b3 =

3∑

m=0

bm,

...
...

Sn = b0 + b1 + b2 + . . . + bn =
n∑

m=0

bm,

...
...

Typically, when we calculated a number of these partial sums, we noticed
that beyond a certain point they all seemed to agree on, say, the first 8
decimal places. If we kept on going, the partial sums would agree on the first
9 decimals, and, further on, on the first 10 decimals, etc. This is precisely
what we mean by convergence:
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The infinite series

b0 + b1 + b2 + · · · =
∞∑

m=0

bm

converges if, no matter how many decimal places are specified, it is
always the case that the partial sums eventually agree to at least this
many decimal places.

Put more formally, we say the series converges if, given any number
D of decimal places, it is always possible to find an integer ND such
that if k and n are both greater than ND, then Sk and Sn agree to at
least D decimal places.

The number defined by these stabilizing decimals is called the sum
of the series.

If a series does not converge, we say it diverges.

In other words, for me to prove to you that the Taylor series for sin(x)What it means for
an infinite sum
to converge

converges at x = 100100, you would specify a certain number of decimal
places, say 5000, and I would have to be able to prove to you that if you
took partial sums with enough terms, they would all agree to at least 5000
decimals. Moreover, I would have to be able to show the same thing happens
if you specify any number of decimal places you want agreement on.

How can this be done? It seems like an enormously daunting task to be
able to do for any series. We’ll tackle this challenge in stages. First we’ll
see what goes wrong with some series that don’t converge—divergent series.
Then we’ll look at a particular convergent series—the geometric series—
that’s relatively easy to analyze. Finally, we will look at some more general
rules that will guarantee convergence of series like those for the sine, cosine,
and exponential functions.

Divergent Series

Suppose we have an infinite series

b0 + b1 + b2 + · · · =

∞∑

m=0

bm,
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and consider two successive partial sums, say

S122 = b0 + b1 + b2 + . . . + b122 =

122∑

m=0

bm

and

S123 = b0 + b1 + b2 + . . . + b122 + b123 =
123∑

m=0

bm.

Note that these two sums are the same, except that the sum for S123 has
one more term, b123, added on. Now suppose that S122 and S123 agree to 19
decimal places. In section 2 we defined this to mean |S123−S122| < .5×10−19.
But since S123 − S122 = b123, this means that |b123| < .5 × 10−19. To phrase
this more generally,

Two successive partial sums, Sn and Sn+1, agree out
to k decimal places if and only if |bn+1| < .5 × 10−k.

But since our definition of convergence required that we be able to fix any
specified number of decimals provided we took partial sums lengthy enough,
it must be true that if the series converges, the individual terms bk must A necessary condition

for convergencebecome arbitrarily small if we go out far enough. Intuitively, you can think
of the partial sums Sk as being a series of approximations to some quantity.
The term bk+1 can be thought of as the “correction” which is added to Sk

to produce the next approximation Sk+1. Clearly, if the approximations are
eventually becoming good ones, the corrections made should become smaller
and smaller. We thus have the following necessary condition for convergence:

If the infinite series b0 + b1 + b2 + · · · =

∞∑

m=0

bm converges,

then lim
k→∞

bk = 0.

Remark: It is important to recognize what this criterion does and does
not say—it is a necessary condition for convergence (i.e., every convergent Necessary and

sufficient mean
different things

sequence has to satisfy the condition limk→∞ bk = 0)—but it is not a suf-
ficient condition for convergence (i.e., there are some divergent sequences
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that also have the property that limk→∞ bk = 0). The criterion is usually
used to detect some divergent series, and is more useful in the following form
(which you should convince yourself is equivalent to the preceding):

If lim
k→∞

bk 6= 0, (either because the limit doesn’t exist at all,

or it equals something besides 0), then the infinite series

b0 + b1 + b2 + · · · =
∞∑

m=0

bm diverges.

This criterion allows us to detect a number of divergent series right away.Detecting
divergent series For instance, we saw earlier that the statement

1

1 + x2
= 1 − x2 + x4 − x6 + · · ·

appeared to be true only for |x| < 1. Using the remarks above, we can see
why this series has to diverge for |x| ≥ 1. If we write 1 − x2 + x4 − x6 + · · ·
as b0 + b1 + b2 + · · · , we see that bk = (−1)kx2k. Clearly bk does not go to
0 for |x| ≥ 1—the successive “corrections” we make to each partial sum just
become larger and larger, and the partial sums will alternate more and more
wildly from a huge positive number to a huge negative number. Hence the
series converges at most for −1 < x < 1. We will see in the next subsection
how to prove that it really does converge for all x in this interval.

Using exactly the same kind of argument, we can show that the following
series also diverge for |x| > 1:

f(x) Taylor series for f(x)

ln (1 − x) −
(

x +
x2

2
+

x3

3
+

x4

4
+ · · ·

)

1

1 − x
1 + x + x2 + x3 + · · ·

(1 + x)c 1 + cx +
c(c − 1)

2!
x2 +

c(c − 1)(c − 2)

3!
x3 + · · ·

arctanx x − x3

3
+

x5

5
− · · · ± x2n+1

2n + 1
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The details are left to the exercises. While these common series all happen
to diverge for |x| > 1, it is easy to find other series that diverge for |x| > 2
or |x| > 17 or whatever—see the exercises for some examples.

The Harmonic Series

We stated earlier in this section that simply knowing that the individual
terms bk go to 0 for large values of k does not guarantee that the series

b0 + b1 + b2 + · · ·
will converge. Essentially what can happen is that the bk go to 0 slowly An important

counterexampleenough that they can still accumulate large values. The classic example of
such a series is the harmonic series:

1 +
1

2
+

1

3
+

1

4
+ · · · =

∞∑

i=1

1

i
.

It turns out that this series just keeps getting larger as you add more terms.
It is eventually larger than 1000, or 1 million, or 100100 or . . . . This fact is
established in the exercises. A suggestive argument, though, can be quickly
given by observing that the harmonic series is just what you would get if you
substituted x = 1 into the power series

x +
x2

2
+

x3

3
+

x4

4
+ · · · .

But this is just the Taylor series for − ln(1 − x), and if we substitute x = 1
into this we get − ln 0, which isn’t defined. Also, limx→0 − ln x = +∞.

The Geometric Series

A series occurring frequently in a wide range of contexts is the geometric
series

G(x) = 1 + x + x2 + x3 + x4 + · · · ,

This is also a sequence we can analyze completely and rigorously in terms of
its convergence. It will turn out that we can then reduce the analysis of the
convergence of several other sequences to the behavior of this one.

By the analysis we performed above, if |x| ≥ 1 the individual terms of the To avoid divergence,
|x| must be less than 1series clearly don’t go to 0, and the series therefore diverges. What about

the case where |x| < 1?
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The starting point is the partial sums. A typical partial sum looks like:

Sn = 1 + x + x2 + x3 + · · ·+ xn .

This is a finite number; we must find out what happens to it as n growsA simple expression for
the partial sum Sn without bound. Since Sn is finite, we can calculate with it. In particular,

xSn = x + x2 + x3 + · · ·+ xn + xn+1.

Subtracting the second expression from the first, we get

Sn − xSn = 1 − xn+1,

and thus (if x 6= 1)

Sn =
1 − xn+1

1 − x
.

(What is the value of Sn if x = 1?)
This is a handy, compact form for the partial sum. Let us see what value

it has for various values of x. For example, if x = 1/2, then

n : 1 2 3 4 5 6 · · · → ∞

Sn : 1
3

2

7

4

15

8

31

16

63

32
· · · → 2

It appears that as n → ∞, Sn → 2. Can we see this algebraically?Finding the limit of Sn

as n → ∞
Sn =

1 − (1/2)n+1

1 − 1
2

=
1 − (1/2)n+1

1/2

= 2 · (1 − (1/2)n+1) = 2 − (1/2)n.

As n → ∞, (1/2)n → 0, so the values of Sn become closer and closer to 2.
The series converges, and its sum is 2.

Similarly, when x = −1/2, the partial sums areSumming another
geometric series

Sn =
1 − (−1/2)n+1

3/2
=

2

3

(

1 ± 1

2n+1

)

.

The presence of the ± sign does not alter the outcome: since (1/2n+1) → 0,
the partial sums converge to 2/3. Therefore, we can say the series converges
and its sum is 2/3.
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In exactly the same way, though, for any x satisfying |x| < 1 we have

Sn =
1 − xn+1

1 − x
=

1

1 − x
(1 − xn+1),

and as n → ∞, xn+1 → 0. Therefore, Sn → 1/(1 − x). Thus the series
converges, and its sum is 1/(1 − x).

To summarize, we have thus proved that Convergence and
divergence of the
geometric series

The geometric series

G(x) = 1 + x + x2 + x3 + x4 + · · ·

converges for all x such that |x| < 1. In such cases the sum is

1

1 − x
.

The series diverges for all other values of x.

As a final comment, note that the formula

Sn =
1 − xn+1

1 − x

is valid for all x except x = 1. Even though the partial sums aren’t converging
to any limit if x > 1, the formula can still be useful as a quick way for
summing powers. Thus, for instance

1 + 3 + 9 + 27 + 81 + 243 =
1 − 36

1 − 3
=

1 − 729

−2
=

−728

−2
= 364,

and

1 − 5 + 25 − 125 + 625 − 3125 =
1 − (−5)6

1 − (−5)
=

1 − 15625

6
= −264.

Alternating Series

A large class of common power series consists of the alternating series— Many common series
are alternating, at least

for some values of x
series in which the terms are alternately positive and negative. The behavior
of such series is particularly easy to analyze, as we shall see in this section.
Here are some examples of alternating series we’ve already encountered :
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sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · ,

[.15in] cos x = 1 − x2

2!
+

x4

4!
− x6

6!
+ · · · ,

[.15in]
1

1 + x2
= 1 − x2 + x4 − x6 + · · · , (for |x| < 1).

Other series may be alternating for some, but not all, values of x. For
instance, here are two series that are alternating for negative values of x, but
not for positive values:

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · ,

ln(1 − x) = −(x + x2 + x3 + x4 + · · · ) (for |x| < 1).

Convergence criterion for alternating series. Let us write a generic
alternating series as

b0 − b1 + b2 − b3 + · · · + (−1)mbm + · · · ,

where the bm are positive. It turns out that an alternating series converges
if the terms bm both consistently shrink in size and approach zero:

b0 − b1 + b2 − b3 + · · ·+ (−1)mbm + · · · converges if

0 < bm+1 ≤ bm for all m and lim
m→∞

bm = 0.

It is this property that makes alternating series particularly easy to dealAlternating series
are easy to test
for convergence

with. Recall that this is not a property of series in general, as we saw by the
example of the harmonic series. The reason it is true for alternating series
becomes clear if we view the behavior of the partial sums geometrically:

0 S0S1 S2S3 S4S5 S2m −1 S2m S

+b0
−b1

+b2
−b3

+b4

+b2m
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We mark the partial sums Sn on a number line. The first sum S0 = b0 lies
to the right of the origin. To find S1 we go to the left a distance b1. Because
b1 ≤ b0, S1 will lie between the origin and S0. Next we go to the right a
distance b2, which brings us to S2. Since b2 ≤ b1, we will have S2 ≤ S0. The
next move is to the left a distance b3, and we find S3 ≥ S1. We continue
going back and forth in this fashion, each step being less than or equal to
the preceding one, since bm+1 ≤ bm. We thus get

0 ≤ S1 ≤ S3 ≤ S5 ≤ . . . ≤ S2m−1 ≤ · · · ≤ S2m ≤ . . . ≤ S4 ≤ S2 ≤ S0.

The partial sums oscillate back and forth, with all the odd sums on the The partial sums
oscillate, with the

exact sum trapped
between consecutive

partial sums

left increasing and all the even sums on the right decreasing. Moreover, since
|Sn−Sn−1| = bn, and since limn→∞ bn = 0, the difference between consecutive
partial sums eventually becomes arbitrarily small—the oscillations take place
within a smaller and smaller interval. Thus given any number of decimal
places, we can always go far enough out in the series so that Sk and Sk+1 agree
to that many decimal places. But if n is any integer greater than k, then,
since Sn lies between Sk and Sk+1, Sn will also agree to that many decimal
places—those decimals will be fixed from k on out. The series therefore
converges, as claimed—the sum is the unique number S that is greater than
all the odd partial sums and less than all the even partial sums.

For a convergent alternating series, we also have a particularly simple A simple estimate
for the accuracy

of the partial sums
bound for the error when we approximate the sum S of the series by partial
sums.

If Sn = b0 − b1 + b2 − · · · ± bn,

and if 0 < bm+1 ≤ bm for all m and lim
m→∞

bm = 0,

(so the series converges), then

|S − Sn| < bn+1.

In words, the error in approximating S by Sn is less than the next
term in the series.

Proof: Suppose n is odd. Then we have, as above, that Sn < S < Sn+1.
Therefore 0 < S − Sn < Sn+1 − Sn = bn+1. If n is even, a similar argument
shows 0 < Sn−S < Sn−Sn+1 = bn+1. In either case, we have |S−Sn| < bn+1,
as claimed.
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Note further that we also know whether Sn is too large or too small,
depending on whether n is even or odd.

Example. Let’s apply the error estimate for an alternating series to analyzeEstimating the error in
approximating cos(.7) the error if we approximate cos(.7) with a Taylor series with three terms:

cos(.7) ≈ 1 − 1

2!
(.7)2 +

1

4!
(.7)4 = 0.765004166 . . . .

Since the last term in this partial sum was an addition, this approximation
is too big. To get an estimate of how far off it might be, we look at the next
term in the series:

1

6!
(.7)6 = .0001634 . . . .

We thus know that the correct value for cos(.7) is somewhere in the interval

.76484 = .76500 − .00016 ≤ cos(.7) ≤ .76501,

so we know that cos(.7) begins .76 . . . and the third decimal is either a 4 or
a 5. Moreover, we know that cos(.7) = .765 rounded to 3 decimal places.

If we use the partial sum with four terms, we get

cos(.7) ≈ 1 − 1

2!
(.7)2 +

1

4!
(.7)4 − 1

6!
(.7)6 = .764840765 . . . ,

and the error would be less than

1

8!
(.7)8 = .0000014 . . . < .5 × 10−5,

so we could now say that cos(.7) = .76484 . . . .
If we wanted to know in advance how far out in the series we would haveHow many terms

are needed
to obtain accuracy
to 12 decimal places?

to go to determine cos(.7) to, say, 12 decimals, we could do it by finding a
value for n such that

bn =
1

n!
(.7)n ≤ .5 × 10−12.

With a little trial and error, we see that b12 ≈ .3 × 10−10, while b14 < 10−13.
Thus if we take the value of the 12th degree approximation for cos(.7), we
can be assured that our value will be accurate to 12 places.

We have met this capability of getting an error estimate in a single step
before, in version 3 of Taylor’s theorem. It is in contrast to the approxima-
tions made in dealing with general series, where we typically had to look at
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the pattern of stabilizing digits in the succession of improving estimates to
get a sense of how good our approximation was, and even then we had no
guarantee.

Computing e. Because of the fact that we can find sharp bounds for the It may be possible
to convert

a given problem
to one involving

alternating series

accuracy of an approximation with alternating series, it is often desirable to
convert a given problem to this form where we can. For instance, suppose
we wanted a good value for e. The obvious thing to do would be to take the
Taylor series for ex and substitute x = 1. If we take the first 11 terms of this
series we get the approximation

e = e1 ≈ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

10!
= 2.718281801146 . . . ,

but we have no way of knowing how many of these digits are correct.
Suppose instead, that we evaluate e−1:

e−1 ≈ 1 − 1 +
1

2!
− 1

3!
+ · · ·+ 1

10!
= .367879464286 . . . .

Since 1/(11!) = .000000025 . . ., we know this approximation is accurate to at
least 7 decimals. If we take its reciprocal we get

1/.3678794624286 . . . = 2.718281657666 . . . ,

which will then be accurate to 6 decimals (in the exercises you will show why
the accuracy drops by 1 decimal place), so we can say e = 2.718281 . . . .

The Radius of Convergence

We have seen examples of power series that converge for all x (like the Taylor
series for sin x) and others that converge only for certain x (like the series
for arctan x). How can we determine the convergence of an arbitrary power
series of the form

a0 + a1x + a2x
2 + a3x

3 + · · · + anx
n + · · · ?

We must suspect that this series may not converge for all values of x. For
example, does the Taylor series

1 + x +
1

2!
x2 +

1

3!
x3 + · · ·
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converge for all values of x, or only some? When it converges, does it converge
to ex or to something else? After all, this Taylor series is designed to look
like ex only near x = 0; it remains to be seen how well the function and its
series match up far from x = 0.

The question of convergence has a definitive answer. It goes like this: if
the power series

a0 + a1x + a2x
2 + a3x

3 + · · ·+ anxn + · · · .

converges for a particular value of x, say x = s, then it automatically
converges for any smaller value of x (meaning any x that is closer to theThe answer to the

convergence question origin than s is; i.e, any x for which |x| < |s|). Likewise, if the series diverges
for a particular value of x, then it also diverges for any value farther from
the origin. In other words, the values of x where the series converges are
not interspersed with the values where it diverges. On the contrary, within
a certain distance R from the origin there is only convergence, while beyond
that distance there is only divergence. The number R is called the radius
of convergence of the series, and the range where it converges is called its
interval of convergence.

- x−R 0 R

series converges here
︷ ︸︸ ︷

︸ ︷︷ ︸

diverges here
︸ ︷︷ ︸

diverges here

The radius of convergence of a power series

An obvious example of the radius of convergence is given by the geometric
series

1

1 − x
= 1 + x + x2 + x3 + · · ·

We know that this converges for |x| < 1 and diverges for |x| > 1. Thus theRadius of convergence
of the geometric series radius of convergence is R = 1 in this case.

It is possible for a power series to converge for all x; if that happens,
we take R to be ∞. At the other extreme, the series may converge only
for x = 0. (When x = 0 the series collapses to its constant term a0, so it
certainly converges at least when x = 0.) If the series converges only for
x = 0, then we take R to be 0.

At x = R the series may diverge or converge; different things happen for
different series. The same is true when x = −R. The radius of convergence
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tells us where the switch from convergence to divergence happens. It does
not tell us what happens at the place where the switch occurs. If we know
that the series converges for x = ±R, then we say that [−R, R] is the interval
of convergence. If the series converges when x = R but not when x = −R,
then the interval of convergence is (−R, R], and so on.

The Ratio Test

There are several ways to determine the radius of convergence of a power
series. One of the simplest and most useful is by means of the ratio test.
Because the power series to which we apply this test need not include con-
secutive powers of x (think of the Taylor series for cosx or sin x) we’ll write
a “generic” series as

b0 + b1 + b2 + · · · =

∞∑

m=0

bm

Here are three examples of the use of this notation.

1. The Taylor series for ex is

∞∑

m=0

bm, where

b0 = 1, b1 = x, b2 =
x2

2!
, · · · , bm =

xm

m!
.

2. The Taylor series for cosx is

∞∑

m=0

bm, where

b0 = 1, b1 =
−x2

2!
, b2 =

x4

4!
, · · · , bm = (−1)m x2m

(2m)!
.

3. We can even describe the series

17 + x + x2 + x4 + x6 + x8 + · · · = 17 + x +

∞∑

m=2

x2m−2

in our generic notation, in spite of the presence of the first two terms
“17 + x” which don’t fit the pattern of later ones. We have b0 = 17,
b1 = x, and then bm = x2m−2 for m = 2, 3, 4, . . . .
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The question of convergence for a power series is unaffected by the “be-Convergence is
determined by the
“tail” of the series

ginning” of the series; only the pattern in the “tail” matters. (Of course the
value of the power series is affected by all of its terms.) So we can modify
our generic notation to fit the circumstances at hand. No harm is done if we
don’t begin with b0.

Using this notation we can state the ratio test (but we give no proof).

Ratio Test: the series b0 + b1 + b2 + b3 + · · · + bn + · · ·

converges if lim
m→∞

|bm+1|
|bm|

< 1.

Let’s see what the ratio test says about the geometric series:The ratio test for the
geometric series . . .

1 + x + x2 + x3 + · · · .

We have bm = xm, so the ratio we must consider is

|bm+1|
|bm|

=
|xm+1|
|xm| =

|x|m+1

|x|m = |x|.

(Be sure you see why |xm| = |x|m.) Obviously, this ratio has the same value
for all m, so the limit

lim
m→∞

|x| = |x|

exists and is less than 1 precisely when |x| < 1. Thus the geometric series
converges for |x| < 1—which we already know is true. This means that the
radius of convergence of the geometric series is R = 1.

Look next at the Taylor series for ex:. . . and for ex

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑

m=0

xm

m!
.

For negative x this is an alternating series, so by the criterion for convergence
of alternating series we know it converges for all x < 0. The radius of
convergence should then be ∞. We will use the ratio test to show that in
fact this series converges for all x.

In this case

bm =
xm

m!
,
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so the relevant ratio is

|bm+1|
|bm|

=

∣
∣
∣
∣

xm+1

(m + 1)!

∣
∣
∣
∣
·
∣
∣
∣
∣

m!

xm

∣
∣
∣
∣
=

|xm+1|
|xm| · m!

(m + 1)!
= |x| · 1

m + 1
=

|x|
m + 1

.

Unlike the example with the geometric series, the value of this ratio depends
on m. For any particular x, as m gets larger and larger the numerator stays
the same and the denominator grows, so this ratio gets smaller and smaller.
In other words,

lim
m→∞

|bm+1|
|bm|

= lim
m→∞

|x|
m + 1

= 0.

Since this limit is less than 1 for any value of x, the series converges for all x,
and thus the radius of convergence of the Taylor series for ex is R = ∞, as
we expected.

One of the uses of the theory developed so far is that it gives us a new
way of specifying functions. For example, consider the power series

∞∑

m=0

(−1)m 2m

m2 + 1
xm = 1 − x +

4

5
x2 − 8

10
x3 +

16

17
x4 + · · · .

In this case bm = (−1)m 2m

m2 + 1
xm, so to find the radius of convergence, we

compute the ratio

|bm+1|
|bm|

=
2m+1|x|m+1

(m + 1)2 + 1
· m2 + 1

2m|x|m = 2|x| m2 + 1

m2 + 2m + 2
.

To figure out what happens to this ratio as m grows large, it is helpful to Finding the limit of
|bm+1|/|bm| may

require some algebra
rewrite the factor involving the m’s as

m2 · (1 + 1/m2)

m2 · (1 + 2/m + 2/m2)
=

1 + 1/m2

1 + 2/m + 2/m2
.

Now we can see that

lim
m→∞

|bm+1|
|bm|

= 2|x| · 1

1
= 2|x|.

The limit value is less than 1 precisely when 2|x| < 1, or, equivalently,
|x| < 1/2, so the radius of convergence of this series is R = 1/2. It follows
that for |x| < 1/2, we have a new function f(x) defined by the power series:

f(x) =

∞∑

m=0

(−1)m 2m

m2 + 1
xm.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

660 CHAPTER 10. SERIES AND APPROXIMATIONS

We can also discuss the radius of convergence of a power series

a0 + a1(x − a) + a2(x − a)2 + · · · + am(x − a)m + · · ·

centered at a location x = a other than the origin. The radius of convergence
of a power series of this form can be found by the ratio test in exactly the
same way it was when a = 0.

Example. Let’s apply the ratio test to the Taylor series centered at a = 1
for ln(x):

ln(x) =

∞∑

m=1

(−1)m−1

m
(x − 1)m.

We can start our series with b1, so we can take bm =
(−1)m−1

m
(x−1)m. Then

the ratio we must consider is

|bm+1|
|bm|

=
|x − 1|m+1

m + 1
· m

|x − 1|m = |x − 1| · m

m + 1
= |x − 1| · 1

1 + 1/m
.

Then

lim
m→∞

|bm+1|
|bm|

= |x − 1| · 1 = |x − 1|.

From this we conclude that this series converges for |x − 1| < 1. This in-
equality is equivalent to

−1 < x − 1 < 1,

which is an interval of “radius” 1 about a = 1, so the radius of convergence
is R = 1 in this case. We may also write the interval of convergence for this
power series as

0 < x < 2.

More generally, using the ratio test we find that a power series centered
at a converges in an interval of “radius” R (and width 2R) around the point
x = a on the x-axis. Ignoring what happens at the endpoints, we say the
interval of convergence is

a − R < x < a + R.

Here is a picture of what this looks like:
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- x
a − R a a + R

convergence
︷ ︸︸ ︷

︸ ︷︷ ︸

divergence
︸ ︷︷ ︸

divergence

The convergence of a power series centered at a

Exercises

1. Find a formula for the sum of each of the following power series by
performing suitable operations on the geometric series and the formula for
its sum.

a) 1 − x3 + x6 − x9 + · · · . d) x + 2x2 + 3x3 + 4x4 + · · · .

b) x2 + x6 + x10 + x14 + · · · . e) x +
x2

2
+

x3

3
+

x4

4
+ · · · .

c) 1 − 2x + 3x2 − 4x3 + · · · .

2. Determine the value of each of the following infinite sums. (Each os these
sums is a geometric or related series evaluated at a particular value of x.)

a)
1

4
+

1

16
+

1

64
+

1

256
+ · · · . d)

1

1
− 2

2
+

3

4
− 4

8
+

5

16
− 6

32
+ · · · .

b) .02020202 . . . . e)
1

1 · 10
+

1

2 · 102
+

1

3 · 103
+

1

4 · 104
+ · · · .

c) −5

2
+

5

4
− 5

8
+ · · · .

3. The Multiplier Effect. Economists know that the effect on a local
economy of tourist spending is greater than the amount actually spent by
the tourists. The multiplier effect quantifies this enlarged effect. In this
problem you will see that calculating the multiplier effect involves summing
a geometric series.

Suppose that, over the course of a year, tourists spend a total of A dollars
in a small resort town. By the end of the year, the townspeople are therefore
A dollars richer. Some of this money leaves the town—for example, to pay
state and federal taxes or to pay off debts owed to “big city” banks. Some of
it stays in town but gets put away as savings. Finally, a certain fraction of the
original amount is spent in town, by the townspeople themselves. Suppose
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3/5-ths is spent this way. The tourists and the townspeople together are
therefore responsible for spending

S = A +
3

5
A dollars

in the town that year. The second amount—3
5
A dollars—is recirculated

money.
Since one dollar looks much like another, the recirculated money should

be handled the same way as the original tourist dollars: some will leave the
town, some will be saved, and the remaining 3/5-ths will get recirculated a
second time. The twice-recirculated amount is

3

5
× 3

5
A dollars,

and we must revise the calculation of the total amount spent in the town to

S = A +
3

5
A +

(
3

5

)2

A dollars.

But the twice-recirculated dollars look like all the others , so 3/5-ths of them
will get recirculated a third time. Revising the total dollars spent yet again,
we get

S = A +
3

5
A +

(
3

5

)2

A +

(
3

5

)3

A dollars.

This process never ends: no matter how many times a sum of money has
been recirculated, 3/5-ths of it is recirculated once more. The total amount
spend in the town is thus given by a series.

a) Write the series giving the total amount of money spent in the town and
calculate its sum.

b) Your answer in a) is a certain multiple of A—what is the multiplier?

c) Suppose the recirculation rate is r instead of 3/5. Write the series giving
the total amount spent and calculate its sum. What is the multiplier now?

d) Suppose the recirculation rate is 1/5; what is the multiplier in this case?

e) Does a lower recirculation rate produce a smaller multiplier effect?
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4. Which of the following alternating series converge, which diverge? Why?

a)

∞∑

n=1

(−1)n n

n2 + 1

b)

∞∑

n=1

(−1)n 1√
3n + 2

c)

∞∑

n=2

(−1)n n

ln n

d)
∞∑

n=1

(−1)n n

5n − 4

e)
∞∑

n=1

(−1)n arctann

n

f)

∞∑

n=1

(−1)n (1.0001)n

n10 + 1

g)

∞∑

n=1

(−1)n 1

n1/n

h)

∞∑

n=2

(−1)n 1

ln n

i)
∞∑

n=1

(−1)n n!

nn

j)
∞∑

n=1

(−1)n n!

1 · 3 · 5 · · · (2n − 1)

5. For each of the sums in the preceding problem that converges, use the
alternating series criterion to determine how far out you have to go before
the sum is determined to 6 decimal places. Give the sum for each of these
series to this many places.

6. Find a value for n so that the nth degree Taylor series for ex gives at
least 10 place accuracy for all x in the interval [−3, 0].

7. We defined the harmonic series as the infinite sum

1 +
1

2
+

1

3
+

1

4
+ · · · =

∞∑

i=1

1

i
.

a) Use a calculator to find the partial sums

Sn = 1 +
1

2
+

1

3
+

1

4
+ · · · 1

n

for n = 1, 2, 3, . . . , 12.

b) Use the following program to find the value of Sn for n = 100. Modify
the program to find the values of Sn for n = 500, 1000, and 5000.
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Program: HARMONIC

n = 100

sum = 0

FOR i = 1 TO n

sum = sum + 1/i

NEXT i

PRINT n, sum

c) Group the terms in the harmonic series as indicated by the parentheses:

1 +

(
1

2

)

+

(
1

3
+

1

4

)

+

(
1

5
+

1

6
+

1

7
+

1

8

)

+

+

(
1

9
+ · · · + 1

16

)

+

(
1

17
+ · · ·+ 1

32

)

+ · · · .

Explain why each parenthetical grouping totals at least 1/2.

d) Following the pattern in part (c), if you add up the terms of the harmonic
series forming Sn for n = 2k, you can arrange the terms as 1 + k such
groupings. Use this fact and the result of c) to explain why Sn exceeds
1 + k · 1

2
.

e) Use part (d) to explain why the harmonic series diverges.

f) You might try this problem if you’ve studied physics—enough to know
how to locate the center of mass of a system. Suppose you had n cards and
wanted to stack them on the edge of a table with the top of the pile leaning
out over the edge. How far out could you get the pile to reach if you were
careful? Let’s choose our units so the length of each card is 1. Clearly if
n = 1, the farthest reach you could would be 1

2
. If n = 2, you could clearly

place the top card to extend half a unit
beyond the bottom card. For the system
to be stable, the center of mass of the two
cards must be to the left of the edge of
the table. Show that for this to happen,
the bottom card can’t extend more than
1/4 unit beyond the edge. Thus with n =
2 , the maximum extension of the pile is
1
2

+ 1
4

= 3
4
. The picture at the right shows

10 cards stacked carefully.
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Prove that if you have n cards, the stack can be built to extend a distance of

1

2
+

1

4
+

1

6
+

1

8
+ · · ·+ 1

2n
=

1

2

(

1 +
1

2
+

1

3
+

1

4
+ · · · + 1

n

)

.

In the light of what we have just proved about the harmonic series, this
shows that if you had enough cards, you could have the top card extending
100 units beyond the edge of the table!

8. An estimate for the partial sums of the harmonic series. You
may notice in part (d) of the preceding problem that the sum Sn = 1+1/2+
1/3+ · · ·+1/n grows in proportion to the exponent k of n = 2k; i.e., the sum
grows like the logarithm of n. We can make this more precise by comparing
the value of Sn to the value of the integral

∫ n

1

1

x
dx = ln(n).

a) Let’s look at the case n = 6 to see what’s going on. Consider the following
picture:

1 2 3 4 5 6

1

2

y = 1/x

x

y

Show that the lightly shaded region plus the dark region has area equal
to S5 , which can be rewritten as S6 − 1

6
. Show that the dark region alone

has area S6 − 1. Hence prove that

S6 − 1 <

∫ 6

1

1

x
dx < S6 −

1

6
,

and conclude that
1

6
< S6 − ln(6) < 1.

b) Show more generally that
1

n
< Sn − ln(n) < 1.
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c) Use part (b) to get upper and lower bounds for the value of S10000.

[Answer: 9.21044 < S10000 < 10.21035.]

d) Use the result of part (b) to get an estimate for how many cards you
would need in part (f) of the preceding problem to make the top of the pile
extend 100 units beyond the edge of the table.

[Answer: It would take approximately 1087 cards—a number which is on the
same order of magnitude as the number of atoms in the universe!]

Remarkably, partial sums of the harmonic series exceed ln(n) in a very regular way. It turns out
that

lim
n→∞

{Sn − ln(n)} = γ,

where γ = .5772 . . . is called Euler’s constant. (You have seen another constant named for
Euler, the base e = 2.7183 . . ..) Although one can find the decimal expansion of γ to any desired
degree of accuracy, no one knows whether γ is a rational number or not.

9. Show that the power series for arctan x and (1 + x)c diverge for |x| > 1 .
Do the series converge or diverge when |x| = 1?

10. Find the radius of convergence of each of the following power series.

a) 1 + 2x + 3x2 + 4x3 + · · · .
b) x + 2x2 + 3x3 + 4x4 + · · · .
c) 1 +

1

12
x +

1

22
x2 +

1

32
x3 +

1

42
x4 + · · · . [Answer: R = 1]

d) x3 + x6 + x9 + x12 + · · · .
e) 1 + (x + 1) + (x + 1)2 + (x + 1)3 + · · · .
f) 17 +

1

3
x +

1

32
x2 +

1

33
x3 +

1

34
x4 + · · · .

11. Write out the first five terms of each of the following power series, and
determine the radius of convergence of each.

a)

∞∑

n=0

nxn. [Answer: R = 1]

b)
∞∑

n=0

n2

2n
xn. [Answer: R = 2]

c)

∞∑

n=0

(n + 5)2 xn. [Answer: R = 1]
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d)

∞∑

n=0

99

nn
xn. [Answer: R = ∞]

e)

∞∑

n=0

n! xn. [Answer: R = 0]

12. Find the radius of convergence of the Taylor series for sin x and for
cos x. For which values of x can these series therefore represent the sine and
cosine functions?

13. Find the radius of convergence of the Taylor series for f(x) = 1/(1+x2)
at x = 0. (See the table of Taylor series in section 3.) What is the radius
of convergence of this series? For which values of x can this series therefore
represent the function f? Do these x values constitute the entire domain of
definition of f?

14. In the text we used the alternating series for ex, x < 0, to approximate
e−1 accurate to 7 decimal places. The claim was made that in taking the
reciprocal to obtain an estimate for e, the accuracy drops by one decimal
place. In this problem you will see why this is true.

a) Consider first the more general situation where two functions are recip-
rocals, g(x) = 1/f(x). Express g′(x) in terms of f(x) and f ′(x).

b) Use your answer in part a) to find an expression for the relative error
in g, ∆g/g(x) ≈ g′(x)∆x/g(x), in terms of f(x) and f ′(x). How does this
compare to the relative error in f?

c) Apply your results in part b) to the functions ex and e−x at x = 1. Since
e is about 7 times as large as 1/e, explain why the error in the estimate for
e should be about 7 times as large as the error in the estimate for 1/e.
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10.6 Approximation Over Intervals

A powerful result in mathematical analysis is the Stone–Weierstrass The-
orem, which states that given any continuous function f(x) and any interval
[a, b], there exist polynomials that fit f over this interval to any level of accu-
racy we care to specify. In many cases, we can find such a polynomial simply
by taking a Taylor polynomial of high enough degree. There are several
ways in which this is not a completely satisfactory response, however. First,
some functions (like the absolute value function) have corners or other places
where they aren’t differentiable, so we can’t even build a Taylor series at such
points. Second, we have seen several functions (like 1/(1 + x2)) that have a
finite interval of convergence, so Taylor polynomials may not be good fits no
matter how high a degree we try. Third, even for well-behaved functions like
sin(x) or ex, we may have to take a very high degree Taylor polynomial to
get the same overall fit that a much lower degree polynomial could achieve.

In this section we will develop the general machinery for finding polyno-
mial approximations to functions over given intervals. In chapter 12.4 we
will see how this same approach can be adapted to approximating periodic
functions by trigonometric polynomials.

Approximation by polynomials

Example. Let’s return to the problem introduced at the beginning of this
chapter: find the second degree polynomial which best fits the function sin(x)
over the interval [0, π]. Just as we did with the Taylor polynomials, though,Two possible criteria

for best fit before we can start we need to agree on our criterion for the best fit. Here
are two obvious candidates for such a criterion:

1. The second degree polynomial Q(x) is the best fit to sin(x) over the
interval [0, π] if the maximum separation between Q(x) and sin(x) is
smaller than the maximum separation between sin(x) and any other
second degree polynomial:

max
0≤x≤π

| sin(x) − Q(x)| is the smallest possible.

2. The second degree polynomial Q(x) is the best fit to sin(x) over the in-
terval [0, π] if the average separation between Q(x) and sin(x) is smaller
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than the average separation between sin(x) and any other second degree
polynomial:

1

π

∫ π

0

| sin(x) − Q(x)| dx is the smallest possible.

Unfortunately, even though their clear meanings make these two criteria very
attractive, they turn out to be largely unusable—if we try to apply either Why we don’t use

either criterioncriterion to a specific problem, including our current example, we are led into
a maze of tedious and unwieldy calculations.

Instead, we use a criterion that, while slightly less obvious than either of
the two we’ve already articulated, still clearly measures some sort of “best fit”
and has the added virtue of behaving well mathematically. We accomplish
this by modifying criterion 2 slightly. It turns out that the major difficulty
with this criterion is the presence of absolute values. If, instead of considering
the average separation between Q(x) and sin(x), we consider the average of
the square of the separation between Q(x) and sin(x), we get a criterion we
can work with. (Compare this with the discussion of the best-fitting line in
the exercises for chapter 9.3.) Since this is a definition we will be using for
the rest of this section, we frame it in terms of arbitrary functions g and h,
and an arbitrary interval [a, b]:

Given two functions g and h defined over an interval [a, b], we
define the mean square separation between g and h over this
interval to be

1

(b − a)

∫ b

a

(g(x) − h(x))2 dx.

Note: In this setting the word mean is synonymous with what we have called
“average”. It turns out that there is often more than one way to define the
term “average”—the concepts of median and mode are two other natural
ways of capturing “averageness”, for instance—so we use the more technical
term to avoid ambiguity.

We can now rephrase our original problem as: find the second degree The criterion
we shall usepolynomial Q(x) whose mean squared separation from sin(x) over the inter-

val [0, π] is as small as possible. In mathematical terms, we want to find
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coefficients a0, a1, and a2 which such that the integral
∫ π

0

(
sin(x) − (a0 + a1 x + a2 x2)

)2
dx

is minimized. The solution Q(x) is called the quadratic least squares ap-
proximation to sin(x) over [0, π].

The key to solving this problem is to observe that a0, a1, and a2 can take
on any values we like and that this integral can thus be considered a function
of these three variables. For instance, if we couldn’t think of anything cleverer
to do, we might simply try various combinations of a0, a1, and a2 to see how
small we could make the given integral. Therefore another way to phrase our
problem is

A mathematical
formulation of the
problem

Find values for a0, a1, and a2 that minimize the function

F (a0, a1, a2) =

∫ π

0

(
sin(x) − (a0 + a1 x + a2 x2)

)2
dx .

We know how to find points where functions take on their extreme values—
we look for the places where the partial derivatives are 0. But how do we
differentiate an expression involving an integral like this? It turns out that
for all continuous functions, or even functions with only a finite number of
breaks in them, we can simply interchange integration and differentiation.
Thus, in our example,

∂

∂a0
F (a0, a1, a2) =

∂

∂a0

∫ π

0

(
sin(x) − (a0 + a1 x + a2 x2)

)2
dx

=

∫ π

0

∂

∂a0

(
sin(x) − (a0 + a1 x + a2 x2)

)2
dx

=

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−1) dx.

Similarly we have

∂

∂a1

F (a0, a1, a2) =

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−x) dx,

∂

∂a2

F (a0, a1, a2) =

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−x2) dx.
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We now want to find values for a0, a1, and a2 that make these partial Setting the partials
equal to zero gives

equations for a0, a1, a2

derivatives simultaneously equal to 0. That is, we want

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−1) dx = 0,

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−x) dx = 0,

∫ π

0

2
(
sin(x) − (a0 + a1 x + a2 x2)

)
(−x2) dx = 0,

which can be rewritten as

∫ π

0

sin(x) dx =

∫ π

0

(
a0 + a1 x + a2 x2

)
dx,

∫ π

0

x sin(x) dx =

∫ π

0

(
a0 x + a1 x2 + a2 x3

)
dx,

∫ π

0

x2 sin(x) dx =

∫ π

0

(
a0 x2 + a1 x3 + a2 x4

)
dx.

All of these integrals can be evaluated relatively easily (see the exercises Evaluating the
integrals gives three

linear equations
for a hint on evaluating the integrals on the left–hand side). When we do so,
we are left with

2 = πa0 +
π2

2
a1 +

π3

3
a2,

π =
π2

2
a0 +

π3

3
a1 +

π4

4
a2,

π2 − 4 =
π3

3
a0 +

π4

4
a1 +

π5

5
a2.

But this is simply a set of three linear equations in the unknowns a0, a1,
and a2, and they can be solved in the usual ways. We could either replace
each expression in π by a corresponding decimal approximation, or we could
keep everything in terms of π. Let’s do the latter; after a bit of tedious
arithmetic we find
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a0 =
12

π
− 120

π3
= −.050465 . . . ,

a1 =
−60

π2
+

720

π4
= 1.312236 . . . ,

a2 =
60

π3
− 720

π5
= −.417697 . . . ,

and we have

Q(x) = −.050465 + 1.312236 x− .417698 x2,

which is the equation given in section 1 at the beginning of the chapter.
The analysis we gave for this particular case can clearly be generalized to

How to find least
squares polynomial
approximations in
general

apply to any function over any interval. When we do this we get

Given a function g over an interval [a, b], then the n-th degree
polynomial

P (x) = c0 + c1 x + c2 x2 + · · ·+ cn xn

whose mean square distance from g is a minimum has coefficients
that are determined by the following n + 1 equations in the n + 1
unknowns c0, c1, c2, . . . , cn:

∫ b

a

g(x) dx = c0

∫ b

a

dx + c1

∫ b

a

x dx + · · ·+ cn

∫ b

a

xn dx,

∫ b

a

x g(x) dx = c0

∫ b

a

x dx + c1

∫ b

a

x2 dx + · · ·+ cn

∫ b

a

xn+1 dx,

...
∫ b

a

xn g(x) dx = c0

∫ b

a

xn dx + c1

∫ b

a

xn+1 dx + · · · + cn

∫ b

a

x2n dx.

All the integrals on the right-hand side can be evaluated immediately. The
integrals on the left-hand side will typically need to be evaluated numerically,
although simple cases can be evaluated in closed form. Integration by parts
is often useful in these cases. The exercises contain several problems using
this technique to find approximating polynomials.
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The real catch, though, is not in obtaining the equations—it is that solv- Solving the equations is
a job for the computering systems of equations by hand is excruciatingly boring and subject to

frequent arithmetic mistakes if there are more than two or three unknowns
involved. Fortunately, there are now a number of computer packages avail-
able which do all of this for us. Here are a couple of examples, where the
details are left to the exercises.

Example. Let’s find polynomial approximation for 1/(1 + x2) over the in-
terval [0, 2]. We saw earlier that the Taylor series for this function converges
only for |x| < 1, so it will be no help. Yet with the above technique we can
derive the following approximations of various degrees (see the exercises for
details):

1 2

degree 1

1 2

degree 4

1 2

degree 3

1 2

degree 2

Here are the corresponding equations of the approximating polynomials:

degree polynomial

1 1.00722 − .453645 x

2 1.08789 − .695660 x + .121008 x2

3 1.04245 − .423017 x− .219797 x2 + .113602 x3

4 1.00704 − .068906 x− 1.01653 x2 + .733272 x3 − .154916 x4

Example. We can even use this new technique to find polynomial approxi- The technique works
even when

differentiability fails
mations for functions that aren’t differentiable at some points. For instance,
let’s approximate the function h(x) = |x| over the interval [−1, 1]. Since this
function is symmetric about the y–axis, and we are approximating it over
an interval that is symmetric about the y–axis, only even powers of x will
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appear. (See the exercises for details.) We get the following approximations
of degrees 2, 4, 6, and 8:

−1 1

degree 2

−1 1

degree 8

−1 1

degree 6

−1 1

degree 4

Here are the corresponding polynomials:

degree polynomial

2 .1875 + .9375 x2

4 .117188 + 1.64062 x2 − .820312 x4

6 .085449 + 2.30713 x2 − 2.81982 x4 + 1.46631 x6

8 .067291 + 2.960821 x2 − 6.415132 x4 + 7.698173 x6 − 3.338498 x8

A Numerical Example. If we have some function which exists only as aThe technique is useful
for data functions set of data points—a numerical solution to a differential equation, perhaps,

or the output of some laboratory instrument—it can often be quite useful
to replace the function by an approximating polynomial. The polynomial
takes up much less storage space and is easier to manipulate. To see how
this works, let’s return to the S-I-R model we’ve studied before

S ′ = −.00001 SI,

I ′ = .00001 SI − I/14,

R′ = I/14,

with initial values S(0) = 45400 and I(0) = 2100.
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Let’s find an 8th degree polynomial Q(t) = i0 + i1t + i2t
2 + · · · + i8t

8

approximating I over the time interval 0 ≤ t ≤ 40. We can do this by
a minor modification of the Euler’s method programs we’ve been using all
along. Now, in addition to keeping track of the current values for S and I
as we go along, we will also need to be calculating Riemann sums for the
integrals

∫ 40

0

tkI(t) dt for k = 0, 1, 2, . . . , 8,

as we go through each iteration of Euler’s method.
Since the numbers involved become enormous very quickly, we open our-

selves to various sorts of computer roundoff error. We can avoid some of these The importance
of using the

right-sized units
difficulties by rescaling our equations—using units that keep the numbers
involved more manageable. Thus, for instance, suppose we measure S, I,
and R in units of 10,000 people, and suppose we measure time in “deca-
days”, where 1 decaday = 10 days. When we do this, our original differential
equations become

S ′ = −SI,

I ′ = SI − I/1.4,

R′ = I/1.4,

with initial values S(0) = 4.54 and I(0) = 0.21. The integrals we want are
now of the form

∫ 4

0

tkI(t) dt for k = 0, 1, 2, . . . , 8.

The use of Simpson’s rule (see chapter 11.3) will also reduce errors. It may Using Simpson’s rule
helps reduce errorsbe easiest to calculate the values of I first, using perhaps 2000 values, and

store them in an array. Once you have this array of I values, it is relatively
quick and easy to use Simpson’s rule to calculate the 9 integrals needed. If
you later decide you want to get a higher-degree polynomial approximation,
you don’t have to re-run the program.

Once we’ve evaluated these integrals, we set up and solve the correspond-
ing system of 9 equations in the 9 unknown coefficients ik. We get the
following 8-th degree approximation

Q(t) = .3090 − .9989 t + 7.8518 t2 − 3.6233 t3 − 3.9248 t4 + 4.2162 t5

− 1.5750 t6 + .2692 t7 − .01772 t8 .
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When we graph Q and I together over the interval [0, 4] (decadays), we
get

0.5

1.0

1.5

2.0

2.5

1 2 3 4 t

y
y = I(t) y = Q(t)

—a reasonably good fit.

A Caution. Numerical least-squares fitting of the sort performed in this
last example fairly quickly pushes into regions where the cumulative effects
of the inaccuracies of the original data, the inaccuracies of the estimates
for the integrals, and the immense range in the magnitude of the numbers
involved all combine to produce answers that are obviously wrong. Rescaling
the equations and using good approximations for the integrals can help put
off the point at which this begins to happen.

Exercises

1. To find polynomial approximations for sin(x) over the interval [0, π], we
needed to be able to evaluate integrals of the form

∫ π

0

xn sin(x) dx.

The value of this integral clearly depends on the value of n, so denote it
by In.

a) Evaluate I0 and I1. Suggestion: use integration by parts (Chapter 11.3)
to evaluate I1.

[Answer: I0 = 2, and I1 = π.]

b) Use integration by parts twice to prove the general reduction formula:

In+2 = πn+2 − (n + 2)(n + 1)In for all n ≥ 0.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

10.6. APPROXIMATION OVER INTERVALS 677

c) Evaluate I2, I3, and I4.

[Answer: I2 = π2 − 4, I3 = π3 − 6π, and I4 = π4 − 12π2 + 48.]

d) If you have access to a computer package that will solve a system of
equations, find the 4-th degree polynomial that best fits the sine function over
the interval [0, π]. What is the maximum difference between this polynomial
and the sine function over this interval?

[Answer: .00131+.98260 x+.05447 x2−.23379 x3+.03721 x4, with maximum
difference occuring at the endpoints.]

2. To find polynomial approximations for |x| over the interval [−1, 1], we
needed to be able to evaluate integrals of the form

∫ 1

−1

xn|x| dx.

As before, let’s denote this integral by In.

a) Show that

In =







2

n + 2
if n is even,

0 if n is odd.

b) Derive the quadratic least squares approximation to |x| over [−1, 1].

c) If you have access to a computer package that will solve a system of
equations, find the 10-th degree polynomial that best fits |x| over the interval
[−1, 1]. What is the maximum difference between this polynomial and |x|
over this interval?

3. To find polynomial approximations for 1/(1+x2) over the interval [0, 2],
we needed to be able to evaluate integrals of the form

∫ 2

0

xn

1 + x2
dx.

Call this integral In.

a) Evaluate I0 and I1.

[Answer: I0 = arctan(1) = π/4, and I1 = (ln 2)/2 = .3465736.]

b) Prove the general reduction formula:

In+2 =
2n+1

n + 1
− In for n = 0, 1, 2, . . . .
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c) Evaluate I2, I3, and I4.

[Answer: I2 = 2 − π

4
, I3 = 2 − ln 2

2
, I4 =

2

3
+

π

4
.]

d) If you have access to a computer package that will solve a system of
equations, find the 4-th degree polynomial that best fits 1/(1 + x2) over the
interval [0, 2]. What is the maximum difference between this polynomial and
the function over this interval?

4. Set up the equations (including evaluating all the integrals) for finding
the best fitting 6-th degree polynomial approximation to sin(x) over the
interval [−π, π].

5. In the S-I-R model, find the best fitting 8-th degree polynomial approx-
imation to S(t) over the interval 0 ≤ t ≤ 40.

10.7 Chapter Summary

The Main Ideas

• Taylor polynomials approximate functions at a point. The Taylor
polynomial P (x) of degree n is the best fit to f(x) at x = a; that
is, P satisfies the following conditions: P (a) = f(a), P ′(a) = f ′(a),
P ′′(a) = f ′′(a), . . . , P (n)(a) = f (n)(a).

• Taylor’s theorem says that a function and its Taylor polynomial of
degree n agree to order n + 1 near the point where the polynomial is
centered. Different versions expand on this idea.

• If P (x) is the Taylor polynomial approximating f(x) at x = a, then
P (x) approximates f(x) for values of x near a; P ′(x) approximates
f ′(x); and

∫
P (x) dx approximates

∫
f(x) dx.

• A Taylor series is an infinite sum whose partial sums are Taylor poly-
nomials. Some functions equal their Taylor series; among these are the
sine, cosine and exponential functions.

• A power series is an “infinite” polynomial

a0 + a1x + axx
2 + · · · + anxn + · · · .
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If the solution of a differential equation can be represented by a power
series, the coefficients an can be determined by recursion relations
obtained by substituting the power series into the differential equation.

• An infinite series converges if, no matter how many decimal places
are specified, all the partial sums eventually agree to at least this many
decimal places. The number defined by these stabilizing decimals is
called the sum of the series. If a series does not converge, we say it
diverges.

• If the series
∑∞

m=0 bm converges, then limm→∞ bm = 0. The impor-
tant counter-example of the harmonic series

∑∞
m=1 1/m shows that

limm→∞ bm = 0 is a necessary but not sufficient condition to guarantee
convergence.

• The geometric series
∑∞

m=0 xm converges for all x with |x| < 1 and
diverges for all other x.

• An alternating series
∑∞

m=0(−1)mbm converges if 0 < bm+1 ≤ bm

for all m and limm→∞ bm = 0. For a convergent alternating series, the
error in approximating the sum by a partial sum is less than the next
term in the series.

• A convergent power series converges on an interval of convergence of
width 2R; R is called the radius of convergence. The ratio test can
be used to find the radius of convergence of a power series:

∑∞
m=0 bm

converges if limm→∞ |bm+1|/|bm| < 1.

• A polynomial P (x) = a0 + a1x + a2x
2 + · · ·+ anx

n is the best fitting
approximation to a function f(x) on an interval [a, b] if a0, a1, · · · , an

are chosen so that the mean squared separation between P and f

1

b − a

∫ b

a

(P (x) − f(x))2 dx

is as small as possible. The polynomial P is also called the least
squares approximation to f on [a, b].
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Expectations

• Given a differentiable function f(x) at a point x = a, you should be
able to write down any of the Taylor polynomials or the Taylor
series for f at a.

• You should be able to use the program TAYLOR to graph Taylor poly-
nomials.

• You should be able to obtain new Taylor polynomials by substitution,
differentiation, anti-differentiation and multiplication.

• You should be able to use Taylor polynomials to find the value of a
function to a specified degree of accuracy, to approximate integrals and
to find limits.

• You should be able to determine the order of magnitude of the agree-
ment between a function and one of its Taylor polynomials.

• You should be able to find the power series solution to a differential
equation.

• You should be able to test a series for divergence; you should be able
to check a series for convergence using either the alternating series
test or the ratio test.

• You should be able to find the sum of a geometric series and its
interval of convergence.

• You should be able to estimate the error in an approximation using
partial sums of an alternating series.

• You should be able to find the radius of convergence of a series using
the ratio test.

• You should be able to set up the equations to find the least squares
polynomial approximation of a particular degree for a given function on
a specified interval. Working by hand or, if necessary, using a computer
package to solve a system of equations, you should be able to find the
coefficients of the least squares approximation.
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Chapter 11

Techniques of Integration

Chapter 6 introduced the integral. There it was defined numerically, as the
limit of approximating Riemann sums. Evaluating integrals by applying this
basic definition tends to take a long time if a high level of accuracy is desired.
If one is going to evaluate integrals at all frequently, it is thus important to
find techniques of integration for doing this efficiently. For instance, if
we evaluate a function at the midpoints of the subintervals, we get much
faster convergence than if we use either the right or left endpoints of the
subintervals.

A powerful class of techniques is based on the observation made at the
end of chapter 6, where we saw that the fundamental theorem of calculus
gives us a second way to find an integral, using antiderivatives. While a
Riemann sum will usually give us only an approximation to the value of
an integral, an antiderivative will give us the exact value. The drawback
is that antiderivatives often can’t be expressed in closed form—that is, as
a formula in terms of named functions. Even when antiderivatives can be
so expressed, the formulas are often difficult to find. Nevertheless, such a
formula can be so powerful, both computationally and analytically, that it is
often worth the effort needed to find it. In this chapter we will explore several
techniques for finding the antiderivative of a function given by a formula.

We will conclude the chapter by developing a numerical method—Simpson’s
rule—that gives a good estimate for the value of an integral with relatively
little computation.

681
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11.1 Antiderivatives

Definition

Recall that we say F is an antiderivative of f if F ′ = f . Here are some
examples.

function: x2 1/y sin u 2 sin t cos t 2z

l l l l l

antiderivative:
x3

3
ln y − cos u sin2 t

2z

ln 2

Notice that you go up (↑) from the bottom row to the top by carrying outUndo a differentiation

a differentiation. To go down (↓) you must “undo” that differentiation. The
process of reversing, or undoing, a differentiation has come to be called an-
tidifferentiation. You should differentiate each function on the bottom row
to check that it is an antiderivative of the function above it.

While a function can have only one derivative, it has many antiderivatives.A function has
many antiderivatives For example, 1− cos u and 99− cos u are also antiderivatives of the function

sin u because
(1 − cos u)′ = sin u = (99 − cos u)′.

In fact, every function C − cos u is an antiderivative of sin u, for any con-
stant C whatsoever. This observation is true in general. That is, if F is an
antiderivative of a function f , then so is F + C, for any constant C. This
follows from the addition rule for derivatives:

(F + C)′ = F ′ + C ′ = F ′ + 0 = f.

It is tempting to claim the converse—that every antiderivative of f isA caution

equal to F + C, for some appropriately chosen value of C. In fact, you
will often see this statement written. The statement is true, though, only
for continuous functions. If the function f has breaks in its domain, then
there will be more antiderivatives than those of the form F + C for a single
constant C—over each piece of the domain of f , F can be modified by a
different constant and still yield an antiderivative for f . Exercises 18, 19,
and 20 at the end of this section explore this for a couple of cases. If f is
continuous, though, F + C will cover all the possibilities, and we sometimesWhat the ‘+ C’ term

really means say that F + C is the antiderivative of f . For the sake of keeping a compact
notation, we will even write this when the domain of f consists of more than
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one interval. You should understand, though, that in such cases, over each
piece F can be modified by a different constant

For future reference we collect a list of basic functions whose antideriva- Antiderivatives
of basic functionstives we already know. Remember that each antiderivative in the table can

have an arbitrary constant added to it.

function antiderivative

xp

1/x

sin x

cos x

ex

bx

xp+1

p + 1
, p 6= −1

ln x

− cos x

sin x

ex

bx

ln b

All of these antiderivatives are easily verified and could have been derived
with at most a little trial and error fiddling to get the right constant. You
should notice one incongruity: the function 1/x is defined for all x 6= 0,
but its listed antiderivative, ln x, is only defined for x > 0. In exercise 18
(page 697) you will see how to find antiderivatives for 1/x over its entire
domain.

Two of our basic functions—ln x and tanx—do not appear in the left
column of the table. This happens because there is no simple multiple of a
basic function whose derivative is equal to either ln x or tan x. It turns out
that these functions do have antiderivatives, though, that can be expressed as
more complicated combinations of basic functions. In fact, by differentiating
x ln x − x you should be able to verify that it is an antiderivative of lnx.
Likewise, − ln(cos x) is an antiderivative of tan x. It would take a long time
to stumble on these antiderivatives by inspection or by trial and error. It
is the purpose of later sections to develop techniques which will enable us
to discover antiderivatives like these quickly and efficiently. In particular,
the antiderivative of lnx is derived in chapter 11.3 on page 712, while the
antiderivative of tanx is derived in chapter 11.5 on page 744.

There are a couple of other functions that don’t appear in the above
table whose antiderivatives are needed frequently enough that they should
become part of your repertoire of elementary functions that you recognize
immediately:
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function antiderivative

1√
1 − x2

1

1 + x2

arcsin x

arctan x

The antiderivatives are inverse trigonometric functions, which we’ve had no
need for until now. We introduce them immediately below. They are ex-
amples of functions that occur more often for their antiderivative properties
than for themselves. Note that the derivatives of the inverse trigonometric
functions have no obvious reference to trigonometric relations. In fact, they
often occur in settings where there are no triangles or periodic functions in
sight. Let’s see how the derivatives of these inverse functions are derived.

Inverse Functions

We discussed inverse functions in chapter 4.4. Here’s a quick summary of
the main points made there. Two functions f and g are inverses if

f(g(a)) = a,

and g(f(b)) = b,

for every a in the domain of g and every b in the domain of f . It follows
that the range of f is the same as the domain of g, and vice versa. We write
g = f−1 to indicate that g is the inverse of f , and f = g−1 to indicate that
f is the inverse of g.

The graphs of y = f(x) and y = g(x) are mirror reflections about the
line y = x. As the figure below shows, the mirror image of a point with
coordinates (a, b) is the point with coordinates (b, a).

x

y

a

b

y = f (x)

x

y

b

a

y = f −1(x)
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This connection between the graphs is a direct translation of the definitions
into graphical language, since

(a, b) is on the graph of y = g(x) ⇐⇒ g(a) = b (definition of graph)

⇐⇒ f(b) = a (definition of inverse)

⇐⇒ (b, a) is on the graph of y = f(x).

Because of the connection between the graphs, it follows immediately
that if the graph of f is locally linear at the point (b, a) with slope m,
then the graph of g will be locally linear at the point (a, b) with slope 1/m.
Algebraically, this is expressed as

g′(a) = 1/f ′(b),

where a = f(b) and b = g(a). We get same result by differentiating the
expression f(g(x)) = x, using the chain rule:

1 = x′ = (f(g(x))′ = f ′(g(x))g′(x),

and therefore

g′(x) =
1

f ′(g(x))

for any value of x for which g(x) is defined.

Inverse trigonometric functions

The arcsine function In the discussion in chapter 4 we saw that a function
has an inverse only when it is one-to-one, so if we want an inverse, we often
have to restrict the domain of a function to a region where it is one-to-one.
This is certainly the case with the sine function, which takes the same value
infinitely many times. The standard choice of domain on which the sine
function is one-to-one is [−π/2, π/2]. Over this interval the sine function
increases from −1 to 1. We can then define an inverse function, which we
call the arcsine function, written arcsin x, whose domain is the interval
[−1, 1], and whose range is [−π/2, π/2]. Since the sine function is strictly
increasing on its domain, the arcsine function will be strictly increasing on
its domain as well—do you see why this has to be?

Another notation for the arcsine function is sin−1 x; this form commonly
appears on one of the buttons on a calculator.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

686 CHAPTER 11. TECHNIQUES OF INTEGRATION

x

y
y = sin(x)

−1

1

−π/2 π/2 x

y

y = arcsin(x)

−1 1

−π/2

π/2

To find the derivative of the arcsine function, let f(x) = sin x, and let
g(x) = arcsin x. Then by the remarks above, we have

g′(x) =
1

f ′(g(x))
=

1

cos (g(x))
=

1

cos(arcsin x)
.

The function cos(arcsin x) can be expressed in another form, which we will
obtain two ways, one algebraic, the other geometric. Both perspectives are
useful.
The algebraic approach. Recall that for any input t, sin2 t + cos2 t = 1.

This can be solved for cos t as cos t = ±
√

1 − sin2 t. That is, the cosine of
anything is the square root of 1 minus the square of the sine of that input,
with a possible minus sign needed out front, depending on the context. Since
the output of the arcsine function lies in the range [−π/2, π/2], and the
cosine function is positive (or 0) for numbers in this interval, it follows that
cos(arcsin x) ≥ 0 for any value of x in the domain of the arcsine function.
Therefore,

cos(arcsin x) =
√

1 − sin2(arcsin x) =
√

1 − (sin(arcsin x))2 =
√

1 − x2,

since sin(arcsin x) = x by definition of inverse functions. It follows that

(arcsin x)′ =
1

cos (arcsin x)
=

1√
1 − x2

,

as we indicated above on page 684.
The geometric approach Introduce a new variable θ = arcsin x, so that
x = sin θ. We can represent these relationships in the following picture:
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x
1

√
1 − x2

θ��
��
��
��
��
��
��
��

Notice that we have labelled the side opposite the angle θ as x and the
hypotenuse as 1. This ensures that sin θ = x. By the Pythagorean theorem,
the remaining side must then be

√
1 − x2. From this picture it is then obvious

that cos(arcsin x) = cos θ =
√

1 − x2/1 =
√

1 − x2, as before.

The arctangent function To get an inverse for the tangent function, we
again need to limit its domain. Here the standard choice is to restrict it to the
interval (−π/2, π/2) (not including the endpoints this time, since tan(−π/2)
and tan(π/2) aren’t defined). Over this domain the tangent function in-
creases from −∞ to +∞. We can then define the inverse of the tangent,
called the arctangent function, written arctan x, whose domain is the in-
terval (−∞,∞), and whose range is (−π/2, π/2). Again, both functions are
increasing over their domains.

x

y

y = tan(x)

−π/2 π/2 x

y
y = arctan(x)

−π/2

π/2

To find the derivative, we proceed as we did with arcsin x, letting f(x) =
tan x, and g(x) = arctan x. This time we get

g′(x) =
1

f ′(g(x))
=

1

sec2 (g(x))
=

1

sec2(arctanx)
.
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This expression also has a different form; we obtain it from another trigono-
metric identity, as we did before, deriving the desired result algebraically and
geometrically.
Algebraic We start as before with the identity sin2 t+cos2 t = 1. Dividing
through by cos2 t, we get the equivalent identity tan2 t + 1 = sec2 t. That is,
the square of the secant of any input is just 1 plus the square of the tangent
applied to the same input. In particular,

sec2 (arctan x) = tan2(arctanx) + 1 = (tan(arctanx))2 + 1 = x2 + 1;

since tan(arctanx) = x. It follows that

(arctan x)′ =
1

sec2(arctan x)
=

1

1 + x2
,

as we indicated above on page 684.
Geometric Let θ = arctanx, so x = tan θ. Again we can draw and label
a triangle reflecting these relationships:

x

√
1 + x2

1

θ��
��
��
��
��
��
��
��

Notice that this time we have labelled the side opposite the angle θ as x and
the adjacent side as 1 to ensure that tan θ = x. Again by the Pythagorean
theorem, the hypotenuse must be 1+x2. From this picture it is then obvious
that sec(arctan x) = sec θ = (

√
1 + x2)/1 =

√
1 + x2, so sec2(arctan x) =

1 + x2 again.

Notation

According to the fundamental theorem of calculus (see chapter 6.4), every
accumulation function

A(x) =

∫ x

a

f(t) dt

is an antiderivative of the function f , no matter at what point t = a the
accumulation begins—so long as the function is defined over the entire in-
terval from t = a to t = x. (This is an important caution when dealing with
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functions like 1/x, for instance, for which the integral from, say, −1 to 1
makes no sense.) In other words, the expression

∫ x

a

f(t) dt

represents an antiderivative of f . The influence of the fundamental theorem Write an antiderivative
as an integralis so pervasive that this expression—with the “limits of integration” a and x

omitted—is used to denote an antiderivative:

Notation: The antiderivative of f is

∫

f(x) dx.

With this new notation the antiderivatives we have listed so far can be written
in the following form.

The basic
antiderivatives again

∫

xp dx =
1

p + 1
xp+1 + C ( p 6= −1)

∫
1

x
dx = ln x + C

∫

sin x dx = − cos x + C
∫

cos x dx = sin x + C
∫

ex dx = ex + C
∫

bx dx =
1

ln b bx
+ C

∫
1√

1 − x2
dx = arcsin x + C

∫
1

1 + x2
dx = arctanx + C

The integration sign
∫

now has two distinct meanings. Originally, it was The definite integral
is a number. . .used to describe the number

∫ b

a

f(x) dx,
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which was always calculated as the limit of a sequence of Riemann sums.
Because this integral has a definite numerical value, it is called the definite
integral. In its new meaning, the integration sign is used to describe the
antiderivative ∫

f(x) dx,

which is a function, not a number. To contrast the new use of
∫

with the old,. . . while the indefinite

integral is a function and to remind us that the new expression is a variable quantity, it is called
the indefinite integral. The function that appears in either a definite or
an indefinite integral is called the integrand. The terms “antiderivative”
and “indefinite integral” are completely synonymous. We will tend to use
the former term in general discussions, using the latter term when focusing
on the process of finding the antiderivative.

Because an indefinite integral represents an antiderivative, the process of
finding an antiderivative is sometimes called integration. Thus the term
integration, as well as the symbol for it, has two distinct meanings.

Using Antiderivatives

According to the fundamental theorem, we can use an indefinite integral to
find the value of a definite integral—and this largely explains the importance
of antiderivatives. In the language of indefinite integrals, the statement of
the fundamental theorem in the box on page 410 takes the following form.

∫ b

a

f(x) dx = F (b) − F (a), where F (x) =

∫

f(x) dx.

Example 1 Find

∫ 4

1

x2 dx. We have that

∫

x2 dx = 1
3
x3 + C;

it follows that

∫ 4

1

x2 dx = 1
3
43 + C −

(
1
3
13 + C)

)
=

64

3
+ C − 1

3
− C = 21.
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Example 2 Find

∫ π/2

0

cos t dt. This time the indefinite integral we need is

∫

cos t dt = sin t + C.

The value of the definite integral is therefore

∫ π/2

0

cos t dt = sin π/2 + C − (sin 0 + C) = 1 + C − 0 − C = 1.

In each example the two appearances of C cancel each other. Thus C does The calculation
doesn’t depend on C,

so take C = 0
not appear in the final result. This implies that it does not matter which
value of C we choose to do the calculation. Usually, we just take C = 0.

Notation: Because expressions like F (b) − F (a) occur often when we are
using indefinite integrals, we use the abbreviation

F (b) − F (a) = F (x)
∣
∣
∣

b

a
.

Thus,
∫ 4

1

x2 dx =
x3

3

∣
∣
∣
∣

4

1

=
64

3
− 1

3
= 21.

There are clear advantages to using antiderivatives to evaluate definite
integrals: we get exact values and we avoid many lengthy calculations. The
difficulty is that the method works only if we can find a formula for the
antiderivative.

There are several reasons why we might not find the formula we need. We may not recognize
the antiderivative. . .For instance, the antiderivative we want may be a function we have never

seen before. The function arctan x is an example.
Even if we have a broad acquaintance with functions, we may still not be

able to find the formula for a given antiderivative. The reason is simple: for . . . and there may even
be no formula for itmost functions we can write down, the antiderivative is just not among the

basic functions of calculus. For example, none of the basic functions, in any
form or combination, equals

∫

ex2

dx or

∫
sin x

x
dx.
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This does not mean that ex2

, for example, has no antiderivative. On the
contrary, the accumulation function

∫ x

0

et2dt

is an antiderivative of ex2

. It can be evaluated, graphed, and analyzed like
any other function. What we lack is a formula for this antiderivative in terms
of the basic functions of calculus.

Finding Antiderivatives

In the rest of this chapter we will be deriving a number of statements in-
volving antiderivatives. It is important to remember what such statements
mean.

The following statements are completely equivalent:
∫

f(x) dx = F (x) + C and F ′ = f.

In other words, a statement about antiderivatives can be verified by lookingWe differentiate
to verify a statement
about antiderivatives

at a statement about derivatives. If it is claimed that the antiderivative of
f is F , you check the statement by seeing if it is true that F ′ = f . This
was how we verified the elementary antiderivatives we’ve considered so far.
Another way of expressing these relationships is

(∫

f(x) dx

)′

= f(x) and

∫

F ′(x) dx = F (x) + C

for any functions f and F .
This duality between statements about derivatives and statements about

antiderivatives also holds when applied to more general statements. Many of
the most useful techniques for finding antiderivatives are based on converting
the general rules for taking derivatives of sums, products, and chains into
equivalent antiderivative form. We’ll start with the simplest combinations,The constant multiple

and addition rules which involve a function multiplied by a constant and a sum of two
functions.
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derivative form antiderivative form

(k · F )′ = k · F ′
∫

k · f dx = k ·
∫

f dx

(F + G)′ = F ′ + G′
∫

(f + g) dx =

∫

f dx +

∫

g dx

Let’s verify these rules. Set
∫

f = F and
∫

g = G. Then the first rule
is claiming that

∫
(k · f) = k · F—the antiderivative of a constant times a

function equals the constant times the antiderivative of the function. To
verify this, we have to show that when we take the derivative of the right-
hand side, we get the function under the integral on the left-hand side. But
(k ·F )′ = k ·F ′ (by the derivative rule), which is just k · f , which is what we
had to show.

Similarly, to show that
∫

(f + g) = F + G—the antiderivative of the sum
of two functions is the sum of their separate antiderivatives—we differentiate
the right-hand side and find (F + G)′ = F ′ + G′ (by the derivative rule for
sums) which is just f + g, so the rule is true.

Example 3 This example illustrates the use of both the addition and the
constant multiple rules.

∫

(7ex + cos x) dx =

∫

7ex dx +

∫

cos x dx

= 7

∫

ex dx +

∫

cos x dx

= 7ex + sin x + C.

To verify this answer, you should take the derivative of the right-hand side
to see that it equals the integrand on the left-hand side.

In the following sections we will develop the antidifferentiation rules that
correspond to the product rule and to the chain rule. They are called inte-
gration by parts and integration by substitution, respectively.

While antiderivatives can be hard to find, they are easy to check. This Trial and error

makes “trial and error” a good strategy. In other words, if you don’t imme-
diately see what the antiderivative should be, but the function doesn’t look
too bad, try guessing. When you differentiate your guess, what you see may
lead you to a better guess.
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Example 4 Find

F (x) =

∫

cos(3x) dx.

Since the derivative of sin u is cos u, it is reasonable to try sin(3x) as an
antiderivative for cos(3x). Therefore:

first guess: F (x) = sin(3x),

check: F ′(x) = cos(3x) · 3 6= cos(3x).

We wanted F ′ = cos(3x) but we got F ′ = 3 cos(3x). The chain rule gave us
an extra—and unwanted—factor of 3. We can compensate for that factor by
multiplying our first guess by 1/3. Then

second guess: F (x) = 1
3
sin(3x),

check: F ′(x) = 1
3
cos(3x) · 3 = cos(3x).

Thus

∫

cos(3x) dx = 1
3
sin(3x).

Because indefinite integrals are difficult to calculate, reference manu-Tables of Integrals

als in mathematics and science often include tables of integrals. There are
sometimes many hundreds of individual formulas, organized by the type of
function being integrated. A modest selection of such formulas can be found
at the back of this book. You should take some time to learn how these
tables are arranged and get some practice using them. You should also check
some of the more unlikely looking formulas by differentiating them to see
that they really are the antiderivatives they are claimed to be.

Computers are having a major impact on integration techniques. We saw
in the last chapter that any continuous function—even one given by the out-
put from some laboratory recording device or as the result of a numerical
technique like Euler’s method—can be approximated by a polynomial (usu-
ally using lots of computation!), and the antiderivative of a polynomial is
easy to find.

Moreover, computer software packages which can find any existing for-Integration can
now be done
quickly and efficiently
by computer software

mula for a definite integral are becoming widespread and will probably have
a profound impact on the importance of integration techniques over the next
several years. Just as hand-held calculators have rendered obsolete many tra-
ditional arts—like using logarithms for performing multiplications or knowing
how to interpolate in trig tables—there is likely to be a decreased importance
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placed on humans’ being adept at some of the more esoteric integration tech-
niques. While some will continue to derive pleasure from becoming proficient
in these skills, for most users it will generally be much faster, and more ac-
curate, to use an appropriate software package. Nevertheless, for those going
on in mathematics and the physical sciences, it will still to be useful to be
able to perform some of the simpler integrations by hand reasonably rapidly.
The subsequent sections of this chapter develop the most commonly needed
techniques for doing this.

Exercises

1. What is the inverse of the function y = 1/x? Sketch the graph of the
function and its inverse.

2. What is the inverse of the function y = 1/x3? Sketch the graph of the
the function and its inverse. Do the same for y = 3x − 2.

3. a) Let θ = arctan x. Then tan θ = x. Refer to the picture on page 688
showing the relationship between x and θ. Use this drawing to show that
arctan(x) + arctan(1/x) is constant—that is, its value doesn’t depend on x.
What is the value of the constant?

b) Use part (a), and the derivative of arctanx, to find the derivative of
arctan(1/x).

c) Use the chain rule to verify your answer to part (b).

4. The logarithm for the base b is defined as the inverse to the exponential
function with base b:

y = logb x if x = by.

Using only the fact that dx/dy = ln b · by, deduce the formula

dy

dx
=

1

ln b
· 1

x
.

Note: this is purely an algebra problem; you don’t need to invoke any differ-
entiation rules.

5. a) Define arccosx, the inverse of the cosine function. Be sure to limit
the domain of the cosine function to an interval on which it is one-to-one.
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b) Sketch the graph y = arccos x. How did you limit the range of y?

c) Determine dy/dx.

6. a) If θ = arcsin x, refer to the picture on page 687 reflecting the relation
between θ and x. Using this picture, proceed as in problem 3 to to show that
the sum arcsin x + arccos x is constant. What is the value of the constant?

b) Use part (a), and the derivative of arcsin x, to determine the derivative
of arccos x. Does this result agree with what you got in the last exercise?

7. Find a formula for

∫
dx√

1 − x2
.

8. Verify that the antiderivatives given in the table on page 689 are correct.

9. Find an antiderivative of each of the following functions. Don’t hesitate
to use the “trial and error” method of Example 4 above.

3 5t −5t 3 − 5t

7x4 1

y3
e2z u +

1

u

(1 + w3)2 cos(5v) x9 + 5x7 − 2x5 sin t cos t

10. Find a formula for each of the following indefinite integrals.

a)

∫

3x dx

b)

∫

3u du

c)

∫

ez dz

d)

∫

5t4 dt

e)

∫

7y +
1

y
dy

f)

∫

7y − 4

y2
dy

g)

∫

5 sinw − 2 cosw dw

h)

∫

dx

i)

∫

ez+2 dz

j)

∫

cos(4x) dx

k)

∫
5

1 + r2
dr

l)

∫
1√

1 − 4s2
ds

11. a) Find an antiderivative F (x) of f(x) = 7 for which F (0) = 12.
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b) Find an antiderivative G(x) of f(x) = 7 for which G(3) = 1.

c) Do F (x) and G(x) differ by a constant? If so, what is the value of that
constant?

12. a) Find an antiderivative F (t) of f(t) = t + cos t for which F (0) = 3.

b) Find an antiderivative G(t) of f(t) = t + cos t for which G(π/2) = −5.

c) Do F (t) and G(t) differ by a constant? If so, what is the value of that
constant?

13. Find an antiderivative of the function a + by when a and b are fixed
constants.

14. a) Verify that (1 + x3)10 is an antiderivative of 30x2(1 + x3)9.

b) Find an antiderivative of x2(1 + x3)9.

c) Find an antiderivative of x2 + x2(1 + x3)9.

15. a) Verify that x ln x is an antiderivative of 1 + ln x.

b) Find an antiderivative of ln x. [Do you see how you can use part (a) to
find this antiderivative?]

16. Recall that F (y) = ln(y) is an antiderivative of 1/y for y > 0. According
to the text, every antiderivative of 1/y over this domain must be of the form
ln(y) + C for an appropriate value of C.

a) Verify that G(y) = ln(2y) is also an antiderivative of 1/y.

b) Find C so that ln(2y) = ln(y) + C.

17. Verify that − cos2 t is an antiderivative of 2 sin t cos t. Since you already
know sin2 t is an antiderivative, you should be able to show

− cos2 t = sin2 t + C

for an appropriate value of C. What is C?

18. Since the function ln x is defined only when x > 0, the equation

∫
1

x
dx = ln x + C
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applies only when x > 0. However, the integrand 1/x is defined when x < 0 as
well. Therefore, it makes sense to ask what the integral (i.e., antiderivative)
of 1/x is when x < 0.

a) When x < 0 then −x > 0 so ln(−x) is defined. In these circumstances,
show that ln(−x) is an antiderivative of 1/x.

b) Now put these two “pieces” of antiderivative together by defining the
function

F (x) =

{

ln(−x) if x < 0,

ln(x) if x > 0

Sketch together the graphs of the functions F (x) and 1/x in such a way that
it is clear that F (x) is an antiderivative of 1/x.

c) Explain why F (x) = ln |x|. For this reason a table of integrals often
contains the entry ∫

1

x
dx = ln |x| + C.

d) Every function ln |x| + C is an antiderivative of 1/x, but there are even
more. As you will see, this can happen because the domain of 1/x is broken
into two parts. Let

G(x) =

{

ln(−x) if x < 0,

ln(x) + 1 if x > 0.

Sketch together the graphs of the functions G(x) and 1/x in such a way that
it is clear that G(x) is an antiderivative of 1/x.

e) Explain why there is no value of C for which

ln |x| + C = G(x).

This shows that the functions ln |x|+C do not exhaust the set of antideriva-
tives of 1/x.

f) Construct two more antiderivatives of 1/x and sketch their graphs. What
is the general form of the new antiderivatives you have constructed? (A
suggestion: you should be able to use two separate constants C1 and C2 to
describe the general form.)

19. On page 683 of the text there is an antiderivative for the tangent func-
tion: ∫

tanx dx = − ln(cos x).
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However, this is not defined when x makes cos x either zero or negative.

a) How many separate intervals does the domain of tanx break down into?

b) For what values of x is cos x equal to zero, and for what values is it
negative?

c) Modify the antiderivative − ln(cos x) so that it is defined when cos x is
negative. (How is this problem with the logarithm function treated in the
previous question?)

d) In a typical table of integrals you will find the statement
∫

tan x dx = − ln | cosx| + C.

Explain why this does not cover all the possibilities.

e) Give a more precise expression for

∫

tanx dx, modelled on the way you

answered part (f) of problem 18. How many different constants will you
need?

f) Find a function G that is an antiderivative for tanx and that also satisfies
the following conditions:

G(0) = 5, G(π) = −23, G(17π) = 197.

20. In the table on page 689 the antiderivative of xp is given as

1

p + 1
xp+1 + C.

For some values of p this is correct, with only a single constant C needed.
For other values of p, though, the domain of xp will consist of more than one

piece, and
1

p + 1
xp+1 can be modified by a different constant over each piece.

For what values of p does this happen?

21. Find F ′(x) for the following functions. In parts (a), (b), and (d) do
the problems two ways: by finding an antiderivative, and by using the fun-
damental theorem to get the answer without evaluating an antiderivative.
Check that the answers agree.

a) F (x) =

∫ x

0

(t2 + t3) dt.
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b) F (x) =

∫ x

1

1

u
du.

c) F (x) =

∫ x

1

v

1 + v3
dv.

d) F (x) =

∫ x2

0

cos t dt.

e) F (x) =

∫ x2

1

v

1 + v3
dv. [Hint: let u = x2 and use the chain rule.]

Comment: It may seem that parts (c) and (e) are more difficult than the
others. However, there is a way to apply the fundamental theorem of calculus
here to get answers to parts (c) and (e) quickly and with little effort.

22. Consider the two functions

F (x) =
√

1 + x2 − 1 and G(x) =

∫ x

0

t√
1 + t2

dt.

a) Show that F and G both satisfy the initial value problem

y′ =
x√

1 + x2
, y(0) = 0.

b) Since an initial value problem typically has a unique solution, F and G
should be equal. Assuming this, determine the exact value of the following
definite integrals.

∫ 1

0

t√
1 + t2

dt,

∫ 2

0

t√
1 + t2

dt,

∫ 5

0

t√
1 + t2

dt.

23. The connection between integration and differentiation that is provided
by the fundamental theorem of calculus makes it possible to determine an
integral by solving a differential equation. For example, the accumulation
function

A(x) =

∫ x

0

e−t2dt

is the solution to the initial value problem

y′ = e−x2

, y(0) = 0.
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Therefore, A(x) can be found by solving the differential equation. As you
have seen, Euler’s method is a useful way to solve differential equations.

a) Use either a program (e.g., PLOT) or a differential equation solver on a
computer to get a graphical solution A(x) to the initial value problem above.

b) Sketch the graph of y = A(x) over the domain 0 ≤ x ≤ 4.

c) Your graph should increase from left to right. How can you tell this even
before you see the computer output?

d) Your graph should level off as x increases. Determine A(5), A(10), A(30).
(Approximations provided by the computer are adequate here.)

e) Estimate lim
x→∞

A(x). [The exact value is
√

π/2.]

f) Determine

∫ 1

0

e−t2dt and

∫ 2

0

e−t2dt.

g) Determine

∫ 2

1

e−t2dt.

24. Find the area under the curve y = x3 + x for x between 1 and 4. (See
chapter 6.3.)

25. Find the area under the curve y = e3x for x between 0 and ln 3.

26. The average value of the function f(x) on the interval a ≤ x ≤ b is
the integral

1

b − a

∫ b

a

f(x) dx.

(See the discussion of average value in chapter 6, pages 397–399.)

a) Find the average value of each of the functions y = x, x2, x3, and x4 on
the interval 0 ≤ x ≤ 1.

b) Explain, using the graphs of y = x and y = x2, why the average value of
x2 is less than the average value of x on the interval [0, 1].

27. a) What are the maximum, minimum, and average values of the func-
tion

f(x) = x + 2e−x

on the interval [0, 3]?

b) Sketch the graph of y = f(x) on the interval [0, 3]. Draw the line y = µ,
where µ is the average value you found in part (a).
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c) For which x does the graph of y = f(x) lie above the line y = µ, and
for which x does it lie below the line? The region between the graph and
the line has two parts—one is above the line (and below the graph) and the
other is below the line (and above the graph). Shade these two regions and
compare their areas: which is larger? [The two are equal.]

11.2 Integration by Substitution

In the preceding section we converted a couple of general rules for differentiation—
the rule for the derivative of a constant times a function and the rule for the
derivative of the sum of two functions—into equivalent rules in integral form.
In this section we will develop the integral form of the chain rule and see some
of the ways this can be used to find antiderivatives.

Suppose we have functions F and G, with corresponding derivatives f
and g. Then the chain rule says

(F (G(x)))′ = F ′(G(x)) G′(x) = f(G(x)) g(x).

If we now take the indefinite integral of these equations, we get

F (G(x)) + C =

∫

(F (G(x)))′ dx =

∫

f(G(x)) g(x) dx,

where C can be any constant.
Reversing these equalities to get a statement about integrals, we obtain:The integral form

of the chain rule
∫

f(G(x)) g(x)dx = F (G(x)) + C.

This somewhat unpromising expression turns out to be surprisingly use-
ful. Here’s how: Suppose we want to find an indefinite integral, and see in
the integrand a pair of functions G and g, where G′ = g and where g(x)
can be factored out of the integrand. We then find a function f so that theReduction methods

transform problems
into equivalent,
simpler, problems

integrand can be written in the form f(G(x))g(x). Now we only have to
find an antiderivative for f . Once we have such an antiderivative, call it F ,
then the solution to our original problem will be F (G(x)). Thus, while our
original antiderivative problem is not yet solved, it has been reduced to a
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different, simpler antiderivative problem that, when all goes well, will be eas-
ier to evaluate. Such reduction methods are typical of many integration
techniques. We will see other examples in the remainder of this chapter.

Example 1 Suppose we try to find a formula for the integral

∫

3x2
(
1 + x3

)7
dx.

One way would be to multiply out the expression (1 + x3)
7
, making the

integrand a polynomial with many separate terms of different degrees. (The
highest degree would be 23; do you see why?) We could then carry out the
integration “term-by-term,” using the rules for sums and constant multiples
of powers of x that were given in the previous section. But this is tedious—
even excruciating.

Instead, notice that the expression 3x2 is the derivative of 1 + x3. If we
let G(x) = 1 + x3 and g(x) = 3x2, we can then write the integrand as

3x2
(
1 + x3

)7
= (G(x))7g(x).

Now (G(x))7 is clearly just f(G(x)) where f is the function which raises its
input to the 7th power—f(x) = x7 for any input x. But we recognize f as
an elementary function whose antiderivative we can write down immediately
as F (x) = 1

8
x8. Thus the solution to our original problem will be

∫

3x2
(
1 + x3

)7
dx = F (G(x)) + C =

1

8

(
1 + x3

)8
+ C.

As with any integration problem, we can check our answer by taking the
derivative of the right-hand side to see if it agrees with the integrand on the
left. You should do this whenever you aren’t quite sure of your technique (or
your arithmetic!).

Note that the term 3x2 that appeared in the integrand above was essential
for the procedure to work. The integral

∫
(
1 + x3

)7
dx

cannot be found by substitution, even though it appears to have a simpler
form. (Of course, the integral can be found by multiplying out the integrand.)
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Using differential notation So far the symbol dx (the differential of x)A compact notation for
expressing the integral
form of the chain rule

under the integral sign has simply been an appendage, tagging along to sug-
gest the ∆x portion of the Riemann sums approximating definite integrals.
It turns out we can take advantage of this notation to use the integral form
of the chain rule more compactly.

Instead of naming the functions G and g as above, we introduce a new
variable u = G(x). Then

du

dx
= G′(x) = g(x),

and it is suggestive to multiply out this “quotient” to get

du = g(x) dx.

While this is reminiscent of the microscope equation we met in chapter 3,
and 18th century mathematicians took this equation seriously as a relation
between two “infinitesimally small” quantities dx and du, we will view it only
as a convenient mnemonic device. To see how this simplifies computations,
reconsider the previous example. If we let u = 1 + x3, then du = 3x2 dx, so
we can write

3x2(1 + x3)7 dx = (1 + x3

︸ ︷︷ ︸

u

)7 3x2 dx
︸ ︷︷ ︸

du

= u7 du.

It follows that
∫

3x2
(
1 + x3

)7
dx =

∫

u7 du

= 1
8
u8 + C

= 1
8

(
1 + x3

)8
+ C,

as before. We have arrived at the same answer without having to introduce
the cumbersome language of all the auxiliary functions—we simply substi-
tuted the variable u for a certain expression in x (which we called G(x)
before), and replaced G′(x)dx by du. For this reason this technique is called
integration by substitution. You should always be clear, though, that
integration by substitution is just the integral form of the chain rule, a re-
lationship that becomes clear whenever you check the answer substitution
gives you.
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Example 2 Can we use the method of substitution to find
∫

e5x

6 + e5x
dx?

The numerator is almost the derivative of the denominator. This suggests
we let G(x) = 6 + e5x, giving g(x) = G′(x) = 5e5x. Since we need to be able
to factor g(x) out of the integrand, we multiply numerator and denominator
by 5 to get

∫
e5x

6 + e5x
dx =

∫
1

5
· 1

6 + e5x
5e5x dx

=

∫
1

5
· 1

G(x)
g(x) dx

=
1

5

∫

f(G(x))g(x) dx,

where f is just the reciprocal function—f(x) = 1/x. But an antiderivative
for f is just ln x, so the desired antiderivative is just

1

5
F (G(x)) + C =

1

5
ln(6 + e5x) + C.

As usual, you should check this answer by differentiating to see that you
really do get the original function.

Now let’s see how this works using differential notation. If we set u =
6 + e5x, then

du

dx
= 5e5x and du = 5e5x dx.

Again we insert a factor of 5 in the numerator and an identical one in the
denominator to balance it. Substitutions for u and du then yield the follow-
ing:

∫
1

5
· 5e5x

6 + e5x
dx =

1

5

∫
5e5x dx

6 + e5x

=
1

5

∫
du

u

=
1

5
ln(u) + C

=
1

5
ln(6 + e5x) + C,

as before.
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The two examples above have the same structure. In both, a certainThe basic structure

function of x is selected and called u; part of the integrand, namely u′ dx,
becomes du, the rest becomes one of the basic functions of u. Specifically:

integrand u du function of u

3x2 (1 + x3)
7
dx 1 + x3 3x2 dx u7

e5x

6 + e5x
dx 6 + e5x 5e5x dx

1

5
· 1

u

Note that you may have to do a bit of algebraic reshaping of the integrand
to cast it in the proper form. For example, we had to insert a factor of
5 to the numerator of the second example to make the numerator be the
derivative of the denominator. There is no set routine to be followed to
find an antiderivative most efficiently, or even any way to know whether a
particular method will work until you try it. Success comes with experience
and a certain amount of intelligent fiddling until something works out.

Example 3 The method of substitution is useful in simple problems, too.
Consider ∫

cos(3t) dt.

If we set u = 3t, then du = 3 dt and
∫

cos(3t) dt =

∫

cos(u) · 1
3
du

= 1
3

∫

cos(u) du

= 1
3
sin(u) + C

= 1
3
sin(3t) + C.

Substitution in Definite Integrals

Until now we have been using the technique of substitution to find antiderivatives—
that is, to evaluate indefinite integrals. Refer back to the integral form of the
chain rule given in the box on page 702, and see what happens when we use
this equation to evaluate a definite integral. Suppose we want to evaluate

∫ b

a

f(G(x)) g(x) dx.
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We know that F (G(x)) is an antiderivative, so by the fundamental theorem
we have

∫ b

a

f(G(x)) g(x) dx = F (G(x))|ba = F (G(b)) − F (G(a)).

Now suppose we make the substitution u = G(x) and du = g(x) dx. Then
as x goes from a to b, u will go from G(a) to G(b). Moreover, we have

∫ G(b)

G(a)

f(u) du = F (u)|G(b)
G(a) = F (G(b)) − F (G(a)),

so the two definite integrals have the same value. In other words,

If we make the substitution u = G(x), then
∫ b

a

f(G(x)) g(x) dx = F (G(b)) − F (G(a)) =

∫ G(b)

G(a)

f(u)du.

This means that to evaluate a definite integral by substitution, we can
do everything in terms of u. We don’t ever need to find an antiderivative for
the original integrand in terms of x or use the original limits of integration.

Example 4 Consider the definite integral

∫ π/2

0

cos x dx

1 + sin x
.

We can evaluate this integral by making the substitution u = 1 + sin x, and
du = cos x dx. Moreover, as x goes from 0 to π/2, u goes from 1 to 2.
Therefore ∫ π/2

0

cos x dx

1 + sin x
=

∫ 2

1

du

u
= ln u|21 = ln 2.

Check that this is the same answer you would have gotten if you had ex-
pressed the antiderivative ln u in terms of x and evaluated the result at the
limits on the original integral.

Example 5 Evaluate
∫ 1

0

6x2(1 + x3)4 dx.
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With the substitution u = 1 + x3 and du = 3x2 dx, as x goes from 0 to 1,
u goes from 1 to 2. Our integral thus becomes

∫ 1

0

6x2(1 + x3)4 dx =

∫ 2

0

2u4 du =
2

5
u5

∣
∣
∣
∣

2

1

=
64

5
.

Exercises

1. Evaluate the following using substitution. Do parts (a) through (e) in
two ways: i. by writing the integrand in the form f(G(x))g(x) (or y or
t or whatever the variable is) for appropriate functions f , G, and g, with
G′ = g, and then finding F =

∫
f ; and ii. using differential notation. Do the

remaining parts in the way you feel most confident.

a)

∫

2y(y2 + 1)50 dy

b)

∫

sin(5z) dz

c)

∫
e
√

x

√
x

dx

d)

∫

(5t + 7)50 dt

e)

∫

3u2 3
√

u3 + 8 du

f)

∫
1

2v + 1
dv

g)

∫

tanx dx

h)

∫

tan2(x) sec2(x) dx

i)

∫

sec(x/2) tan(x/2) dx

j)

∫

sin(w)
√

cos(w)dw

k)

∫
sin(

√
s)√

s
ds

l)

∫ √
3 − x dx

m)

∫
dr

r ln r

n)

∫

ex sin(1 + ex) dx

o)

∫
y

1 + y2
dy

p)

∫
w√

1 − w2
dw

q)

∫
1

1 + 4y2
dy

r)

∫
1√

1 − 9w2
dw

2. Use integration by substitution to find the numerical value of the follow-
ing. In four of these you should get your answer in two ways: i) by finding an
antiderivative for the given integrand, and ii) by using the observation in the
box on page 707, comparing the results. You should also check your results
for three of the problems by finding numerical estimates for the integrals
using RIEMANN.
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a)

∫ 1

0

es

es + 1
ds

b)

∫ ln e

0

es

es + 1
ds

c)

∫ 3

1

1

2x + 1
dx

d)

∫ −1

−3

1

2x + 1
dx

e)

∫ 1

0

t√
1 + t2

dt

f)

∫ 1

0

sin(π
√

t)√
t

dt

g)

∫ 2

0

1

1 + (x2/4)
dx

h)

∫ 1
3

0

1
√

1 − 9y2
dy

3. This question concerns the integral I =

∫

sin x cos x dx.

a) Find I by using the substitution u = sin x.

b) Find I by using the substitution u = cos x.

c) Compare your answers to (a) and (b). Are they the same? If not, how do
they differ? Since both answers are antiderivatives of sin x cos x, they should
differ only by a constant. Is that true here? If so, what is the constant?

d) Now calculate the value of the definite integral

∫ π/2

0

sin x cos x dx

twice, using the two indefinite integrals you found in (a) and (b). Do the two
values agree, or disagree? Is your result consistent with what you expect?

4. a) Find all functions y = F (x) that satisfy the differential equation

dy

dx
= x2

(
1 + x3

)13
.

b) From among the functions F (x) you found in part (a), select the one that
satisfies F (0) = 4.

c) From among the functions F (x) you found in part (a), select the one that
satisfies F (−1) = 4.

5. Find a function y = G(t) that solves the initial value problem

dy

dt
= te−t2 y(0) = 3.
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6. a) What is the average value of the function f(x) = x/
√

1 + x2 on the
interval [0, 2]?

b) Show that the average value of the f(x) on the interval [−2, 2] is 0. Sketch
a graph of y = f(x) on this interval, and explain how the graph also shows
that the average is 0.

7. a) Sketch the graph of the function y = xe−x2

on the interval [0, 5].

b) Find the area between the graph of y = xe−x2

and the x-axis for 0 ≤ x ≤
5.

c) Find the area between the graph of y = xe−x2

and the x-axis for 0 ≤ x ≤
b. Express your answer in terms of the quantity b, and denote it A(b). Is
A(5) the same number you found in part(b)? What are the values of A(10),
A(100), A(1000)?

d) It is possible to argue that the area between the graph of y = xe−x2

and
the entire positive x-axis is 1/2. Can you develop such an argument?

8. a) Use a computer graphing utility to establish that

sin2 x =
1 − cos(2x)

2
.

Sketch these graphs.

b) Find a formula for

∫

sin2 x dx. (Suggestion: replace sin2 x by the expres-

sion involving cos(2x), above, and integrate by substitution.)

c) What is the average value of sin2 x on the interval [0, π]? What is its
average value on any interval of the form [0, kπ], where k is a whole number?

d) Explain your results in part (c) in terms of the graph of sin2 x you drew
in part (a).

e) Here’s a differential equations proof of the identity in part (a). Let f(x) =
sin2 x, and let g(x) = (1 − cos(2x))/2. Show that both of these functions
satisfy the initial value problem

y′′ = 2 − 4y with y(0) = 0 and y′(0) = 0.

Hence conclude the two functions must be the same.
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11.3 Integration by Parts

As in the previous section, suppose we have functions F and G, with cor- An integral form
of the product ruleresponding derivatives f and g. If we use the product rule to differentiate

F (x) · G(x), we get:

(F · G)′ = F · G′ + F ′ · G = F · g + f · G.

We can turn this into a statement about indefinite integrals:
∫

(F · g + f · G) dx =

∫

(F · G)′ dx = F (x) · G(x) + C.

Unfortunately, in this form the statement is not especially useful; it applies
only when the integrand has two terms of the special form f · g′ + f ′ · g.
However, if we rewrite the statement in the form

∫

F · g dx = F · G −
∫

f · G dx

it becomes very useful.

Example 1 We will use the formula in the box to find
∫

x · cos x dx.

If we label the parts of this integrand as follows:

F (x) = x g(x) = cos x,

then we have
f(x) = 1 and G(x) = sin x.

According to the formula,
∫

x · cos x dx = x · sin x −
∫

sin x dx

= x · sin x + cos x + C.

The integrand is first broken into two parts—in this case, x and cos x. Integrate only part
of the integrandOne part is differentiated while the other part is integrated. (The part we

integrated is g(x) = cos x, and we got G(x) = sin x.) For this reason, the
rule described in the box is called integration by parts.
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As with integration by substitution, integration by parts exchanges one
integration task for another: Instead of finding an antiderivative for F · g, we
must find one for f · G. The idea is to “trade-in” one integration problem
for a more readily solvable one.

Example 2 Use integration by parts to find

∫

ln(x) dx.

At first glance we can’t integrate by parts, because there aren’t two parts!
But note that we can write

ln(x) = ln(x) · 1,

and then set

F (x) = ln(x), g(x) = 1.

This implies

f(x) =
1

x
and G(x) = x,

and the integration by parts formula now gives us

∫

ln(x) dx = x · ln(x) −
∫

x · 1

x
dx

= x · ln(x) −
∫

1 dx

= x · ln(x) − x + C.

We thus see that integration by parts—like integration by substitution—
is an art rather than a set routine. If integration by parts is to work, severalThe ingredients

of a successful
integration by parts

things must happen. First, you need to see that the method might actually
apply. (In Example 2 this wasn’t obvious.) Next, you need to identify the
parts of the integrand that will be differentiated and integrated, respectively.
The wrong choices can lead you away from a solution, rather than towards
one. (See example 3 below for a cautionary tale.) Finally, you need to be
able to carry out the integration of the new integral

∫
f ·G dx. As you work

you may have to reshape the integrand algebraically. Technique comes with
practice, and luck is useful, too.
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Example 3 Use integration by parts to find

∫

t · et dt.

Set

F (t) = et, g(t) = t;

then

f(t) = et, G(t) =
t2

2
.

The integration by parts formula then gives

∫

t · et dt =
t2

2
et −

∫
t2

2
et dt.

While this is a true statement, we are not better off—the new integral is not
simpler than the original. A solution is eluding us here. You will have a What went wrong?

chance to do this problem properly in the exercises.

Exercises

1. Use integration by parts to find a formula for each of the following inte-
grals.

a)

∫

x sin x dx

b)

∫

tet dt

c)

∫

we−w dw

d)

∫

x lnx dx

e)

∫

arcsin x dx

f)

∫

arctan x dx

g)

∫

x2e−x dx

h)

∫

u2 cos u du

i)

∫

x sec2 x dx

j)

∫

e2x(x + ex) dx

(Suggestion for part (g): Apply integration by parts twice. After the first
application you should have an integral that can itself be evaluated using
integration by parts.)
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2. Use integration by parts to obtain a formula for
∫

(ln x)2 dx.

Choose f = ln x and also g′ = ln x. To continue you need to find g, the
antiderivative of ln x, but this has already been obtained in the text.

3. a) Find

∫

x2ex dx.

b) Find

∫

x3ex dx. (Reduce this to part (a)).

c) Find

∫

x4ex dx.

d) What is the general pattern here? Find a formula for

∫

xnex dx, where

n is any positive integer.

e) Find

∫

ex
(
5x2 − 3x + 7

)
dx.

4. a) Draw the graph of y = arctanx over the interval 0 ≤ x ≤ 1. You
could have gotten the same graph by thinking of x as a function of y—write
down this relationship and the corresponding y interval.

b) Evaluate
∫ 1

0

arctanx dx

and show on your graph the area this corresponds to.

c) Evaluate
∫ π/4

0

tan y dy

and show on your graph the area this corresponds to.

d) If we add the results of part (b) and part (c), what do you get? From
the geometry of the picture, what should you have gotten?

5. Repeat the analysis of the preceding problem by calculating the value of
∫ 2

0

x3 dx +

∫ 8

0

y1/3 dy,

and seeing if it agrees with what you would predict by looking at the graphs.
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6. Generalize the preceding two problems to the case where f and g are any
two functions that are inverses of each other whose graphs pass through the
origin.

7. a) What is the average value of the function lnx on the interval [1, e]?

b) What is the average value of ln x on [1, b]? Express this in terms of b. Dis-
cuss the following claim: The average value of ln x on [1, b] is approximately
ln(b) − 1 when b is large.

8. a) Sketch the graph of f(x) = xe−x on the interval [0, 4].

b) What is the area between the graph of y = f(x) and the x-axis for
0 ≤ x ≤ 4?

c) What is the area between the graph of y = f(x) and the x-axis for
0 ≤ x ≤ b? Express your answer in terms of b, and denote it A(b). What is
A(100)?

9. Find three solutions y = f(t) to the differential equation

dy

dt
= 5 − 2 ln t.

10. a) Find the solution y = ϕ(t) to the initial value problem

dy

dt
= te−t2/2, y(0) = 2.

b) The function ϕ(t) increases as t increases. Show this first by sketching the
graph of y = ϕ(t). Show it also by referring to the differential equation that
ϕ(t) satisfies. (What is true about the derivative of an increasing function?)

c) Does the value of ϕ(t) increase without bound as t → ∞? If not, what
value does ϕ(t) approach?

11. a) The differential form of Integration by Parts If u and v are
expressions in x, then the product rule can be written as

d

dx
(u · v) =

du

dx
· v + u · dv

dx
.
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Explain carefully how this leads to the following statement of integration by
parts, and why it is equivalent to the form in the text:

∫

u dv = uv −
∫

v du.

b) Solve a couple of the preceding problems using this notation.

Sine and cosine integrals

The purpose of the remaining exercises is to establish integral formulas that
we will use to analyze Fourier polynomials and the power spectrum in chap-
ter 12. In the first three, α is a constant:

∫

sin2 αx dx =
x

2
− 1

4α
sin 2αx + C,

∫

cos2 αx dx =
x

2
+

1

4α
sin 2αx + C,

∫

sin αx cos αx dx = − 1

4α
cos 2αx + C.

In the remaining four, α and β are different constants:

∫

sin αx sin βxdx =
1

β2 − α2
(α cos αx sin βx − β sin αx cos βx) + C,

∫

cos αx cos βxdx =
1

β2 − α2
(β cos αx sin βx − α sin αx cos βx) + C,

∫

sin αx cos βxdx =
1

β2 − α2
(β sin αx sin βx + α cos αx cos βx) + C,

∫

cos αx sin βxdx =
1

β2 − α2
(−α sin αx sin βx − β cos αx cos βx) + C.

12. a) In the later exercises we shall make frequent use of the following
“trigonometric identities”:

2 sin αx cos αx = sin 2αx,

cos2 αx − sin2 αx = cos 2αx,

sin2 αx + cos2 αx = 1.
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Using a graphing package on a computer, graph together the functions

2 sinαx cos αx and sin 2αx

to show that they seem to be identical. (That is, show that they “share
phosphor.”) Then do the same for the pairs of functions in the other two
identities.

b) We can give a different argument for the identities above using the ideas
we have developed in studying initial value problems. To prove the first
identity, for instance, let f(x) = 2 sin αx cos αx, and let g(x) = sin 2αx.
Show that both functions satisfy

y′′ = −4α2y, with y(0) = 0 and y′(0) = 2α.

Hence conclude the two functions must be the same.

c) Find an initial value problem that is satisfied by both f(x) = cos2 αx −
sin2 αx and by g(x) = cos 2αx.

13. Evaluating

∫

sin2 x dx

a) Using integration by parts, show that

∫

sin2 x dx = − sin x cos x +

∫

cos2 x dx.

b) Using the identity sin2 αx + cos2 αx = 1, show that the new integral can
be written as

x −
∫

sin2 x dx.

c) Combining (a) and (b) algebraically, show that

2

∫

sin2 x dx = − sin x cos x + x + C.

d) Using algebra and a trigonometric identity, conclude that

∫

sin2 x dx =
x

2
− 1

4
sin 2x + C.
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14. Modify the argument of the preceding exercise to show
∫

sin2 αx dx =
x

2
− 1

4α
sin 2αx + C.

and ∫

cos2 αx dx =
x

2
+

1

4α
sin 2αx + C.

15. Evaluating

∫

sin2 αx dx

Determine this integral anew, without using integration by parts, by carrying
out the following steps.

a) From the trigonometric identities on page 716, deduce that

2 sin2 αx = 1 − cos 2αx.

b) Using the formula in (a), conclude that
∫

sin2 αx dx =
x

2
− 1

4α
sin 2αx + C.

16. Evaluating

∫

cos2 αx dx

Using only algebra and the identity sin2 αx + cos2 αx = 1, show that the
previous exercise implies

∫

cos2 αx dx =
x

2
+

1

4α
sin 2αx + C.

17. Evaluating

∫

sin αx cos αxdx

a) Using the identity sin 2αx = 2 sin αx cos αx, deduce the following formula
∫

sin αx cos αxdx = − 1

4α
cos 2αx + C.

b) Using integration by substitution, obtain the alternative formula
∫

sin αx cos αxdx =
1

2α
sin2 αx + C.
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c) Show that your results in (a) and (b) are compatible. (For example, use
exercise 15 (a).)

18. Evaluating

∫

sin αx sin βx dx

a) Use integration by parts to show that

∫

sin αx sin βx dx = − 1

α
cos αx sin βx +

β

α

∫

cos αx cos βxdx.

b) Using integration by parts again, show that the new integral in part (a)
can be written as

∫

cos αx cos βxdx =
1

α
sin αx cos βx +

β

α

∫

sin αx sin βx dx.

c) Let J =

∫

sin αx sin βx dx; show that combining (a) and (b) gives

J = − 1

α
cos αx sin βx +

β

α2
sin αx cos βx +

β2

α2
J.

d) Solve (c) for J to find

∫

sin αx sin βx dx =
1

β2 − α2
(α cos αx sin βx − β sin αx cos βx) + C.

19. Imitate the methods of the preceding exercise to deduce

∫

cos αx cos βx dx =
1

β2 − α2
(β cos αx sin βx − α sin αx cos βx) + C

and
∫

sin αx cos βx dx =
1

β2 − α2
(β sin αx sin βx + α cos αx cos βx) + C.

20. Evaluating

∫

cos αx sin βx dx



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

720 CHAPTER 11. TECHNIQUES OF INTEGRATION

This integral is the same as one in the preceding exercise, if you exchange
the factors α and β. Do that, and obtain the formula

∫

cos αx sin βxdx = 1α2 − β2(α sin αx sin βx + β cos αx cos βx) + C.

21. Determine the following.

a)

∫ 2π

0

sin2 x dx.

b)

∫ nπ

0

cos2 x dx, n a positive integer.

c)

∫ 2π

0

sin x sin βx dx, β 6= 1.

d)

∫ π

0

sin x sin βx dx, β 6= 1.

11.4 Separation of Variables and

Partial Fractions

One of the principal uses of integration techniques is to find closed form so-
lutions to differential equations. If you look back at the methods we have
developed so far in this chapter, they are all applicable to differential equa-
tions of the form y′ = f(t) for some function f—that is, the rate at which
y changes is a function of the independent variable only. In such cases we
only need to find an antiderivative F for f , choose the constant C to satisfy
the initial value, and we have our solution. As we saw in the early chapters,
though, the behavior of y′ often depends on the values of y rather than on
t—think of the S-I-R model or the various predator-prey problems. In this
section we will see how our earlier techniques can be adapted to apply to
problems of this sort as well.

The Differential Equation y′ = y

As you know, the exponential functions y = Cet are the solutions to theA new method for
solving y′ = y differential equation dy/dt = y. Let’s put aside this knowledge for a moment

and rediscover these solutions using a new method. The method involves the
connection between inverse functions and their derivatives. With it we will
be able to explore a variety of problems that had been beyond our reach.

The idea behind the new method is quite simple: Instead of thinkingFind the inverse
function instead of y as a function of t, convert to thinking of t as a function of y, thereby

looking for the inverse function. We know that the derivative of the inverse
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function is the reciprocal of the derivative of the original function, so we can
rewrite the given differential equation by using its reciprocal:

The new differential
equation. . .

dy

dt
= y becomes

dt

dy
=

1

y
.

Then solve the new differential equation dt/dy = 1/y. While this may
not look very different, it has the property that the rate of change of the
dependent variable—now t—is expressed as a function of the independent
variable—now y. But this is just the form we have been considering in the
earlier sections of this chapter. A solution to the new equation is a function
t = g(y) whose derivative is 1/y. This is one of the basic antiderivatives
listed in the table on page 689:

. . . and its solutiont = g(y) = ln y + k,

where k is an arbitrary constant.
The solution to the original differential equation dy/dt = y is the inverse The inverse . . .

of t = ln y + k. We find it by solving this equation for y:

t − k = ln y

et−k = y

et · e−k = y

Thus y(t) = Cet, where we have replaced the constant e−k by C.
. . . solves the

original problem

Indefinite integrals

The language of indefinite integrals and differentials again provides a conve- The differential
equation expressed
using differentials

nient mnemonic for this new method. First, we use the original differential
equation to relate the differentials dy and dt:

dy =
dy

dt
dt = y dt.

This use of differentials is introduced on page 704. At this point the equation
makes sense for either t or y being the independent variable. Now if we try
to integrate this equation with respect to t, we get

y =

∫

dy =

∫

y(t) dt.
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We can’t find the last integral, because we don’t know what y is as a function
of t. Remember, an indefinite integral is an antiderivative, so an expression
of the form ∫

f dt

represents a function F (t) whose derivative is f(t). If f is not given by a
formula in t, there is no way to get a formula for F (t).

Suppose, though, that we divide both sides of the differential equation
dy = y dt by y, and integrate with respect to y. The equation takes the form

dy

y
= dt.

Now, if we introduce indefinite integrals, we have

∫
dy

y
=

∫

dt.

This time the variables y and t have been separated from each other, and weThe variables
are now separated can find the integrals. In fact,

ln y =

∫
dy

y
=

∫

dt = t + b,

where b is an arbitrary constant. (We could just as easily have added the
constant to the left side instead—do you see why we don’t have to add a
constant to both sides?) To complete the work we solve for y:

The solution
once again y = et+b = et · eb = Cet,

where C = eb.

Summary

The first time we went through the method, we replaced

dy

dt
= y by

dt

dy
=

1

y
.

These differential equations express the same relation between y and t. Each
is just the reciprocal of the other. In the first, y depends on t; in the second,
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though, t depends on y. The second time we went through the method, using
indefinite integrals, we replaced

dy = y dt by dt =
dy

y
.

This change was also algebraic, and it had the same effect: the dependent
variable changed from y to t. More important, in the new differential equation To integrate,

separate the variables(using the differentials themselves!) the variables are separated. That allows
us to do the integration. We get a solution in the form t = g(y). The solution
to the original problem is the inverse y = f(t) of t = g(y).

Separation of Variables

With the method of separation of variables, introduced in the previous
pages, we can obtain formulas for solutions to a number of differential equa-
tions that were previously accessible only by Euler’s method. Recall that
one of the clear advantages of a formula is that it allows us to see how the
parameters in the problem affect the solution. We’ll look at two problems.
First we’ll show how the method can explain the rather baffling formula for
supergrowth that we gave in chapter 4. Then, using the method of partial
fractions, to be discussed next, we’ll give a formula for logistic growth.

Supergrowth

In chapter 4.2 we modelled the growth of a population Q by the initial value
problem

dQ

dt
= kQ1.2, Q(0) = A.

To get a formula for the solution, transform the differential equation in the Separate the variables

following way:

dQ

dt
= k Q1.2

 dQ = k Q1.2 dt  

dQ

Q1.2
= k dt.

Now integrate:
∫

dQ

Q1.2
=

∫

k dt.
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Because the variables have been separated, the integrals can be found:

∫
dQ

Q1.2
=

∫

Q−1.2 dQ =
1

−.2
Q−.2

∫

k dt = kt + C

Therefore, 1
−.2

Q−.2 = kt + C. Now we must solve this equation for Q. HereSolve for Q

is one possible approach. First, we can write

Q−.2 = −.2(kt + C) = C1 − .2kt.

To simplify the expression, we have replaced −.2C by a new constant C1.
Since

(Q−.2)−5 = Q−.2×−5 = Q1 = Q,

we’ll raise both sides of the previous equation to the power −5:

Q(t) = (Q−.2)−5 = (C1 − .2kt)−5.

The last step is to incorporate the initial condition Q(0) = A. AccordingBring in the
initial condition to the new formula for Q(t),

Q(0) = (C1 − .2k · 0)−5 = C−5
1 = A.

Solving A = C−5
1 for C1, we get

C1 = A−1/5 =
1

5
√

A
.

We are now done:

Q(t) =

(
1

5
√

A
− .2kt

)−5

.

This is the formula that appears on page 215. It shows how the parametersInterpreting
the formula k and A affect the solution. In particular, we called this supergrowth because

the model predicts that the population Q becomes infinite when

1
5
√

A
− .2kt = 0; that is, when t =

1

.2k 5
√

A
.
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Partial Fractions

Using separation of variables with a partial fractions decomposition (to be
described below), we will obtain a formula for the solution to the logistic
equation (chapter 4.1). The method of partial fractions is a useful tool for
solving many integration problems.

Logistic growth

Consider this initial value problem associated with the logistic differential
equation:

dP

dt
= kP

(

1 − P

C

)

, P (0) = A.

We will find a formula for the solution that incorporates the growth param-
eter k and the carrying capacity C.

The first step is to transform the equation into one where the variables Step 1: separate
the variablesare separated:

dP

dt
= kP

(

1 − P

C

)

 

dP

P (1 − P/C)
= k dt.

Integrating the new equation we get
∫

dP

P (1 − P/C)
=

∫

k dt.

We are stuck now, because the integral on the left doesn’t appear in our table The denominator has
an unfamiliar formof integrals (page 689). If the denominator had only P or only 1− P/C, we

could use the natural logarithm. The difficulty is that the denominator is
the product of both terms.

There is a way out of the difficulty. We will use algebra to transform the
integrand into a form we can work with. The first step is to simplify the
denominator a bit:

1

P (1 − P/C)
=

1

P (C/C − P/C)
=

1

P (C − P )/C
=

C

P (C − P )
.

(This wasn’t essential; it just makes later steps easier to write.) The next
step will be the crucial one. To understand why we take it, consider the rule
for adding two fractions:

α

(x + a)
+

β

(x + b)
=

α(x + b) + β(x + a)

(x + a)(x + b)
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The denominator is a product—very much like the product P (C −P ) in ourStep 2: write the
integrand as a sum
of simple fractions

integrand! Perhaps we can write that as a sum of two simpler fractions:

C

P (C − P )
=

α

P
+

β

C − P
.

What values should α and β have? According to the rule for adding fractions,

α

P
+

β

C − P
=

α(C − P ) + βP

P (C − P )
,

and this should equal the original integrand:

α(C − P ) + βP

P (C − P )
=

C

P (C − P )
.

Since the denominators are equal, the numerators must also be equal:Determining
α and β

α(C − P ) + βP = C.

In fact, they must be equal as polynomials in the variable P . If we rewrite
the last equation, collecting terms that involve the same power of P , we get

(β − α)P + αC = 0 · P + 1 · C.

Since two polynomials are equal precisely when their coefficients are equal,
it follows that

β − α = 0 α = 1.

Thus α = β = 1, and we have

The partial fractions
decomposition

C

P (C − P )
=

1

P
+

1

C − P
.

The simpler expressions on the right are called partial fractions. Their
denominators are the different parts of the denominator of the integrand.
The equation that expresses the integrand as a sum of partial fractions is
called a partial fractions decomposition.

We can now return to the integral equation we are trying to solve:
∫

C

P (C − P )
dP =

∫

k dt.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

11.4. SEPARATION OF VARIABLES AND PARTIAL FRACTIONS 727

The right hand side equals kt+b, where b is the usual constant of integration. Step 3: evaluate
the integralsThanks to the partial fractions decomposition, the left hand side can be

written ∫
C

P (C − P )
dP =

∫
1

P
dP +

∫
1

C − P
dP.

The first integral on the right is straightforward:
∫

1

P
dP = lnP.

The second can be solved by using the substitution C − P = u, with dP =
−du: ∫

1

C − P
dP =

∫ −du

u
= − ln u = − ln(C − P ).

Putting everything together we find

ln P − ln(C − P ) = ln

(
P

C − P

)

= kt + b.

As we have seen, separation of variables usually leaves us with an inverse Step 4:
solve for Pfunction to find. This problem is no different. We must solve the last equation

for P . The first step is to exponentiate both sides:

P

C − P
= ekt+b = eb · ekt = Bekt.

To simplify the expression a bit, we have replaced eb by B = eb. Multiplying
both sides by C − P gives

P = Bekt(C − P ) = CBekt − PBekt.

Now bring the last term over to the left, and then factor out P :

P + PBekt =
(
1 + Bekt

)
P = CBekt.

The final step is to divide by the coefficient 1 + Bekt: The formula for P (t)

P (t) =
CBekt

1 + Bekt
.

Lastly, we must see how the initial condition P (0) = A affects the so- Step 5: incorporate
the initial conditionlution. We could substitute t = 0, P = A into the last formula, but that

produces an algebraic mess. We want to know how A affects the constant B,
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and we can see that directly by making our substitutions into the equation
above:

P

C − P
= Bekt

 

A

C − A
= Be0 = B.

Now replace B by A/(C − A) in our formula for P (t). This yields

P (t) =
CAekt/(C − A)

1 + Aekt/(C − A)
=

CAekt

C − A + Aekt

If we write −A + Aekt = A(ekt − 1), we get one of the standard forms of the
solution to the logistic equation:

The complete solution P (t) =
CAekt

C + A(ekt − 1)
.

Remark. The method of partial fractions can be used to evaluate integrals
of the form

∫
dx

(x + a1)(x + a2) · · · (x + an)
or

∫
P (x)

Q(x)
dx,

where P (x) and Q(x) are arbitrary polynomials. Tables of integrals and
calculus references describe how the method works in these cases. As one
example, though, let’s compute the antiderivative of the cosecant function,
since we will need it in the next section.

Example—The antiderivative of the cosecant We first use a trigono-
metric identity to transform the integral slightly:

∫

csc x dx =

∫
1

sin x
dx

=

∫
sin x

sin2 x
dx

=

∫
sin x dx

1 − cos2 x
.
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If we now make the substitution u = cos x, with du = − sin x dx, this becomes
∫

csc x dx =

∫ −du

1 − u2

=

∫ −1

2

(
1

1 + u
+

1

1 − u

)

du

= −1

2

∫
du

1 + u
− 1

2

∫
du

1 − u

= −1

2
ln(1 + u) +

1

2
ln(1 − u) + C

=
1

2
ln

1 − u

1 + u
+ C

=
1

2
ln

1 − cos x

1 + cos x
+ C.

We can simplify this slightly by multiplying both numerator and denominator The final form
of the antiderivative

of the cosecant
by 1 + cosx to get

∫

csc x dx =
1

2
ln

1 − cos2 x

(1 + cosx)2
+ C = ln

∣
∣
∣
∣

sin x

1 + cos x

∣
∣
∣
∣
+ C

= − ln | csc x + cotx| + C.

Note that in the next to last line we used the general fact about logarithms
that n ln A = ln(An) for any value of n and any A > 0. Note also that
since the domain of the secant function consists of infinitely many separate
intervals. the “+ C” at the end of the antiderivative needs to be interpreted
as potentially a different value of C over each interval.

In the same fashion we can obtain the antiderivative for the secant func- The antiderivative
of the secanttion: ∫

sec x dx = ln | sec x + tanx| + C.

Exercises

Separation of variables

1. Use the method of separation of variables to find a formula for the solu-
tion of the differential equation dy/dt = y + 5. Your formula should contain
an arbitrary constant to reflect the fact that many functions solve the differ-
ential equation.
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2. Use the method of separation of variables to find formulas for the solu-
tions to the following differential equations. In each case your formula should
be expressed in terms of the input variable that is indicated (e.g., in part (a)
it is t).

a) dy/dt = 1/y.

b) dz/dx = 3/(z − 2).

c) dy/dx = x/y

d) dy/dx = y/x

e) du/dv = u/(u − 1)

f) dv/dt = −√
v

3. A cooling liquid. According to Newton’s law of cooling (see chap-
ter 4.1), in a room where the ambient temperature is C, the temperature Q
of a hot object will change according to the differential equation

dQ

dt
= −k(Q − C).

The constant k gives the rate at which the object cools.

a) Find a formula for the solution to this equation using the method of
separation of variables. Your formula should contain an arbitrary constant.

b) Suppose C is 20◦C and k is .1◦ per minute per ◦C. If time t is measured
in minutes, and Q(0) = 90◦C, what will Q be after 20 minutes?

c) How long does it take for the temperature to drop to 30◦C?

4. a) Suppose a cold drink at 36◦F is sitting in the open air on a summer
day when the temperature is 90◦F. If the drink warms up at a rate of .2◦F
per minute per ◦F of temperature difference, write a differential equation to
model what will happen to the temperature of the drink over time.

b) Obtain a formula for the temperature of the drink as a function of the
number of minutes t that have passed since its temperature was 36◦F.

c) What will the temperature of the drink be after 5 minutes; after 10 min-
utes?

d) How long will it take for the drink to reach 55◦F?

5. A leaking tank. In chapter 4.2 we used the differential equation

dV

dt
= −k

√
V

to model the volume V (t) of water in a leaking tank after t hours (see
page 222).
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a) Use the method of separation of variables to show that

V (t) =
k2

4
(C − t)2

is a solution to the differential equation, for any value of the constant C.

b) Explain why the function

V (t) =







k2

4
(C − t)2 if 0 ≤ t ≤ C,

0 if C < t.

is also a solution to the differential equation. Why is this solution more
relevant to the leaking tank problem than the solution in part (a)?

6. A falling body with air resistance. We have used the differential
equation

dv

dt
= −g − bv

to model the motion of a body falling under the influence of gravity (g) and
air resistance (bv). Here v is the velocity of the body at time t. (See pages
224–225.)

a) Solve the differential equation by separating variables, and obtain

v(t) =
1

b

(
Ce−bt − g

)
,

where C is an arbitrary constant.

b) Now impose the initial condition v(0) = 0 (so the body starts it fall from
rest) to determine the value of C. What is the formula for v(t) now?

c) Exercise 21 on page 224 gives the solution to the initial value problem as

v(t) =
g

b

(
2−bt/.69 − 1

)
.

Reconcile this expression with the one you obtained in part (b) of this exer-
cise.

d) The distance x(t) that the body has fallen by time t is given by the
integral

x(t) =

∫ t

0

v(t) dt, because
dx

dt
= v and x(0) = 0.

Use your formula for v(t) from part (b) to find x(t).
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7. a) Supergrowth. We have analyzed the differential equation

dQ

dt
= kQp

when p = 1.2 (and, of course, when p = 1). Find a formula for the solution
Q(t) when p = 2. Your formula should contain an arbitrary constant C.

b) Add the initial condition Q(0) = A. This will fix the value of the con-
stant C. What is the formula for Q(t) when the initial condition is incorpo-
rated?

c) Your formula in part (b) should demonstrate that Q becomes infinite at
some finite time t = τ . When is τ? Your answer should be expressed in
terms of the growth constant k and the initial population size A.

d) Suppose the values of k and A are known only imprecisely, and they could
be in error by as much as 5%. That makes the value of τ uncertain. Which
error causes the greater uncertainty: the error in k or the error in A? (See
the discussion of error analysis for the supergrowth model on pages 216–217.)

8. General supergrowth. Find the solution to the initial value problem

dQ

dt
= kQp, Q(0) = A

for any value of the power p. For which values of p does Q blow up to ∞ at
a finite time t = τ? What is τ?

Partial fractions

9. Use the method of partial fractions to determine the values of α, β, and
γ in the following equations.

a)
1

(x − 1)(x + 2)
=

α

x − 1
+

β

x + 2

b)
x

(x − 1)(x + 2)
=

α

x − 1
+

β

x + 2

c)
1

x(x2 − 1)
=

α

x
+

β

x − 1
+

γ

x + 1

d)
x

2x2 + 3x + 1
=

α

2x + 1
+

β

x + 1

e)
1

x(x2 + 1)
=

α

x
+

βx + γ

x2 + 1

[Note that x2 +1 can’t be factored.]
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10. Find a formula for each of these indefinite integrals.

a)

∫
3 dx

(x − 1)(x + 2)

b)

∫
5x + 3

(x − 1)(x + 2)
dx

c)

∫
dt

t(t2 − 1)

d)

∫
x dx

1 − x2

e)

∫
1 − u

u2 − 4
du

f)

∫
x2 + 2x + 1

x(x2 + 1)
dx

11. Determine

a)

∫ 3

2

3 dx

(x − 1)(x + 2)

b)

∫ 4

2

dt

t(t2 − 1)

c)

∫ π/4

0

x dx

1 − x2

d)

∫ √
3

1

x2 + 2x + 1

x(x2 + 1)
dx

12. Mirror the derivation of

∫

csc x dx to find

∫

sec x dx.

13. Consider the particular logistic growth model defined by

dP

dt
= .2P

(

1 − P

10

)

lbs/hr, P (0) = .5 lbs

(Compare this with the fermentation problems, pages 195–197.)

a) Obtain the formula for the solution to this initial value problem.

b) How large will P be after 3 hours; after 10 hours?

c) When will P reach one-half the carrying capacity–that is, for which t is
P = 5 lbs?

14. Derive the formula for

∫

sec x dx given on page pagerefsecant, using

methods similar to those used to find an antiderivative for the cosecant func-
tion.
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11.5 Trigonometric Integrals

The preceding sections have covered the main integration techniques and
concepts likely to be needed by most users of calculus. These techniques,
together with the numerical methods discussed in chapter 11.6, should be
part of the basic tool kit of every practitioner of calculus. For those going
on in physics or mathematics, there are additional methods, largely involv-
ing trigonometric functions in various ways, that are sometimes useful. The
purpose of this section is to develop the most commonly used of these tech-
niques.

Recall that there are only a few simple antiderivatives we can write down
immediately by inspection. All non-numerical integration techniques consist
of finding transformations that will reduce some new class of integration
problems to a class we already know how to solve. Once we have a new class
of solvable problems, then we look for other classes of problems that can be
reduced to this new class, and so on. The techniques we will be developing
in this section involve ways of making such transformations through the use
of basic trigonometric identities, typically in conjunction with integration by
parts or by substitution. Before we proceed with the integration techniques,
it will be helpful to list the trigonometric identities used.

Review of trigonometric identities

The most frequently used identity is

sin2 x + cos2 x = 1,

and the equivalent form obtained by dividing through by cos2 x:

tan2 x + 1 = sec2 x,

and by sin2 x:
1 + cot2 x = csc2 x.

The only other identities you will need have already been encountered:

sin 2x = 2 sin x cos x and cos 2x = cos2 x − sin2 x,

plus the two other forms of the second of these identities,

cos2 x =
1

2
(1 + cos 2x) and sin2 x =

1

2
(1 − cos 2x).
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Inverse Substitution

The method of substitution outlined in chapter 11.2 worked by taking a
complicated integrand and breaking it down into simpler components, re-
ducing the problem of finding an antiderivative for something in the form Success sometimes

comes by making
things more
complicated

f(G(x))g(x) to the problem of finding an antiderivative for f . In some cases,
though, we go in the opposite direction: we have an integral

∫
f(x) dx we

want to find but can’t evaluate directly. Instead, we can find a function G(u)
with derivative g(u) such that we can find an antiderivative for f(G(u))g(u).
Since we know this integral is F (G(u)), we can now figure out what the de-
sired function F must be. As with the earlier substitution techniques, this
inverse substitution is conveniently expressed using differential notation.

Example 1 Suppose we want to evaluate
∫ √

4 − x2 dx.

If we substitute x = 2 sin u, so that dx = 2 cosu du, look what happens:
∫ √

4 − x2 dx =

∫
√

4 − (2 sinu)2 2 cosu du

=

∫ √

4 − 4 sin2 u 2 cosu du

=

∫

2
√

1 − sin2 u 2 cos u du

=

∫

2 cos u 2 cosu du

= 4

∫

cos2 u du.

But this is just an antiderivative we have already found in the exercises in
chapter 11.3, namely

∫

cos2 u du =
u

2
+

1

4
sin 2u + C

=
u

2
+

1

4
· 2 sinu cos u + C

=
1

2
(u + sin u cosu) + C.
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To find the desired antiderivative for the original function of x, we now
replace u by its expression in terms of x by inverting the relationship: If x =
2 sinu, then sin u = x/2, and u = arcsin(x/2). As we found in chapter 11.1,
drawing a picture expressing the relationship between x and u makes it easy
to visualize the other trigonometric functions:

x
2

√
4 − x2

u��
��
��
��
��
��
��
��

From the picture we see that

cos u =

√
4 − x2

2
and tanu =

x√
4 − x2

.

We can now find an expression for the desired antiderivative in terms of x:

∫ √
4 − x2 dx = 2(u + sin u cos u) + C

= 2

(

arcsin
x

2
+

x

2

√
4 − x2

2

)

+ C

= 2 arcsin
x

2
+

x
√

4 − x2

2
+ C.

As usual, you should check this result by differentiating the right-hand side
to see that you do obtain the integrand on the left.

Similar substitutions allow us to evaluate other integrals involving squareSome useful
substitutions roots of quadratic expressions. Here is a summary of useful substitutions. In

each case, a is a positive real number.

To transform a2 − x2 let x = a sin u;

To transform a2 + x2 let x = a tan u;

To transform x2 − a2 let x = a sec u.
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Example 2 Integrate ∫
dx√

x2 + 9
.

If we set x = 3 tanu, then dx = 3 sec2 u du, and the integral becomes

∫
dx√

x2 + 9
=

∫
3 sec2 u du√

9 sec2 u

=

∫

sec u du

= ln | sec u + tan u| + C,

(as we saw in chapter 11.4). To express this in terms of x, we again draw a
picture showing the relation between u and x:

x

√
9 + x2

3

u��
��
��
��
��
��
��
��

From this picture we see that sec u =
√

9 + x2/3. Therefore

∫
dx√

x2 + 9
= ln

∣
∣
∣
∣
∣

√
9 + x2

3
+

x

3

∣
∣
∣
∣
∣
+ C

= ln

∣
∣
∣
∣
∣

√
9 + x2 + x

3

∣
∣
∣
∣
∣
+ C = ln

∣
∣
∣

√
9 + x2 + x

∣
∣
∣+ C ′,

where C ′ = C − ln 3 is a new constant. As usual, you should differentiate to
check that this really is the claimed antiderivative

Example 3 Evaluate ∫
dx√

9x2 − 16
.

We first write
√

9x2 − 16 as
√

9
√

x2 − (16/9) = 3
√

x2 − (16/9). Using the
substitution x = (4/3) secu, with dx = (4/3) sec u tanu du gives
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∫
dx√

9x2 − 16
=

∫
(4/3) secu tanu du

3
√

(16/9) sec2 u − (16/9)

=

∫
(4/3) sec u tanu du

3 · (4/3) tanu
=

1

3

∫

sec u du

=
1

3
ln | sec u + tan u| + C.

Again we need a picture to relate x and u:

√
9x2 − 16

3x

4

u��
��
��
��
��
��
��
��

Thus tanu =
√

9x2 − 16/4, which gives
∫

dx√
9x2 − 16

=
1

3
ln | sec u + tanu| + C

=
1

3
ln

∣
∣
∣
∣

3x

4
+

√
9x2 − 16

4

∣
∣
∣
∣
+ C

=
1

3
ln
∣
∣
∣3x +

√
9x2 − 16

∣
∣
∣ + C ′,

where C ′ = C − (ln 4)/3.
As usual, you should differentiate this final expression to confirm that it

really is the desired antiderivative.

Inverse Substitution and Definite Integrals

We saw on page 707 in chapter 11.2 how to use substitution to evaluate a
definite integral. When we transformed an integral originally expressed in
terms of a variable x into one expressed in terms of a variable u, the two
integrals had the same numerical value. The same can be done with the
inverse substitution technique we have just been considering. Let’s see how
this works. Suppose we start with a function f(x) to be integrated over an
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interval [a, b]. If we only knew an antiderivative F for f , we could easily
write ∫ b

a

f(x) dx = F (b) − F (a),

as usual. In the examples we’ve just been considering, we found the an-
tiderivative for f by making a substitution x = G(u) for some function G
and then finding an antiderivative for f(G(u))g(u), where G′ = g. This an-
tiderivative we know is F (G(u)), where F is the function we are trying to
find. We were able to obtain F by replacing u by its expression in x. To do
this we needed to find the inverse function G−1 for G, so that x = G(u) was
equivalent to u = G−1(x), and F (x) = F (G(G−1(x))). It is this last step we
can eliminate in calculating definite integrals.

If we want x to go from a to b, what must u do? What interval of u values
will get transformed to this interval of x values by G. The value of u such
that G(u) = a is A = G−1(a). Similarly the u value that gets transformed
to b is B = G−1(b). Thus under the substitution x = G(u), as u goes from A
to B, x will go from a to b. Now look at the corresponding definite integral:

∫ B

A

f(G(u)) g(u) du = F (G(u))

∣
∣
∣
∣

B

A

= F (G(B)) − F (G(A))

= F (G(G−1(b))) − F (G(G−1(a)))

= F (b) − F (a),

which is just the desired value of the original definite integral. To summarize,

If we make the substitution x = G(u), then

∫ b

a

f(x) dx = F (b) − F (a) =

∫ B

A

f(G(u)) g(u) du,

where A = G−1(a) and B = G−1(b).

Let’s look back at a couple of the preceding examples to see how this works.

Example 4 Evaluate
∫ 2

−2

√
4 − x2 dx.
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In Example 1 we found an antiderivative for this function by making the
substitution x = 2 sin u = G(u). The inverse function is then G−1(x) =
arcsin(x/2). To get x to go from −2 to 2, u must go from G−1(−2) =
arcsin(−1) = −π/2 = A to G−1(2) = arcsin 1 = π/2 = B. Then to evaluate
the integral from x = −2 to x = 2, we only need to evaluate the antiderivative
we found for the u integral between u = −π/2 and u = π/2.

∫ 2

−2

√
4 − x2 dx = 2(u + sin u cos u)

∣
∣
∣
∣

π/2

−π/2

= π − (−π) = 2π.

(Note that this is just half the area of a circle of radius 2. How could we
have foreseen this result from the form of the problem?)

Example 5 Suppose we wanted the integral

∫ 3

0

dx√
x2 + 9

.

In Example 2 we found an antiderivative by letting x = 3 tanu. Here
G−1(x) = arctan(x/3). For x to go from 0 to 3, u must go from 0 to
arctan 1 = π/4. Using the u-antiderivative we found in Example 2, we have

∫ 3

0

dx√
x2 + 9

= ln | sec u + tanu|
∣
∣
∣
∣

π/4

0

= ln |
√

2 + 1| − ln |1 + 0| = ln(
√

2 + 1).

Completing The Square

Integrands involving terms of the form Ax2 + Bx + C can always be put in
the form A(u2 ± b2) for a suitable variable u and constant b. The technique
for doing this is the standard method of completing the square:

Ax2 + Bx + C = A

(

x2 +
B

A
x

)

+ C

= A

(

x2 +
B

A
x +

B2

4A2

)

+ C − B2

4A

= A

(

x +
B

2A

)2

+
4AC − B2

4A
.
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The substitutions

u = x +
B

2A
and b =

√

|4AC − B2|
2A

then transform the problem to a form where we can use the techniques already
developed. The following examples should make this clear.

Example 6 Consider the integral
∫

dx

x2 + 4x + 5
.

This may not immediately remind us of anything we’ve seen before. But if
we rewrite it in the form

∫
dx

(x2 + 4x + 4) + 1
=

∫
dx

(x + 2)2 + 1
,

it now begins to resemble something involving an arctangent. In fact, if we
make the substitution u = x + 2, so du = dx, we can write

∫
dx

x2 + 4x + 5
=

∫
du

u2 + 1

= arctanu + C

= arctan(x + 2) + C.

Example 7 The technique of completing the square even works for expres-
sions we could have factored directly, if we had noticed:

∫
dx

x2 + 4x + 3
=

∫
dx

(x + 2)2 − 1

=

∫
dx

(x + 2 − 1)(x + 2 + 1)

=

∫
dx

(x + 1)(x + 3)

=
1

2

∫
dx

x + 1
− 1

2

∫
dx

x + 3

=
1

2
ln

∣
∣
∣
∣

x + 1

x + 3

∣
∣
∣
∣
+ C.
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Example 8 Evaluate ∫
dx√

6x − x2
.

Note that 6x − x2 = −(x2 − 6x) = −(x − 3)2 + 9 = 9 − (x − 3)2. If we now
substitute x − 3 = 3u, with dx = 3du, we get

∫
dx√

6x − x2
=

∫
dx

√

9 − (x − 3)2

=

∫
3 du√
9 − 9u2

=

∫
du√

1 − u2

= arcsin u + C

= arcsin
x − 3

3
+ C.

Trigonometric Polynomials

A trigonometric polynomial is any sum of constant multiples of products
of trigonometric functions. The preceding techniques have shown some cases
where such trigonometric polynomials can arise, even though the original
problem had no apparent reference to trigonometric functions. There are
many different ways of breaking trigonometric polynomials down into special
cases which can then be integrated. We will develop one way which has the
virtue of using few special cases, so that it can be used fairly automatically.
It also introduces a powerful tool—that of reduction formula—which can
be used to generate mathematical results interesting in their own right. One
example is the striking representation of π derived in chapter 12.1. Other
examples are developed in the exercises at the end of this section.

Since every trigonometric function is expressible in terms of sines and
cosines, any trigonometric polynomial can be written as a sum of terms of
the form c sinm x cosn x where c is a constant and m and n are integers—
positive, negative, or 0. For instance, 5 sec2 x tan5 x can be rewritten as
5 sin5 x cos−7 x. To find antiderivatives for trigonometric polynomials, it
therefore suffices to be able to evaluate integrals of the form

∫

sinm x cosn x dx.

We will see how to find antiderivatives for functions of this sort by break-
ing the problem into a series of special cases:
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Category I either m ≥ 0 or n ≥ 0 (or both)
Case 1 m = 1 or n = 1
Case 2 m = 0 or n = 0

Category II m and n both negative

Category I: Either m ≥ 0 or n ≥ 0 (or both)

Assume for the sake of explicitness that m ≥ 0. We can then use the identity
sin2 x = 1 − cos2 x to replace sinm x entirely by cosine terms if m is even,
or to replace all but one of the sine terms by cosines if m is odd. A similar
replacement can be made if n ≥ 0.

Example 9

sin4 x cos6 x = (1 − cos2 x)2 · cos6 x

= (1 − 2 cos2 x + cos4 x) · cos6 x

= cos6 x − 2 cos8 x + cos10 x.

(Note that in this example we could just as well have expressed cos6 x entirely
in terms of sin x.)

Example 10

sin3 x cos−8 x = sin x · (1 − cos2 x) · cos−8 x

= sin x cos−8 x − sin x cos−6 x.

Example 11

sin−7 x cos7 x = sin−7 x · (1 − sin2 x)3 · cos x

= sin−7 x cos x − 3 sin−5 x cos x + 3 sin−3 x cos x

− sin−1 x cos x.

We can thus reduce any problem in Category I to one of two special cases:

Case 1 m = 1 or n = 1
Case 2 m = 0 or n = 0

We will now see how to find antiderivatives for these cases.

Case 1: m = 1 or n = 1 Since the two possibilities are analogous,
we will consider the case with n = 1. Then m can be any real number at
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all, not necessarily an integer. We make the substitution u = sin x, so that
du = cos x dx, and

∫

sinm x cos x dx =

∫

um du =







1

m + 1
um+1 + C if m 6= −1,

ln |u| + C if m = −1.

Replacing u by its expression in x we have the antiderivative:

∫

sinm x cos x dx =







1

m + 1
sinm+1 x + C if m 6= −1,

ln | sin x| + C if m = −1.

Remark: The instance m = −1 in this case is worth singling out, as itThe antiderivative
of the cotangent gives us an antiderivative for cot x:

∫

cot x dx =

∫
cos x

sin x
dx = ln | sin x| + C.

Integrals where m = 1 are handled in a completely analogous fashion.
You should check that

∫

cosn x sin x dx =







−1

n + 1
cosn+1 x + C if n 6= −1,

− ln | cos x| + C if n = −1.

Remark: Notice that n = −1 gives us an antiderivative for tan x:The antiderivative
of the tangent ∫

tan x dx =

∫
sin x

cos x
dx = − ln | cosx| + C.

Case II: m = 0 or n = 0 Again the two possibilities are analogous,
so we will look at instances where n = 0. There are a number of clever
ways for dealing with antiderivatives of functions of this form, many of them
depending on special subcases according to whether m is even or odd, positive
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or negative, etc. We will develop a single method which deals with all cases
in the same way.

Think of sinn x as sinn−1 x · sin x and use integration by parts with

F (x) = sinn−1 x and g(x) = sin x;

then

f(x) = (n − 1) sinn−2 x cos x and G(x) = − cos x.

Therefore
∫

sinn x dx = − sinn−1 x cos x + (n − 1)

∫

sinn−2 x cos2 x dx.

Now since cos2 x = 1−sin2 x, we can rewrite the integral on the right-hand
side as ∫

sinn−2 x cos2 x dx. =

∫

sinn−2 x dx −
∫

sinn x dx

—an expression involving the original integral we are trying to evaluate! If
we now substitute this expression in our original equation and bring all the
terms involving sinn x over to the left-hand side, we have

n

∫

sinn x dx = − sinn−1 x cos x + (n − 1)

∫

sinn−2 x dx,

so that

∫

sinn x dx =
−1

n
sinn−1 x cos x +

n − 1

n

∫

sinn−2 x dx.

We thus have a reduction formula which reduces the problem of finding A reduction formula

an antiderivative for sinn x to the problem of finding an antiderivative for
sinn−2 x. This in turn can be reduced to finding an antiderivative for sinn−4 x,
and so on, until we get down to having to find an antiderivative for sin x (if
n is odd), or for 1 (if n is even).

Example 12
∫

sin5 x dx =
−1

5
sin4 x cos x +

4

5

∫

sin3 x dx

=
−1

5
sin4 x cos x +

4

5

(−1

3
sin2 x cos x +

2

3

∫

sin x dx

)

=
−1

5
sin4 x cos x − 4

15
sin2 x cos x − 8

15
cos x + C.
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Check this answer by taking the derivative of the right-hand side. To show
that this derivative really is equal to the integrand on the left, you will need
to express all the cosines in terms of sines.

Example 13 If we let n = 2, we quickly get the antiderivative for sin2 x
that we’ve needed at several points already:

∫

sin2 x dx =
−1

2
sin x cos x +

1

2

∫

1 dx

=
x

2
− 1

2
sin x cos x.

The reduction formula as stated is most convenient for n > 0, althoughIn its current form,
the reduction formula
works best for n > 0

it is true for any number n 6= 0. For if n < 0, though, we want to increase
the exponent, replacing a problem of finding an antiderivative for sinn x by a
problem where the exponent is less negative. We can do this by rearranging
the formula as

∫

sinn−2 x dx =
n

n − 1

∫

sinn x dx +
1

n − 1
sinn−1 x cos x.

Since we are interested in negative exponents, call n−2 by a new name, −k.The reduction formula
for negative exponents But if n − 2 = −k, then n = −k + 2, and we can rewrite our formula as

∫

sin−k x dx = − 1

k − 1
sin−(k−1) x cos x +

k − 2

k − 1

∫

sin−(k−2) x dx.

With this formula we can reduce the problem of finding an antiderivative
for sin−k x to the problem of finding an antiderivative for sin−k+2 x. This
in turn can be reduced to finding an antiderivative for sin−k+4 x, and so on,
until we get up to having to find an antiderivative for sin−1 x (if k is odd),
or for 1 (if k is even). All we need, then, is an antiderivative for sin−1 x. But
sin−1 x = csc x, and in chapter 11.4 (page 728) we found that

∫

csc x dx =

∫

sin−1 x dx = − ln | csc x + cot x| + C.

We can now handle antiderivatives for any negative integer exponent of
the sine function.
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Example 14 We can check this formula by trying k = 2, which will give
us the antiderivative of csc2 x:

∫

csc2 x =

∫

sin−2 x dx

= −1

1
sin−1 x cos x +

0

1

∫

sin0 x dx

= − sin−1 x cos x + C = − cot x + C,

as it should.

Example 15

∫

sin−3 x dx = −1

2
sin−2 x cos x +

1

2

∫

sin−1 x dx

=
1

2

(
− sin−2 x cos x − ln | csc x + cot x|

)
+ C.

In the exercises you are asked to derive the following reduction formulas
for the cosine function:

∫

cosm x dx =
1

m
cosm−1 x sin x +

m − 1

m

∫

cosm−2 x dx,

∫

cos−m x dx =
1

m − 1
cos−m+1 x sin x +

m − 2

m − 1

∫

cos−m+2 x dx.

Category II: Both m < 0 and n < 0

If we divide the identity cos2 x+sin2 x = 1 by sin2 x cos2 x, we get the identity

sin−2 x + cos−2 x = sin−2 x cos−2 x.

We will now use this identity to express anything of the form cos−r x sin−s x
(where r > 0 and s > 0) as a sum of terms of the form sin−h x, or cos−i x, or
sin x cos−j x, or sin−k x cos x. Since we learned how to find antiderivatives
for expressions like these in the previous cases, we will then be done.

The trick in transforming cos−rx sin−s x to the desired form is to multiply
by (cos x cos−1 x) or (sin x sin−1 x) as needed so that both the sine and the
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cosine terms appear to even negative exponents. Then simply keep using
the identity above until there’s nothing left to use it on. The following three
examples should make clear how the reduction then works.

Example 16 (r and s both even already)

sin−4 x cos−6 x =
(
sin−2 x cos−2 x

)2
cos−2 x

=
(
sin−2 x + cos−2 x

)2
cos−2 x

= (sin−4 x + 2 sin−2 x cos−2 x + cos−4 x) cos−2 x

= (sin−4 x + 2(sin−2 x + cos−2 x) + cos−4 x) cos−2 x

= sin−4 x cos−2 x + 2 sin−2 x cos−2 x + 2 cos−4 x

+ cos−6 x

= sin−2 x (sin−2 x + cos−2 x) + 2(sin−2 x + cos−2 x)

+ 2 cos−4 x + cos−6 x

= sin−4 x + sin−2 x cos−2 x + 2 sin−2 x + 2 cos−2 x

+ 2 cos−4 x + cos−6 x

= sin−4 x + (sin−2 x + cos−2 x) + 2 sin−2 x

+ 2 cos−2 x + 2 cos−4 x + cos−6 x

= sin−4 x + 3 sin−2 x + 3 cos−2 x + 2 cos−4 x + cos−6 x.

While this process is tedious, it requires little thought—you simply replace
sin−2 x cos−2 x with sin−2 x + cos−2 x at every opportunity until there is no
negative-exponent sine term multiplying any negative-exponent cosine term.
We will use this result to demonstrate how to deal with cases where either r
or s (or both) is odd.

Example 17 (r even and s odd)

sin−4 x cos−5 x = sin−4 x cos−6 x cos x

= sin−4 x cos x + 3 sin−2 x cos x + 3 cos−1 x

+ 2 cos−3 x + cos−5 x

Example 18 (both r and s odd)

sin−3 x cos−5 x = sin x sin−4 x cos−6 x cos x

= sin−3 x cos x + 3 sin−1 x cos x + 3 sinx cos−1 x

+ 2 sin x cos−3 x + sin x cos−5 x



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

11.5. TRIGONOMETRIC INTEGRALS 749

Exercises

1. Find the following antiderivatives (a is a positive constant):

a)

∫
dx√

1 − 4x2

b)

∫
dx√

1 − 4x2

c)

∫
dx√

4 + x2

d)

∫
x dx√
4 + x2

e)

∫
dx

(a2 − x2)3/2

f)

∫
dx

4 + x2

g)

∫
x dx

4 + x2

h)

∫
dx

x
√

4 + x2

i)

∫
x dx√
x2 − a2

j)

∫
dx

(a2 + x2)2

2. Evaluate the following integrals:

a)

∫ −1

1

dx

4 − x2

b)

∫ 2

1

√
x2 − 1 dx

c)

∫ π/3

0

x sec2 x dx

d)

∫ 1

0

dx

(2 − x2)3/2

e)

∫ ∞

0

dx

9 + x2

f)

∫ 2a

a

x3
√

x2 − a2 dx

3. Sketch the ellipse
x2

a2
+

y2

b2
= 1, labelling the coordinates of the points

where it crosses the x-axis and the y-axis. Prove that the area of this ellipse
is πab.

4. Find the following antiderivatives:

a)

∫
dx√

x2 − 2x − 8

b)

∫
dx

x2 + 6x + 10

c)

∫
dx√

x2 + 6x + 8

d)

∫
x dx

x2 + 4x + 5

e)

∫
x dx√

5 + 4x − x2

f)

∫
(2x + 7) dx

4x2 + 4x + 5

g)

∫
(4x − 3) dx√
−x2 − 2x

h)

∫
dx

(a2 − x2 − 2x)2
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5. a) If x = a sec u, where a is a constant, draw a right triangle containing
an angle u with lengths of sides specified to reflect this relation between x,
a, and u.

b) In terms of x and a, what is sin u? What is cos u? What is tanu?

6. Evaluate the following:

a)

∫
dx

sin x cos x

b)

∫

cos3 x sin−4 x dx

c)

∫

csc4 x cot2 x dx

d)

∫

sin 3x cot 3xdx

e)

∫ π/2

0

sinn x cos3 x dx

f)

∫

tan5 x dx

g)

∫
sin3 5x dx

3
√

cos 5x

h)

∫
cos3(ln x) dx

x

i)

∫

sec4 x ln(tan x) dx

j)

∫ a/2

0

dx

(a2 − x2)3/2

7. Use the analysis of Example 17 (page 748) to find an antiderivative for
sin−4 x cos−5 x.

Reduction formulas

8. Derive the reduction formulas for the cosine function given on page 747.

9. a) By writing tann x = tann−2 x(sec2 x − 1), get a reduction formula

which expresses

∫

tann x dx in terms of

∫

tann−2 x dx.

b) Use this evaluation formula to find

∫

tan6 x dx.

c) Show that

∫ π/4

0

tann x dx =







1

n − 1
− 1

n − 3
+ · · · ± 1

3
∓ 1 ± π/4 if n is even,

1

n − 1
− 1

n − 3
+ · · · ± 1

4
∓ 1

2
± 1

2
ln 2 if n is odd.
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d) Give a clear argument why lim
n→∞

∫ π/4

0

tann x dx = 0.

e) Prove that

lim
k→∞

(

1 − 1

3
+

1

5
− · · · ± 1

2k + 1

)

=
π

4
,

and

lim
k→∞

(

1 − 1

2
+

1

3
− · · · ± 1

k

)

= ln 2.

10. a) By writing secn x as secn−2 x sec2 x and using integration by parts,

get a reduction formula which expresses

∫

secn x dx in terms of

∫

secn−2 x dx.

b) Since sec x = cos−1 x, the formula you got in part (a) could also have
been obtained from the reduction formula for cosines on page 747. Try it
and see if the formulas are in fact the same.

11. a) Find a reduction formula that expresses
∫

xn ex dx in terms of

∫

xn−1 ex dx.

b) Using the results of part (a), show that

1

n!

∫ t

0

xn ex dx = et

(
tn

n!
− tn−1

(n − 1)!
+

tn−2

(n − 2)!
− · · · ± t2

2!
∓ t ± 1

)

∓ 1.

c) Explain why, for a fixed value of t,

lim
n→∞

1

n!

∫ t

0

xn ex dx = 0.

d) Prove that

lim
n→∞

(

1 − t +
t2

2!
− t3

3!
+

t4

4!
− · · · ± tn

n!

)

= e−t.

12. a) Find a reduction formula expressing
∫

dx

(1 + x2)n
in terms of

∫
dx

(1 + x2)n−1
;
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you can do this using integration by parts, or you can use a trigonometric
substitution.

b) What is the exact value of

∫ 1

0

dx

(1 + x2)5
?

13. Our approach to integrating trigonometric polynomials was to express
everything in the form sinm x cosn x. We can just as readily express every-
thing in the form secj x tank x (j and k integers—positive, negative, or 0),
and develop our technique by dealing with various cases of this. See if you
can work out the details, trying to parallel the approach developed in the
text using sines and cosines as our basic functions.

11.6 Simpson’s Rule

This chapter has concentrated on formulas for antiderivatives, because aA return to
numerical methods formula conveys compactly a lot of information. However, you must not lose

sight of the fact that most antiderivatives cannot be found by such analytic
methods. The integrand may be a data function, for instance, and thus have
no formula. And even when the integrand is given by a formula, there may
be no formula for the antiderivative itself. One possibility in such cases is
to approximate such a function by a function—such as a polynomial—for
which we can readily find an antiderivative. In chapter 10 we saw some
methods for doing this. In chapter 12 we introduce Fourier series, providing
another family of approximating functions for which antiderivatives can be
readily obtained. Another approach is to find a desired definite integral using
approximating rectangles, as we did in chapter 6.

In any case, numerical methods are inescapable, but accurate results re-
quire many calculations. This takes time—even on a modern high-speed
computer. A numerical method is said to be efficient if it gets accurate
results quickly, that is, with relatively few calculations. In chapter 6 we saw
that midpoint Riemann sums are much more efficient than left or right end-
point Riemann sums. We will look at these and other methods in detail inEfficient numerical

integration this section. The most efficient method we will develop is called Simpson’s
rule.
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The Trapezoid Rule

We interpret the integral
∫ b

a

f(x) dx

as the area under the graph y = f(x) between x = a and x = b. We
interpret a Riemann sum as the total area of a collection of rectangles that
approximate the area under the graph. The tops of the rectangles are level, Replace rectangles

by trapezoidsand they represent the graph of step function. Clearly, we get a better
approximation to the graph by using slanted lines. They form the tops of a
sequence of trapezoids that approximate the area under the graph.

a b x

y

y = f(x)

rectangular
approximation

a b x

y
y = f(x)

trapezoidal
approximation

a typical
trapezoid

Let’s figure out the areas of these trapezoids. They are related in a simple Each trapezoid is
sandwiched between

two rectangles. . .
way to the rectangles that we would construct at the right and left endpoints
to calculate Riemann sums. To see the relation, let’s take a closer look at a
single single trapezoid.

a b x

y

y = f (x)

left
endpoint

right
endpoint

le
ft

 r
ec

ta
ng

le

ri
gh

t r
ec

ta
ng

le

tr
ap

ez
oi

d
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It is sandwiched between two rectangles, one taller and one shorter. In our. . . whose average area
equals the area of the
trapezoid

picture the height of the taller rectangle is f(right endpoint). We will call it
the right rectangle. The height of the shorter rectangle is f(left endpoint).
We will call it the left rectangle. For other trapezoids the left rectangle may
be the taller one. In any case, the trapezoid is exactly half-way between the
two rectangles in size, and thus its area is the average of the areas of the
rectangles:

area trapezoid = 1
2
(area left rectangle + area right rectangle) .

If we sum over the areas of all of the trapezoids, the areas of the rightThe trapezoidal
approximation is the
average of left and
right Riemann sums

rectangles sum to the right Riemann sum, and similarly for the left rectangles.
In follows that

trapezoidal approximation = 1
2
(left Riemann sum + right Riemann sum).

The pictures make it clear that the trapezoidal approximation should be
significantly better than either a left or a right Riemann sum. To test this
numerically, let’s get numerical estimates for the integral

∫ 3

1

1

x
dx = ln 3 = 1.098612288668 . . . .

(The relation between the trapezoid approximation and the left and right
Riemann sums holds for any choice ∆xk of subintervals. However, we willComparing

approximations use equal subintervals to make the calculations simpler.) Here is how our
four main estimates compare when we use 100 subintervals.

n = 100 approximation error

right 1.09197525 6.63 × 10−3

left 1.10530858 −6.69 × 10−3

midpoint 1.09859747 1.48 × 10−5

trapezoidal 1.09864191 −2.90 × 10−5

The figures in this table are calculated to 8 decimal places, and the column
marked error is the difference

1.09861229 − approximation,

so that the error is negative if the approximation is too large. The left
Riemann sum is too large, for instance.
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Before we comment on the differences between the estimates, let’s gather
more data. Here are the calculations for 1000 subintervals. Note that the
midpoint and trapezoidal approximations are more than 1000 times better
than the left or right Riemann sums!

n = 1000 approximation error

right 1.09794591 6.663 × 10−4

left 1.09927925 −6.669 × 10−4

midpoint 1.09861214 1.4 × 10−7

trapezoidal 1.09861258 −2.9 × 10−7

We expected the trapezoidal approximation to be better than either the A surprise:
the midpoint

approximation is even
better than the

trapezoidal

right or left Riemann sum. The surprising observation is that the midpoint
Riemann sum is even better! In fact, it appears that the midpoint Riemann
sum has only half the error of the trapezoidal approximation.

The figures below explain geometrically why the midpoint approximation
is better than the trapezoidal. The first step is shown on the left. Take a
midpoint rectangle (whose height is f(midpoint)), and rotate the top edge
around the midpoint until it is tangent to the graph of y = f(x). Call this
a midpoint trapezoid. Notice that the trapezoid has the same area as the
rectangle.

x

y = f(x)

midpoint trapezoid

midpoint rectangle

midpoint x

y = f(x)

midpoint trapezoid

trapezoid from
trapezoidal
approximation

The second step is to compare the midpoint trapezoid to the one used Shading depicts
the errorsin the trapezoidal approximation. This is done on the right. The error

coming from the midpoint trapezoid is shaded light gray, while the error
from the trapezoidal approximation is dark gray. The midpoint trapezoid is
the better approximation. Since the midpoint rectangle has the same area as
the midpoint trapezoid, we now see why the midpoint Riemann sum is more
accurate than the trapezoidal approximation. This picture also explains why
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the errors of the two approximations have different signs, which we noticed
first in the tables.

Simpson’s Rule

Our goal is a calculation scheme for integrals that gives an error is as small asCombine good
approximations. . . possible. The trapezoidal and the midpoint approximations are both good—

but we can combine them to get something even better. Here is why. The
tables and the figure above indicate that the errors in the two approximations
have opposite signs, and the midpoint error is only about half the size of the
trapezoidal error (in absolute value). Thus, if we form the sum

2 × midpoint approximation + trapezoidal approximation,

then most of the error will cancel. Now this sum is approximately three times. . . so that most of the
error cancels the value of the integral, because each term in it approximates the integral

itself. Therefore, if we divide by three, then

2
3
× midpoint approximation + 1

3
× trapezoidal approximation

should be a superb approximation to the integral.

Let’s try this approximation on our test integral

∫ 3

1

1

x
dx

with n = 100 subintervals. Using the numbers from the table on page 754,
we obtain

2
3
× 1.09859747 + 1

3
× 1.09864191 = 1.098612283,

which gives the value of the integral accurate to 8 decimal places. This
method of approximating integrals is called Simpson’s rule.

We can use the program RIEMANN to do the calculation. First calculateUsing Riemann sums
to carry out
Simpson’s rule

left and right Riemann sums, and take their average. That is the trapezoidal
approximation. Then calculate the midpoint Riemann sum. Since

trapezoid = 1
2
× left + 1

2
× right,
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Simpson’s rule reduces to this combination of left, right, and midpoint sums:

2
3
× midpoint + 1

3
× trapezoidal

= 2
3
midpoint + 1

3

(
1
2
× left + 1

2
× right

)

= 2
3
× midpoint + 1

6
× left + 1

6
× right

= 1
6

(
4 × midpoint + left + right

)

Simpson’s rule:
∫

f(x) dx ≈ 1

6

(
left sum + right sum + 4 × midpoint sum

)

You can get even more accuracy if you keep track of more digits in the The accuracy of
Simpson’s ruleleft, right, and midpoint Riemann sums. For example, if you estimate

∫ 3

1

1

x
dx = ln 3 = 1.098 612 288 668 . . .

to 14 decimal places, you will get the following.

left: 1.105 308 583 647 79
right: 1.091 975 250 314 45

midpoint: 1.098 597 475 005 31

When combined these give the estimate 1.098 612 288 997 3, which differs from
the true value by less than 3.3 × 10−10. In other words, the calculation is
actually correct to 9 decimal places.

It is possible to get a bound on the error produced by using Simpson’s An error bound for
Simpson’s rulerule to estimate the value of

∫ b

a

f(x) dx.

(See the discussion of error bounds in chapter 6.3.) Specifically,
∣
∣
∣
∣

∫ b

a

f(x) dx − Simpson’s rule

∣
∣
∣
∣
≤ M(b − a)5

2880 n4
,

where n is the number of subintervals used in the Riemann sums and M is
a bound on the size of the fourth derivative of f :

|f (4)(x)| ≤ M for all a ≤ x ≤ b.
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The most important factor in the error bound is the n4 that appears inThe crucial factor n−4

the denominator. In our example n = 100 = 102, and this leads to the factor
1/n4 = 10−8 in the error bound. As we saw, the actual error was less than
10−9. Essentially, n is the number of computations we do, and error bound
tells how many decimal places of accuracy we can count on. According to the
error bound, a ten-fold increase in the number of computations produces four
more decimal places of accuracy. That is why Simpson’s method is efficient.

Exercises
Because Simpson’s rule is so efficient, we can use it to get accurate values of
some of the fundamental constants of mathematics. For example, since

4 ·
∫ 1

0

dx

1 + x2
= 4 arctan(x)

∣
∣
∣
∣

1

0

= 4 arctan(1) = 4 · π

4
= π,

we can estimate the value of π by using Simpson’s rule to approximate this
integral.

1. Evaluate the expression above (including the factor of 4) use Simpson’s
rule with n = 2, 4, 8, and 16. How accurate is each of these estimates of π;
that is, how many decimal places of each estimate agree with the true value
of π?

2. a) Over the interval 0 ≤ x ≤ 1 it is true that

|f (4)(x)| ≤ 96 when f(x) =
4

1 + x2
.

(You don’t need to show this, but how might you do it?) Use this bound to
show that n = 256 = 28 will guarantee that you can find the first 10 decimals
of π by using the method of the previous question.

b) Show that if n = 128 = 27 then the error bound for Simpson’s rule
does not guarantee that you can find the first 10 decimals of π by the same
method.

c) Run Simpson’s rule with n = 27 to estimate π. How many decimal places
are correct? Does this surprise you? In fact the error bound is too timid:
it says that the error is no larger than the bound it gives, but the actual
error may be much smaller. From your work in part (a), which power of 2 is
sufficient to get 10 decimal places accuracy?



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

11.7. IMPROPER INTEGRALS 759

3. a) In chapter 6.3 (page 391) a left Riemann sum for

∫ 1

0

e−x2

dx

with 1000 equal subdivisions gave 3 decimal places accuracy. How many
subdivisions n are needed to get that much accuracy using Simpson’s rule?
Let n be a power of 2. Start with n = 1 and increase n until three digits
stabilize.

b) If you use Simpson’s rule with n = 1000 to estimate this integral, how
many digits stabilize?

4. On page 374 a midpoint Riemann sum with n = 10000 shows that

∫ 3

1

√
1 + x3 dx = 6.229959 . . . .

How many subdivisions n are needed to get this much accuracy using Simp-
son’s rule? Start with n = 1 and keep doubling it until seven digits stabilize.

11.7 Improper Integrals

The Lifetime of Light Bulbs

Ordinary light bulbs are supposed to burn about 700 hours, but of course The lifetime of a light
bulb is unpredictablesome last longer while others burn out more quickly. It is impossible to know,

in advance, the lifetime of a particular bulb you might buy, but it is possible
to describe what happens to a large batch of bulbs.

Suppose we take a batch of 1000 light bulbs, start them burning at the
same time, and note how long it takes each one to burn out. Let

L(t) = fraction of bulbs that burn out before t hours

Then L(t) might have a graph that looks like this:
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-

6

t

L

0 250 500 750 1000 1250 hours

.2

.4

.6

.8

1.0

fraction

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p

In this
example, L(400) ≈ .5, so about half the bulbs burned out before 400 hours.
Furthermore, all but a few have burned out by 1250 hours.

Manufacturers are very concerned about the way the lifetime of lightThe burnout rate

bulbs varies. They study the output of their factories on a regular basis. It
is more common, though, for them to talk about the rate r at which bulbs
burn out. The rate varies over time, too. In fact, in terms of L, r is just the
derivative

r(t) = L′(t) bulbs per hour.

However, if we start with the rate r, then we get L as the integral

L(t) =

∫ t

0

r(s) ds.

This is yet another consequence of the fundamental theorem of calculus. TheLifetime is the integral
of burnout rate. . . integral expression is quite handy. For example, the fraction of bulbs that

burn out between t = a hours and t = b hours is

L(b) − L(a) =

∫ b

a

r(s) ds.

We can even use the integral to say that all the bulbs burn out eventually:

L(t) =

∫ t

0

r(s) ds = 1 when t is sufficiently large.

In practice r is the average burnout rate for many batches of light bulbs, so. . . but there is no
upper limit to the
lifetime

we can’t identify the precise moment when L becomes 1. All we can really
say is

L(∞) =

∫ ∞

0

r(s) ds.
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This is called an improper integral, because it cannot be calculated di- An integral is improper

if the domain of
integration is infinite

rectly: its “domain of integration” is infinite. By definition, its value is
obtained as a limit of ordinary integrals:

∫ ∞

0

r(s) ds = lim
b→∞

∫ b

0

r(s) ds.

The normal density function of probability theory provides us with
another example of an improper integral. In a simple form, the function itself
is

f(x) =
1√
2π

exp

(

−x2

2

)

.

(Recall, exp(x) = ex.) If x is any normally distributed quantity whose
average value is 0, then the probability that a randomly chosen value of x
lies between the numbers a and b is

∫ b

a

f(x) dx.

Since the probability that x lies somewhere on the x-axis is 1, we have The normal probability
distribution involves
an improper integral

∫ ∞

−∞
f(x) dx = 1.

This is an improper integral, and its value is defined by the limit

∫ ∞

−∞
f(x) dx = lim

b→∞

∫ b

−b

f(x) dx.

In the exercises you will have a chance to evaluate this integral.

Evaluating Improper Integrals

An integral with an infinite domain of integration is only one kind of improper An integral is also
improper if its

integrand becomes
infinite

integral. A second kind has a finite domain of integration, but the integrand
becomes infinite on that domain. For example,

∫ 1

0

dx

x
and

∫ 1

0

ln x dx
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are both improper in this sense. In both cases, the integrand becomes infinite
as x → 0. Because the difficulty lies at the endpoint 0, we define

∫ 1

0

dx

x
= lim

a→0

∫ 1

a

dx

x
.

More generally,
∫ b

a

f(x) dx

is an improper integral if f(x) becomes infinite at some point c in the interval
[a, b]. In that case we define

∫ b

a

f(x) dx = lim
q→0

(∫ c−q

a

f(x) dx +

∫ b

c+q

f(x) dx

)

.

In effect, we avoid the bad spot but “creep up” on it in the limit.
Indefinite integrals—that is, antiderivatives—can be a great help in eval-Antiderivatives help

find improper integrals uating improper integrals. Here are some examples.

Example 1. We can evaluate

∫ ∞

0

e−x dx

by noting first that

∫

e−x dx = −e−x. Therefore

∫ b

0

e−x dx = −e−x
∣
∣b

0
= −e−b −

(
−e−0

)
= 1 − e−b

and
∫ ∞

0

e−x dx = lim
b→∞

∫ b

0

e−x dx = lim
b→∞

(
1 − e−b

)
= 1.

Example 2. To evaluate

∫ 1

0

ln x dx, we use the indefinite integral

∫

ln x dx = x ln x − x.
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Thus
∫ 1

a

ln x dx = x ln x − x
∣
∣
∣

1

a
= −1 − (a ln a − a) = a − 1 − a ln a.

By direct calculation (using a graphing package, for instance) we can find

lim
a→0

a ln a = 0;

therefore
∫ 1

0

ln x dx = lim
a→0

∫ 1

a

ln x dx = lim
a→0

a − 1 − a ln a = −1.

You should not assume that an improper integral always has a finite value,
though. Consider the next example.

Example 3.

∫ 1

0

dx

x
= lim

a→0

∫ 1

a

dx

x
= lim

a→0
ln(x)

∣
∣
∣
∣

1

a

= lim
a→0

(ln(1) − ln(a)) = ∞.

This is forced because lim
a→0

ln(a) = −∞, which you can see from the graph

of the logarithm function.

Exercises

1. Find the value of each of the following improper integrals. (The value
may be ∞.)

a)

∫ 0

−∞
ex dx

b)

∫ ∞

1

du

u

c)

∫ 1

0

dy

y2

d)

∫ π/2

0

tan x dx

e)

∫ ∞

0

xe−x dx

f)

∫ ∞

1

du

u2

g)

∫ ∞

0

x

1 + x2
dx

h)

∫ 3

1

x

x2 − 1
dx

2. Use the reduction formula for

∫
dx

(1 + x2)n
you found on page 752 to find

the exact value of

∫ ∞

0

dx

(1 + x2)10
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The normal density function

The next two questions concern the improper integral

1√
2π

∫ ∞

−∞
e−x2/2 dx

of the normal density function defined on page 761. The goal is to determine
the value of this integral.

3. First, use RIEMANN to estimate the value of

1√
2π

∫ b

−b

e−x2/2 dx

when b has the different values 1, 10, 100, and 1000. On the basis of these
results, estimate

lim
b→∞

1√
2π

∫ b

−b

e−x2/2 dx.

This gives one estimate of the value of the improper integral.

4. a) To construct a second estimate, begin by sketching the graph of the
normal density function

f(x) =
1√
2π

e−x2/2

on an interval centered at the origin. Use the graph to argue that

1√
2π

∫ b

−b

e−x2/2 dx = 2

(
1√
2π

∫ b

0

e−x2/2 dx

)

=
√

2/π

∫ b

0

e−x2/2 dx

and therefore

1√
2π

∫ ∞

−∞
e−x2/2 dx =

√

2/π

∫ ∞

0

e−x2/2 dx.

b) Now consider the accumulation function

F (t) =
√

2/π

∫ t

0

e−x2/2 dx.
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We want to find F (∞) = lim
t→∞

F (t). According to the fundamental theorem

of calculus, y = F (t) satisfies the initial value problem

dy

dt
=
√

2/π · e−t2/2, y(0) = 0.

Use a differential equation solver (e.g., PLOT) to graph the solution y = F (t)
to this problem. From the graph determine

F (∞) = lim
t→∞

F (t).

c) Does your results in part (b) and question 2 agree? Do they agree with
the value the text claims for the improper integral. (Remember, the value
is the probability that a randomly chosen number will lie somewhere on the
number line between −∞ and +∞.)

The gamma function

The factorial function is defined for a positive integer n by the formula

n! = n · (n − 1) · (n − 2) · · · · · 3 · 2 · 1.

For example, 1! = 1, 2! = 2, 3! = 6, 4! = 24, and 10! = 3628800. The
factorial function is used often in diverse mathematical contexts, but its use
is sometimes limited by the fact that it is defined only for positive integers.
How might the function be defined on an expanded domain, so that we
could deal with expressions like tfrac12!, for example? The gamma function
answers this question.

The gamma function Γ(x) is defined by the improper integral

Γ(x) =

∫ ∞

0

e−ttx−1 dt.

Notice that t is the active variable in this integral. While the integration is
being performed, x is treated as a constant; for the integral to converge, we
need x > 0.

5. Show that Γ(1) = 1.
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6. Using integration by parts, show that Γ(x + 1) = x · Γ(x). You may use
the fact that

tp

et
→ 0 as t → +∞.

The property Γ(x+1) = x ·Γ(x) makes the gamma function like the factorial
function, because

(n + 1)! = (n + 1) · n · (n − 1) · (n − 2) · · · · · 3 · 2 · 1
︸ ︷︷ ︸

= n!

= (n + 1) · n!.

Notice there is a slight difference, though. We explore this now.

7. Using the property Γ(x + 1) = x · Γ(x), calculate Γ(2), Γ(3), Γ(4), Γ(5),
and Γ(6). On the basis of this evidence, fill in the blank:

For a positive integer n, Γ(n) = !

Using this relation, give a computable meaning to the expression 1
2
!.

8. Estimate the value of Γ(1/2). (Exercises 2 and 3 above offer two ways
to estimate the value of an improper integral.)

9. In fact, Γ(1/2) =
√

π exactly. You can show this by employing several
of the techniques developed in this chapter. Start with

Γ(1/2) =

∫ ∞

0

e−tt−
1

2 dt.

a) Make the substitution u = (2t)
1
2 and show that the integral becomes

Γ(1/2) =
√

2

∫ ∞

0

e−u2/2du.

b) From exercise 4 you know
√

2/π

∫ ∞

0

e−u2/2 du = 1.

(Check this.) Now, using some algebra, show Γ(1/2) =
√

π.

c) Compare your estimate for Γ(1/2) from exercise 7 with the exact value√
π.

10. a) Determine the exact values of Γ(3/2) and Γ(5/2).

b) In exercise 6 you gave a meaning to the expression 1
2
!; can you now give

it an exact value?
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11.8 Chapter Summary

The Main Ideas

• A function F is an antiderivative of f if F ′ = f . Every antiderivative
of f is equal to F + C for some appropriately chosen constant C. We
write

∫
f(x) dx = F (x) + C.

• Differentiation rules for combinations of functions yield corresponding
anti-differentiation rules. Among these are the constant multiple
and addition rules. The chain rule for differentiation corresponds to
integration by substitution. The product rule for differentiation
corresponds to integration by parts.

• The derivative of a function and of its inverse are reciprocals. When
y = f(t) and t = g(y) are inverses:

dt

dy
=

1

dy/dt
.

• In some cases, the method of separation of variables can be used to
find a formula for the solution of a differential equation.

• A numerical method for estimating an integral is efficient if it gets
accurate results with relatively few calculations. The trapezoidal ap-
proximation is the average of a left and a right endpoint Riemann
sum and is more efficient than either. Midpoint Riemann sums are
even more efficient than trapezoidal approximations.

• The most efficient method developed in this chapter is Simpson’s rule.
Simpson’s rule approximates an integral by

∫ b

a

f(x) dx ≈ 1

6
(left sum + right sum + 4 × midpoint sum) .

• An improper integral is one that cannot be calculated directly. The
problem may be that its “domain of integration” is infinite or that the
integrand becomes infinite on that domain. Its value is obtained as a
limit of ordinary integrals.
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Expectations

• You should be able to find antiderivatives of basic functions.

• You should be able to find antiderivatives of combinations of func-
tions using the constant multiple and addition rules, as well as the
method of substitution and integration by parts.

• You should be able to rewrite an integrand given as a quotient using
the method of partial fractions.

• You should be able to express the derivative of an invertible function in
terms of the derivative of its inverse. In particular, you should be able
to differentiate the arctangent, arcsine and arccosine functions.

• You should be able to solve a differential equation using the method of
separation of variables.

• You should be able to adapt the program RIEMANN to approximate
integrals using the trapezoid rule and Simpson’s rule.

• You should be able to find the value of an improper integral as the
limit of ordinary integrals.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

Chapter 12

Case Studies

To enable you to further explore the ways the concepts of calculus are used
as analytical tools in scientific and mathematical investigations, this chapter
presents four extended case studies. The four can be studied separately,
although the first two and the last two are loosely linked

Stirling’s Formula As an example of the way many of the ideas—Taylor
series, numerical integration, reduction formulas, limits—developed in
the earlier chapters of this book can be used in a tightly-reasoned ar-
gument to produce some powerful mathematical insights, in the first
section we derive a famous formula approximating n!. This formula is
then applied to the binomial probability distribution.

The Poisson Distribution Chapter 12.2 continues the probability theme
by developing the Poisson distribution and using it to study the fre-
quency of radioactive decay events.

The Power Spectrum Chapter 12.3 builds on the study of periodicity be-
gun in chapter 7. We develop the Fourier transform, a basic tool in the
sciences for detecting the relative strength of periodic components in a
noisy data set.

Fourier Series Chapter 12.4 expands on some of the ideas in chapter 11.
Here we develop tools for approximating functions over intervals using
sums of sine and cosine terms. This is an extensively used method in
a wide range of disciplines, from thermodynamics to music synthesis.

769



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

770 CHAPTER 12. CASE STUDIES

12.1 Stirling’s Formula

Given a positive integer n, we define n!—pronounced n factorial—by the rule
n! = 1 · 2 · 3 · · · (n − 1) · n . This is a convenient concept which occurs in a
number of settings, particularly combinatorial and probabilistic ones. ForFactorials

in probability instance, the probability of getting exactly n heads out of 2n tosses of a coin
turns out to be

(2n)!

22n(n!)2
.

Unfortunately, evaluating n! for values of n at all large is cumbersome at best.
Although though many calculators will compute factorials, few of them can
handle numbers as large as 1000! . Even when we can evaluate n!, we are often
as interested in the asymptotic behavior of a certain expression as much as in
its exact value for specific n. For instance, using methods we develop below,n! is difficult

to calculate it turns out that the above expression for the probability of n heads in 2n
tosses is very close to 1/

√
πn, with the approximation being more accurate

the larger n is. In fact, for n ≥ 8, the approximation is good to two places;
for n ≥ 25, the approximation gives three-place accuracy.

In his book Methodus differentialis (1730), the British mathematician
James Stirling published the following approximation, now know as Stir-
ling’s formula, for the factorial operator:

n! ∼
√

2π nn+ 1

2 e−n.

While the right-hand side may look much more complicated than the left,
think which one you would rather evaluate for, say, n = 100. To see how
good this approximation is, here are some comparisons:

Stirling’s
n n! approximation

2 2 1.9190
10 3,628,800 3,598,695.6
50 3.0414 × 1064 3.0363 × 1064

100 9.3326 × 10157 9.3248 × 10157

1000 4.02387× 102567 4.02354 × 102567

10000 2.84626 × 1035659 2.84624 × 1035659

As an example of the way elementary ideas in calculus can be used to
derive powerful and subtle results, we will outline a derivation of Stirling’s
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approximation for n!. You should write up your own summary of this proof,
filling in the gaps in the text below. We will work in two stages. In the first
stage, we will show that

n! ∼ c nn+ 1

2 e−n.

for some constant c. In the second stage we will show that this constant is
actually

√
2π.

Stage One: Deriving the General Form

We first observe that

ln(n!) = ln 1 + ln 2 + . . . + ln n.

It turns out to be easier to prove things about this logarithmic form. In fact,
we will deal most easily with

An = ln 1 + ln 2 + . . . + ln(n − 1) +
1

2
ln n.

Thus ln(n!) = An + 1
2
ln n . Even though ln 1 = 0, it will be useful to retain

the term in the expression for An.
We will find upper and lower bounds for An (and hence for ln(n!) ) by

approximating the area under the curve y = ln x by certain inscribed and
circumscribed trapezoids. We will then use these bounds to predict the
asymptotic behavior of An for large values of n.

The upper bound: Note that if we inscribe
a trapezoid under the graph of y = ln x be-
tween x = k − 1 and x = k, its area will
be 1

2
(ln(k − 1) + ln k). (How do we know

that the straight line connecting the points
(k − 1, ln(k − 1)) and (k, ln k) will lie under
the graph of y = ln x?) The sum of the areas
of all such trapezoids from x = 1 to x = n
is clearly less than the area under the curve
y = ln x over the interval [1, n]. x = k − 1 x = k 

graph of  y = ln x (k , ln k )

(k − 1, ln( k −1))

We therefore have the inequality

1

2
(ln 1 + ln 2) +

1

2
(ln 2 + ln 3) + · · ·+ 1

2
(ln(n − 1) + ln n) <

∫ n

1

ln x dx,



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

772 CHAPTER 12. CASE STUDIES

which is equivalent to An <

∫ n

1

ln x dx.

x = k − .5 x = k x = k + .5

tangent line: slope 1/k

graph of  y = ln x

(k , ln k )

The lower bound: On the other hand if we
draw the tangent line to y = ln x at x = k
and form the trapezoid between x = k − .5
and x = k + .5, its area will just be ln k
and will be greater than the area under the
curve over the same interval. (We’ve used the
fact—which you should check—that the area
of a trapezoid equals the distance between the
parallel sides times the distance between the
midpoints of the other two sides.)

Adding up all such trapezoids, we get the
inequality

∫ n

3

2

ln x dx < An.

Since we know that
∫

lnx dx = x ln x − x, we can evaluate these upper
and lower bounds to conclude

n ln n − n − 3

2
ln

3

2
+

3

2
< An < n ln n − n + 1,

which in turn yields
(

n +
1

2

)

ln n − n +
3

2

(

1 − ln
3

2

)

< ln n! <

(

n +
1

2

)

ln n − n + 1.

Pause for a moment to observe that the difference

Dn =

(

n +
1

2

)

ln n − n + 1 − ln n!

between the expressions on the two sides of the rightmost inequality is just
the accumulated error from approximating the area under y = ln x by the
inscribed trapezoids. Since the error over each interval is always positive, Dn

must therefore get larger as n increases, We will need this fact shortly.
Returning to our inequalities, they can finally be rewritten as

3

2

(

1 − ln
3

2

)

< ln n! −
(

n +
1

2

)

ln n + n < 1.
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Evaluating the constants, we thus have that for any value of n,

.8918 < ln n! −
(

n +
1

2

)

ln n + n < 1.

If we exponentiate, this becomes

2.395 <
n!

nn+ 1

2 e−n
< 2.719,

or
2.395 nn+ 1

2 e−n < n! < 2.719 nn+ 1

2 e−n.

Notice that these bounds are already quite strong and would be adequate These estimates
are often adequatefor many estimates. Moreover, they are true for any value of n. If we are

only interested in large values of n, we can do a little better. Let

δn = ln n! −
(

n +
1

2

)

ln n + n.

Then 1−δn = (n+ 1
2
) ln n−n+1− lnn! is just the expression we called Dn a

moment ago and said had to be increasing as n increases. But if Dn = 1− δn

is increasing, it must be true that δn itself is decreasing as n gets larger. We
thus must have 1 > δ1 > δ2 > . . . > δn . . . > .8918. There must therefore be
some constant d ≥ .8918 such that limn→∞ δn = d. Define the constant c by
c = ed. Then

lim
n→∞

n!

nn+ 1

2 e−n
= c,

which is what we mean when we write

n! ∼ c nn+ 1

2 e−n.

This completes stage 1. In stage 2 we will see that c =
√

2π.

Stage Two: Evaluating c

We will do this using an interesting result of a 17th century English mathe-
matician, John Wallis, who showed that

Wallis’s formulalim
n→∞

2

1
× 2

3
× 4

3
× 4

5
× 6

5
× 6

7
× · · · × 2n

2n − 1
× 2n

2n + 1
=

π

2
.
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Suppose for the moment that we had proved Wallis’s formula. We can
express it in terms of factorials by noting that we can rewrite the product
of the first n even numbers—2 × 4 × 6 × . . . × (2n)—by factoring a 2 out of
each term, leaving us

2 × 4 × 6 × . . . × (2n) = 2n (n!).

Similarly, we can take the product of the first n odd integers—1 × 3 × 5 ×
7 × . . . × (2n − 1)—and insert the missing even terms to get

1 × 3 × 5 × 7 × . . . × (2n − 1) =
1 × 2 × 3 × 4 × . . . × (2n − 1) × (2n)

2 × 4 × 6 × . . . × (2n)

=
(2n)!

2n (n!)
.

We can thus rewrite Wallis’s formula as

lim
n→∞

(2n n!)4

((2n)!)2 (2n + 1)
=

π

2
.

If we now replace all the factorials by their corresponding expressions
using Stirling’s approximation, we get

lim
n→∞

24nc4n4n+2e−4n

c2(2n)4n+1e−4n(2n + 1)
=

π

2
,

which, after a great deal of cancelation, reduces to

lim
n→∞

c2n

2(2n + 1)
=

π

2
.

Now since

lim
n→∞

n

2n + 1
=

1

2
,

this reduces to
c2

4
=

π

2
,

so
c2 = 2π,

and
c =

√
2π,

as desired.
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Deriving Wallis’s formula

One way to derive Wallis’s formula involves the integrals

Ik =

∫ π/2

0

sink x dx.

Note that I0 > I1 > I2 > I3 > . . . . Moreover, you should verify that

I0 =
π

2
and I1 = 1.

Using the reduction formula derived in chapter 11.5 for antiderivatives of
sinn x, we have a similar reduction formula for the Ik:

Ik =

∫ π/2

0

sink x dx

=
−1

k
sink−1 x cos x

∣
∣
∣
∣

π/2

0

+
k − 1

k

∫ π/2

0

sink−2 x dx

=
k − 1

k
Ik−2.

This in turn leads to

Ik =







2n − 1

2n
· 2n − 3

2n − 2
· · · 1

2
· π

2
if k = 2n is even,

2n

2n + 1
· 2n − 2

2n − 1
· · · 2

3
· 1 if k = 2n + 1 is odd.

Further, note that

I2n+2/I2n =
2n + 1

2n + 2
,

which has the limit 1 for large n. Since I2n > I2n+1 > I2n+2, it follows that
I2n+1/I2n approaches 1 for large n. But this gives us

1 = lim
n→∞

I2n+1/I2n

= lim
n→∞

(
2n

2n + 1
· 2n − 2

2n − 1
· · · 2

3
· 1
)

÷
(

2n − 1

2n
· 2n − 3

2n − 2
· · · 1

2
· π

2

)

= lim
n→∞

2n

2n + 1
· 2n

2n − 1
· 2n − 2

2n − 1
· · · 2n − 2

2n − 3
· · · 2

3
· 2

1
· 2

π

If we multiply both sides of this equation by π/2, we get Wallis’s formula.
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Further refinements

Using even more careful methods of analysis, it is possible to improve onSome refinements

Stirling’s approximation and derive approximations like

n! ∼
√

2π nn+ 1

2 e−n+ 1

12n
− 1

360n3
+ 1

1260n5
−···.

If we use this expression to approximate 1000!, for instance, our result is
accurate for the first 24 digits.

While this approximation and Stirling’s original one are good in the sense
that they give more and more accurate digits the larger n gets—so that the
ratio of n! to either approximation goes to 1 as n gets large—they are bad in
the sense that the difference between n! and either approximation becomes
infinite as n gets large.

The Binomial Distribution

One of the most frequently encountered concepts in probability theory is
the binomial probability distribution. Suppose we repeat a certain
experiment—flipping a penny, rolling a single die, mating a pair of fruit
flies, feeding cholesterol to a lab rat—over and over. Suppose further that
there is some outcome we are looking for—getting heads, rolling a 2, getting
a red-eyed offspring, developing liver cancer in the rat—in each experiment.
If p is the probability p of obtaining the looked-for outcome in any one exper-
iment, denote by P (n, k, p) the probability of the outcome happening exactly
k times in n experiments. It turns out that

P (k, n, p) =
n!

k!(n − k)!
pk(1 − p)n−k.

Example 1 How likely is it to get four 2’s if we roll twelve dice? The

probability of getting a 2 by throwing one die is
1

6
. Therefore the answer to

the question is

P (12, 4, 1
6
) =

12!

4! 8!

(
1

6

)4(
5

6

)8

= .0888281

—we should get exactly four 2’s slightly less frequently than once out of every
11 times we roll twelve dice.
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Example 2 What is the probability of getting exactly 47 heads if we flip
100 pennies? Since the probability of getting heads on a single toss of a
penny is 1

2
,

P (100, 47, 1
2
) =

100!

47! 53!

(
1

2

)100

= .0665905,

—on the average, if we flip 100 pennies, we should get 47 heads about once
out of every 15 times.

The second example demonstrates the fact that calculating binomial prob-
abilities can get very messy very quickly. Several of the exercises are designed
to show how Stirling’s formula can give us quick estimates that are easy to
calculate and work with.

Exercises

1. Go through the derivation in this section and find several passages that
seem to you to go a bit fast or skip over details. Rewrite these sections to
make them clearer and more complete.

2. Confirm the values given in the table on page 770 for the approximations
of 100! and 1000! that Stirling’s formula produces.

3. Rate of growth of n! Factorials get very large very rapidly. The
purpose of this exercise is to develop a sense of just how rapidly n! grows by
comparing it to exponential functions.

Let N be some integer > 1, and consider the sequence a1, a2, a3, . . . defined
by

an =
Nn

n!
.

a) Show that ak =
N

k
ak−1, and conclude that

if k < N then ak−1 < ak;
if k > N then ak−1 > ak;
if k = N then ak−1 = ak.

We thus have a sequence that increases for a while:

a1 < a2 < · · ·aN−1 = aN ,
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and then decreases forever after:

aN > aN+1 > aN+2 > · · · .

b) If k > 2N show that ak < .5ak−1. Hence conclude that lim
n→∞

an = 0.

c) Use Stirling’s approximation to show that

aN ≈ eN

√
2πN

.

Calculate the values of this expression for N = 10 and N = 100 to get an
idea of how large the sequence {an} can get. This shows that for a while,
the exponential series {Nn} can get large much more rapidly than the series
{n!}.
d) Show that an < 1 if n > eN . This gives an upper bound on how long it
takes the factorials to catch up with the exponentials.

4. If n ≥ 5, then n! terminates in a certain number of zeroes. For instance,
5! = 120 ends in one zero, 23! = 25852016738884976640000 ends in four
zeroes, and so on. How many zeroes are there at the end of 1000! ?

The binomial distribution

5. The formula for the binomial distribution gives us that the probability
of getting exactly n heads in 2n flips of a coin is

(2n)!

(n!)2

(
1

2

)2n

.

Show using Stirling’s formula this can be approximated by

1√
πn

.

Use this approximation to find the probability of getting 50 heads out of 100
tosses of a coin. If you have a computer or calculator which can compute
factorials, use the original binomial distribution formula to calculate the
exact probability of getting 50 heads and compare the answers.

6. More generally, if we try a certain experiment n times with a probability p
of success each time, the most likely number of successes is k = np. (Assume
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that p is a fraction and n is such that n · p is an integer.) Use Stirling’s
approximation to show that the probability of getting exactly np successes
is

P (n, np, p) ≈ 1
√

2πnp(1 − p)
.

Is this consistent with the answer to the previous exercise?

7. One-dimensional random walk An important class of problems, in-
cluding diffusion and Brownian motion involve the long-term behavior of
particles moving randomly. We will look at the simplest case of such prob-
lems. A particle starts at the origin on a line and at each stage moves one
unit to the right or one unit to the left, being equally likely to do either.
What can we say about where the particle will be after n steps? In this
problem we will use Stirling’s formula to develop some useful insights into
this question.

a) Explain why the particle will be r units to the right of the origin after
n steps if and only if it has moved to the right k = (n + r)/2 times and to
the left n − k = (n − r)/2 times. Explain why it could never be 3 units or 7
units to the right after 100 steps.

b) Using the same symbols as in part (a), show that the probability of the
particle’s being exactly r units to the right after n steps is

n!

k!(n − k)!

(
1

2

)n

.

c) Use Stirling’s formula to show that this probability of being r units to
the right after n steps is approximately

√
2

√
πn(1 + (r/n))

1

2
(n+r+1) (1 − (r/n))

1

2
(n−r+1)

.

d) To simplify the denominator of this fraction, recall the Taylor series ap-
proximation for ln(1 + x):

ln(1 + x) = x − x2

2
+ · · · .

Hence, if r is much smaller than n, ln(1 + r/n) can be approximated by
r/n − r2/(2n2), and ln(1 − r/n) can be approximated by −r/n − r2/(2n2).
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By ignoring all powers of r greater than the second, conclude that

(1 + (r/n))
1

2
(n+r+1) (1 − (r/n))

1

2
(n−r+1) ≈ er2/(2n),

so that the probability of being r units to the right after n steps is

√

2

πn
e−r2/2n.

e) Explain how we can get the answer to exercise 5 as a special case of the
result just obtained in part (d).

f) Using the approximation from part (d), calculate the probability that
after 100 steps the particle will be no more than 5 units away from the
starting point to either the right or the left. Remember that after 100 steps
it is impossible to be an odd number of units away from the starting point.
The exact probability is

52∑

k=48

100!

k!(100 − k)!

(
1

2

)100

= .382701.
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12.2 The Poisson Distribution

A Linear Model for α-Ray Emission

When a radioactive element decays, we know from the study of differential
equations in chapter 4 that the amount A(t) of radioactive material present
at time t satisfies the differential equation

A′ = −kA,

where k > 0 is the decay constant. If A0 is the amount present at time t = 0,
then the solution is

A(t) = A0e
−kt.

The time T it takes for a given amount of radioactive material to decay
to half the starting quantity is known as the half life of the element. Since,
by definition, A(T ) = .5 A(0) = .5 A0, we must have

e−kT =
1

2
,

which leads to

kT = ln 2

and therefore The relation between
the half-life and

the decay constantT =
ln 2

k
.

Suppose, for example, that we have a sample of polonium, which is a
radioactive isotope of radium. The decay constant of polonium is k = .500865
% per day, and thus its half life is

T =
ln 2

k
=

ln 2

.00500865
= 138.39 days.

By local linearity, A(t) is closely approximated by a linear function for short
intervals of time. Because polonium has a half-life of 138.39 days, a “short
time” means several hours in this case. Thus, if we spend an afternoon in
a laboratory studying the decay of polonium, we can assume that A(t) is
linear.
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When polonium decays, it produces various sorts of radiation, including
α-rays (“alpha rays”). Using a scintillation counter, one can determine the
number of rays emitted in given directions:

A setup like this will count a fixed percentage of the total number of α-rays
emitted. Since our model of decay is linear, it follows that the number of
α-rays detected should be a linear function of time. If we start counting at
time t = 0, the number of particles observed will have a straight-line graph:

In the early 20th century, researchers like Marie Curie and Ernest Ruther-
ford did numerous studies of the α-rays emitted by polonium. For example,
in 1911, Rutherford, Geiger and Bateman counted the number of α-rays de-
tected in a 7.5-second time period. They repeated their experiment 2608
times and detected a total of 10,097 α-rays. This is an average of

10097

2608
= 3.8715 α-rays per 7.5-second period,

so the number of α-rays per second is

3.8715

7.5
= .5162 α-rays per second.

Thus the straight line in the above graph has slope .5162.
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This model of α-ray production has several problems. First, it predicts the
existence of fractional α-rays, which makes no sense—the number detected
is always a nonnegative integer. To remedy this, we can modify our model
as follows:

Notice that the graph is now a step function. It shows that we should see a
new α-ray every 1/.5162 = 1.937 seconds. This model also has the following
consequence: if we observe the number of α-rays produced in a 7.5-second
interval, then we will always see 3 or 4 particles:

As the picture indicates, whether we get 3 or 4 depends on where the interval
starts. Now comes the serious problem: this prediction is inconsistent with
the experimental data collected by Rutherford and the others in 1911. For
example, in 57 of the 2608 times they ran the experiment, no α-rays were
observed, while in 139 cases, 7 α-rays were observed. Here are the complete
data of the experiment:
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number of number of
α-rays observed occurrences

n Nn

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

57
203
383
525
532
408
273
139
45
27
10
4
0
1
1

Total 2608

It follows that the linear model of α-ray emission doesn’t apply to time
intervals of length 7.5 seconds. This is a common occurrence—a model may
work nicely over a certain range, but outside of that range, its answers may
be meaningless. The problem in our case comes from the random nature of
radioactive decay. In fact, there are two sources of randomness to deal with:
the time when a polonium atom decays is random, and the direction in which
it then emits an α-ray is also random (this affects us since the scintillation
counter only detects emissions in certain directions). We need to modify our
model to take the randomness into account, and this is where probability
enters in.

Probability Models

The basic idea of probability theory is that the outcome of a certain event canRandomness has
structure be unpredictable in the individual instance but predictable on the average.

Throwing dice and tossing a coin are familiar examples. In this section, we
will show how the Poisson probability distribution gives an excellent model
of the α-ray experiment described above.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

12.2. THE POISSON DISTRIBUTION 785

The definition of probability

We will let pn denote the probability of observing exactly n α-rays in a 7.5-
second time interval. By this statement, we mean the following. Suppose
we run the experiment N times, where N is large. Let Nn be the number
of times we observed n α-rays. Then the ratio Nn/N is the frequency with
which this outcome occurs. Now imagine N getting larger and larger. Being
“predictable on the average” means that the ratios Nn/N approach a fixed
number, that is, the limit limN→∞ Nn/N exists. We then define this number
to be the probability pn. Thus

pn = lim
N→∞

Nn

N
.

For example, the data presented on page 784 were obtained from N = 2608
repetitions of our experiment. From the table given there, we see that 0 α-
rays were observed 57 times. This means N0 = 57, and thus the probability
of detecting 0 α-rays is

p0 ≈
N0

N
=

57

2608
= .0218.

Similarly, we can approximate p1, p2, etc., using the data in the table. Our
goal is to describe these probabilities p0, p1, . . . .. Ideally, we would like to
have a way of determining the numbers p0, p1, p2, . . . “before the fact.”

Some properties of probabilities

In any introductory course on probability, one learns certain basic principles
for working with probabilities. We will give examples to illustrate some of
these principles, and more examples may be found in the exercises.

For our purposes, we will be working in the following setting. There is
a certain experiment being performed. This might consist of flipping a The general context

coin and noting which side comes up, or running a survey asking people at
random their opinions about a certain TV show, or, in our case, counting
the number of α-rays detected in a 7.5-second interval. Moreover, there is a
discrete set of possible outcomes of the experiment. That is, the possible
outcomes can be listed in a sequence O1, O2, O3, . . . . In some cases, like
throwing a pair of dice, this list might be finite. In other cases, like our α-ray
experiment, the list might be infinite. What is ruled out are experiments like
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choosing a person at random and measuring the person’s height—there is
a continuum of possible outcomes here which cannot be listed in the way
we’ve specified. Moreover, there should be a probability assigned to each
outcome, with the outcome On having probability pn.. Finally, the possible
outcomes should be disjoint—two different outcomes can’t both result from
a single experiment. Thus if we are examining the attributes of a group
of people, “being male” and “having green eyes” would not be acceptable
outcomes in our sense unless we somehow knew in advance that there were
no green-eyed males in the group.

Knowing the probabilities p0, p1, . . . of the possible outcomes allows us to
compute other, possibly more complicated probabilities. This brings in the
concept of an event, which is basic to probability. In the case of our α-ray
experiment, here are some examples of events:

• Detecting 3 α-rays.

• Detecting 2 or 4 α-rays.

• Detecting an odd number of α-rays.

In general, an event is a subcollection of the possible outcomes.

The addition rule
for probabilities

Rule 1 The probability of an event is simply the sum
of the probabilities of its component outcomes.

Thus, for the events just described, we have:

• The probability of detecting 3 α-rays is p3;

• The probability of detecting 2 or 4 α-rays is p2 + p4;

• The probability of detecting an odd number of α-rays is the infinite
sum

p1 + p3 + p5 + p7 + · · ·

(since an odd number of α-rays means that 1 or 3 or 5 or 7 etc. have
been detected).

Another important property of probabilities follows directly from Rule 1:
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Rule 2 The sum of the probabilities of all possible out-
comes is 1:

∞∑

k=0

pk = 1.

The reason for this is that the list of outcomes was stipulated to be the list
of all possible outcomes. Hence the event consisting of all these outcomes is
bound to occur every time—its probability is 1.

A third rule we will need relates the probabilities of independent events.
Two events are independent if the occurrence or non- occurrence of one of
the events has no impact on the probability of the second event occurring.
For instance, suppose we are examining a group of people. Consider the
following events which may or may not occur each time we look at a person:

1. The person is female;

2. The person has green eyes;

3. The person is over 5’7” tall.

We would expect the first and second events to be independent, and also the
second and third, but not the first and third.

The product rule
for probabilities

Rule 3 The probability that two or more independent
events all occur is the product of their separate proba-
bilities.

Thus, for example, suppose that in our hypothetical group of people 1
2

are
female, 1

8
are green-eyed, and 1

3
are taller than 5’7”. We might then expect

roughly 1
24

of them to be green-eyed and over 5’7”, but we would have no
particular reason to expect that 1

6
of them are females taller than 5’7”.

A final rule that is often useful is

The probability
that something
doesn’t happen

Rule 4 If a certain event has a probability p of hap-
pening, then the probability that the event doesn’t take
place is 1 − p.

For example, in our group of people, we would expect 2
3

of them to be less
than 5’7” tall, 7

8
of them to have eyes colored something other than green,

etc.
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The notion of a probability model

A model is a mathematical picture of a real-life phenomenon. We have seen
that dynamical systems can be used to create models of physical situations.
Another type of mathematical model is a probability model. In general, a
probability model for an experiment with a finite number of outcomes is
a listing of all possible outcomes and an assignment of probabilities to each
outcome so that their sum is 1. In order that the probability model be a
good picture of reality, we ask that the probability assigned to an outcome
should be the relative frequency with which that outcome would appear if the
experiment were duplicated independently a large number of times.

As an example, a probability model for one toss of a fair die consists of
a list of all possible outcomes, namely 1, 2, 3, 4, 5, 6, and an assignment of
a probability to each, namely 1

6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
, respectively. We assign the

number 1
6

to each outcome because we expect that if the the experiment were
repeated (that is, if the die were tossed) a large number of times, then any
particular outcome (3, say) would occur about one sixth of the time. Another
probability model for the experiment consisting of a toss of a die might be a
list of all outcomes, again 1, 2, 3, 4, 5, 6, together with an assignment of the
numbers 1

2
, 0, 1

6
, 0, 0, 1

3
to 1, 2, 3, 4, 5, 6, respectively. This is a probability

model, because the numbers we have assigned add to 1, but it certainly does
not model very well the throw of a fair die.

We would like to set up a probability model for our experiment with α-
rays. The outcomes are 0, 1, 2, 3, 4, ... where, for example, the number 5
labels the outcome in which we observe 5 α-rays in our 7.5-second interval.
The total number of outcomes is equal to the number of α-rays that we
could conceivably see in a 7.5-second interval. Since it is conceivable (but
extremely unlikely) that every atom in the sample could decay and emit an α-
ray in the direction of the scintillation counter in one 7.5-second interval, we
could conceivably see as many α-rays as there are atoms in the sample. This
number is so large that we can think of it as infinite. To have a probability
model, we need to assign numbers p0, p1, p2, . . . to the outcomes 0, 1, 2, . . . ,
respectively, so that p0+p1+p2+ · · · = 1. For the model to be reasonable, we
would like each pn to be approximately equal to the corresponding number
Nn/N observed by Rutherford, Geiger, and Bateman.
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The Poisson Probability Distribution

The Poisson model of α-ray emission

To describe the probabilities p0, p1, . . . , pn, . . . that we will observe 0, 1, . . . ,
n, . . .α-rays in a 7.5-second interval for our α-ray experiment, we use the
Poisson probability distribution

pn =
λne−λ

n!
,

where λ is a number yet to be determined, and n! is the familiar n-factorial
function,

n! =

{

n · (n − 1) · (n − 2) · · · · · 3 · 2 · 1 if n > 0,

1 if n = 0.

Thus the first few Poisson probabilities are:

p0 = e−λ, p1 = λe−λ, p2 =
λ2e−λ

2
, p3 =

λ3e−λ

6
.

Note that this assignment does indeed give us a probability model, be-
cause

p0 + p1 + p2 + p3 + · · · =
λ0

0!
e−λ +

λ

1!
e−λ +

λ2

2!
e−λ +

λ3

3!
e−λ + · · ·

= e−λ

(

1 +
λ

1!
+

λ2

2!
+

λ3

3!
+ · · ·

)

= e−λ · eλ

= 1.

(The transition from the second line to the third uses the fact that the
expression in parentheses is just the Taylor series for eλ.)

We will shortly derive the Poisson distribution from basic principles. For
the moment, though, we will assume that the probabilities p0, p1, . . . for α-
ray emission are given by the above formulas, where we still need to choose
an appropriate value for the parameter λ. The key to determining λ is the
notion of expectation, which for us will mean the average number of α-rays
observed in a 7.5-second interval.
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Suppose we repeat our experiment N times. As usual, we let Nn denote
the number of times exactly n α-rays were observed. Then the total number
of α-rays observed in the N experiments is

0 · N0 + 1 · N1 + 2 · N2 + 3 · N3 + · · · .

Then the “average number of α-rays observed in a 7.5-second interval” means
the limit

E = lim
N→∞

0 · N0 + 1 · N1 + 2 · N2 + 3 · N3 + · · ·
N

.

This limit is called the expected value or expectation (which explains
why it is denoted E).

We claim that for the Poisson distribution, the expected value E is exactly
the number λ. To see this, notice that the above limit can be written in the
form

E = lim
N→∞

(

0 · N0

N
+ 1 · N1

N
+ 2 · N2

N
+ 3 · N3

N
+ · · ·

)

.

Since we defined

pn = lim
N→∞

Nn

N
,

it follows that we get the following formula for the expectation:

The general formula
for the expected value
in a probability model

E = 0 · p0 + 1 · p1 + 2 · p2 + 3 · p3 + · · · =
∞∑

n=0

npn.

(Note that this equality is true for any probability model, not just the one
we are considering)

Substituting in the values of pn given by the Poisson distribution, we have

E = 0 · e−λ + 1 · λe−λ + 2 · λ2

2!
e−λ + 3 · λ3

3!
e−λ + · · ·

=

∞∑

n=0

n
λn

n!
e−λ

= λe−λ
∞∑

n=1

λn−1

(n − 1)!
,

where we pulled the common factor λe−λ outside the summation, noted that
the term in the summation corresponding to n = 0 is 0, and observed that

n

n!
=

n

n(n − 1) · · · · · 2 · 1 =
1

(n − 1)!
.



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

12.2. THE POISSON DISTRIBUTION 791

Letting k = n − 1, we have (again recognizing the Taylor series for eλ)

E = λe−λ
∞∑

k=0

λk

k!
= λe−λeλ = λ.

This proves that the expected value is λ as claimed.
Now that we know how to interpret λ, it is easy to determine what it

should be for the α-ray experiment. The data given on page 784 covered
N = 2608 repetitions of the experiment, with

0 · N0 + 1 · N1 + · · · = 10097

in this case. Thus

0 · N0 + 1 · N1 + · · ·
N

=
10097

2608
= 3.8715

is an approximation of the expected value λ. However, since this is the only
information about λ we have, we will let λ = 3.8715. Using this value of λ,
we can then compare the frequencies predicted by the Poisson distribution
to the actual data from on page 784:

number of number of probability Poisson Poisson
α-rays observed occurrences approximation probability prediction

n Nn Nn/N pn 2608 pn

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

57
203
383
525
532
408
273
139
45
27
10
4
0
1
1

.021855

.077837

.146855

.201303

.203398

.156441

.104677

.053297

.017254

.010352

.003834

.001533

.000000

.000383

.000383

.020827

.080632

.156083

.201426

.194955

.150953

.097402

.053870

.026070

.011214

.004341

.001528

.000492

.000146

.000040

54.3
210.3
407.1
525.3
508.4
393.7
254.0
140.5
68.0
29.2
11.3
4.0
1.3
.4
.1

Totals 2608 1 1 2608
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The Poisson model agrees nicely with the data since for each n, Nn/N and pn

are reasonably close. Notice that we shouldn’t expect perfect agreement since
Nn/N is only an approximation to pn. We would expect these approximations
to get better as we take larger values of N .

Look at the last column, labelled “Poisson prediction.” The numbers here
are the Poisson probabilities multiplied by N = 2608, and they represent the
“ideal” number of occurrences. This makes it easier to compare the model
to the data. For example, the graph below plots the number of occurrences,
both actual and predicted. The circles are the experimental data, while the
line-segment graph connects the Poisson predictions.

Although the model seems to fit the data nicely, we should point out that
there are statistical tests which can be used measure the fit more precisely.
These tests are part of the material covered in courses in probability and
statistics.

A final and very important point to make concerns the number of α-rays
observed over a long period of time. Our particular Poisson model with
λ = 3.8715 only works for a 7.5-second interval. What happens if we count
α-rays over a longer time period? For simplicity, assume that we have a time
interval of length T which is a multiple of 7.5 seconds, so that T = 7.5 N
for some large integer N . We can regard this as running our 7.5-second
experiment N consecutive times. Thus the ratio

total number of α-rays observed

N
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is an approximation to the expected value λ = 3.8715. It follows that

total number of α-rays observed ≈ 3.8715 N =
3.8715

7.5
7.5 N = .5162 T.

This shows that for large time intervals, we recover the linear model of α-ray
emissions discussed on page 782. Thus our probabilistic model is consistent
with what we did earlier and yet allows us to describe what happens when
the linear model breaks down.

Derivation of the Poisson model

In the previous discussion we simply assumed that the α-ray probabilities
were given by the Poisson distribution, and found that the Poisson probabil-
ities agreed with the experimental data. Let’s see where the Poisson formulas
come from. It turns out that we can derive the Poisson probabilities pn from
the following assumptions:

• We have an extremely large number M of polonium atoms;

• Each atom has a small but equal probability of emitting an α-ray that
is detected by our scintillation counter in a 7.5-second period;

• Observing an α-ray from a given atom is independent of observing an
α-ray from any other atom.

Now suppose that we see an average of λ = 3.8715 α-rays in a 7.5-second
period. Because the number of atoms M is large (in the Rutherford-Geiger-
Bateman experiment M > 1018), then the probability that a single fixed
atom emits an α-ray detected by our scintillation counter in a given time
period is very close to λ/M . The probability that the single atom does not
emit a detected α-ray in the period is then 1 − λ/M (by Rule 4, page 787).
Thus, the probability p0 that none of the M atoms emits an α-ray in the
7.5-second period is (1 − λ/M)M (by Rule 3, page 787).

The fact that M is so large allows us to make a simplifying approximation.
Recall that for any value of x, positive or negative,

ex = lim
n→∞

(

1 +
x

n

)n

.

Therefore

p0 =

(

1 − λ

M

)M

≈ e−λ.
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You might calculate some sample values for various values of M to see how
good this approximation is.

To derive the values of pk for k > 1, we need a slight improvement on the
estimate we just made. Let k be a relatively small (compared to the size of
M) number. Then

(

1 − λ

M

)M−k

=

((

1 − λ

M

)M
)M−k

M

.

Now if M is very large compared to k—we will be thinking of values of M on
the order of magnitude of 1018 and k < 100—then (M−k)/M will essentially(M − k)/M is

essentially equal to 1 equal 1, Hence
(

1 − λ

M

)M−k

≈
(
e−λ
)1

= e−λ.

We can now work out p1. Fix your attention first on a particular atom.
The probability that that atom does emit an α-ray detected by the scintilla-
tion counter while the other M − 1 atoms do not is (again by Rule 3)

(
λ

M

)1(

1 − λ

M

)M−1

≈ λ

M
e−λ,

by the preceding approximation.
Since there are altogether M atoms which might have been responsible

for the single α-ray emission, the probability that some unspecified atom
emits an α-ray while the others do not is (Rule 1, page 786) the sum of the
probability we just calculated for each of the M atoms, which is equal to M
times that probability. The total probability is p1:

p1 ≈ M
λ

M
e−λ = λ e−λ.

To work out p2, note that the probability that each atom of some fixed
pair of atoms emits an α-ray detected by the counter, and no other atoms
does, is

(
λ

M

)(
λ

M

)(

1 − λ

M

)M−2

≈ λ2

M2
e−λ,

using our usual approximation. Since there are 1
2
M(M − 1) different pairs

of atoms (we can choose the first M different ways and the second (M − 1)
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ways, but each pair gets counted twice in this scheme, so we have to divide
by 2), we obtain

p2 ≈
M(M − 1)

2

λ2

M2
e−λ =

(

1 − 1

M

)
λ2

2
e−λ ≈ λ2

2
e−λ.

As one can easily imagine, the computations for p3, p4, . . . are similar.
The observant reader will note that the exact values we got for p0, p1 and
p2 are not the values given by the Poisson distribution. We got the Poisson
probabilities only by making various approximations that were justified by
the large value of M . The assumptions we have made actually lead to what
is called the binomial distribution (see chapter 12.1), a distribution which
tends to the Poisson distribution in the limit M → ∞. In this case, where M
is large and λ relatively small, the binomial distribution is extremely close
to the Poisson distribution.

Other applications of the Poisson distribution

The Poisson distribution can be used to model many other situations that
have a random element. Examples include:

• The number of chromosome interchanges caused by exposure to X-rays
for a fixed interval of time.

• The number of bacteria in a given unit of area on a Petri dish.

• The number of misprints on a page in a book.

• The number of flying-bomb hits per unit area in London during World
War II.

In the exercises we will explore some examples.

Exercises

Probability models

1. A fair coin is tossed. If it comes up H (heads), a fair die is rolled. If the
coin comes up T , the coin is tossed again. Construct a probability model for
this experiment, listing the possible outcomes and their probabilities. (Hint:
the list of outcomes is H, 1, H, 2, . . ., H, 6, TT , TH .)
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2. Two identical fair coins are put in cup, shaken, and spilled out onto a
table. Construct a probability model for this experiment.

3. a) In the disintegration of large numbers of particles of radium (Ra), it
is noted that 29% of the disintegrations result in

Ra −→ P + A

and the remainder in
Ra −→ He+ + B.

What is a model for the disintegration of a single particle of Ra?

b) Construct a probability model for the disintegration of two particles
of Ra.

The Poisson distribution

4. The purpose of this exercise is to present another way to show that the
expected value E of the Poisson distribution is equal to λ. As in the text we
have

E = 0 · p0 + 1 · p1 + 2 · p2 + 3 · p3 + · · · =
∞∑

n=0

npn.

The numbers npn can be simplified as follows:

0 · p0 = 0,

1 · p1 = 1 · λe−λ = λ · e−λ = λp0,

2 · p2 = 2 · λ2e−λ

2
= λ · λe−λ = λp1,

3 · p3 = 3 · λ3e−λ

6
= λ · λ2e−λ

2
= λp2.

a) This pattern generalizes: show that

npn = λpn−1 for all n > 0 .

b) Use part (a) to compute the expectation E (you will need to use the fact
that the sum of the probabilities is p0 + p1 + p2 + · · · = 1).
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5. A model is to be constructed for the number of rain drops that fall per
square foot over a short time interval. Under what conditions would a Poisson
distribution be appropriate. Under what conditions would a linear model be
better?

6. In analyzing flying-bomb hits in the south of London during World War
II, investigators partitioned the are into 576 small sectors, each being 1

4
of

a square kilometer. There were 229 sectors with no hits, 211 sectors with
exactly 1 hit, 93 sectors with exactly 2 hits, 35 sectors with 3 hits, 7 sectors
with 4 hits, and one sector with 5 or more hits. What might lead you to
expect that a Poisson distribution might be a good model for the number of
hits on each sector? Fit a Poisson distribution to the data by taking λ to be
the average number of hits per sector. Use this λ to compute the theoretical
frequencies of 0, 1, 2, 3, 4 and 5 hits in 576 sectors.

7. A meteorite shower sprinkles a large area of the earth’s surface with small
meteorite hits. The average density is 5×10−6 hits per square meter. Set up
a model assigning a probability to the number of hits per square kilometer.

8. The central processing unit (CPU) of a laptop computer will freeze if
more than ten instructions are received in a millisecond. If the average
number of instructions per second received in the course of executing a large
program is one per millisecond, what is the probability that the instructions
received by the CPU will cause it to freeze (and, hence, the program to
crash).
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12.3 The Power Spectrum

This section is an application of ideas about periodic functions and integralsThe problem of
signal + noise to the problem of separating a signal from noise. We face this problem in our

daily life. Radio and television signals have noise added to them from other
radio sources we can’t control. The noise sounds like hissing static on a radio
and looks like “snow” on a television screen. A good receiver is designed to
filter out the noise while allowing the the transmitted signal to come through
undistorted.

1820 1840 1860 1880 1900 1920

2000

4000

6000

year

Annual harvest of lynx pelts

pe
lts

Scientific data and a radio broadcast have something in common: both are
combinations of signal and noise. For instance, consider the annual harvest
of lynx pelts by the Hudson’s Bay Company. It is conceivable that the lynx
population itself (the signal) was periodic, but various random fluctuations
(the noise) caused the harvest (which is signal + noise) to take the form it
did. If this is the case, then we should try to “filter out” the noise and findThe power spectrum

filters noise to detect
periodic signals

the underlying periodic signal. There is a mathematical tool to do this; it
is called the power spectrum. We will discuss the ideas behind the power
spectrum and show how it can be used to detect the underlying in noisy data.

Signal + Noise

To prepare for working with the power spectrum, let’s first see what happens
to a periodic signal that has some noise added to it. The signal we will use is
a pure sine wave. The information that the signal carries is the frequency of
that wave. The noise will also be a function, but one whose values vary in a
random fashion. It can be thought of as a combination of periodic signals of
all frequencies. For this reason it is sometimes called “white noise,” because
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white light is a combination of light rays of all colors (i.e., frequencies). Here
is the question we will explore: If we increase the strength of the noise, when
do we lose the information contained in the original signal?

The signal and noise are shown below. As you can see, the amplitude of A signal with
faint noisethe signal is about 4 times as large as the amplitude of the noise. We say

signal:

noise:

signal + noise:

that the signal-to-noise ratio is 4:1. The combined signal + noise is no
longer a pure sine wave, of course. However, it is still recognizable as a
“noisy” wave with the same frequency as the original signal. The information
from the signal has not yet been lost.

Look what happens when we increase the amplitude of the noise. In the The noise level
becomes strongerfigure below, the noise has been increased by a factor of 4, so the signal-

to-noise ratio is now 1:1. The combined signal + noise is now very noisy.
Would you be willing to argue that it is a wave of the same frequency as the
original signal? Or would you prefer to say that it has no periodic pattern
whatsoever? It appears we are close to losing the information from the
original signal.

signal:

(× 4):noise

signal + noise:
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If we increase the original noise level by a factor of 10, we appear to loseThe noise level
becomes overwhelming the original signal altogether. The signal-to-noise ratio is now 1:2.5, and the

signal

noise (× 10)

signal + noise

signal + noise appears to be as random as the noise itself. In spite of appear-
ances, the signal is still there, and it will be detected in the power spectrum!

Detecting the Frequency of a Signal

Assume we have a signal that may be distorted by a lot of noise. We wantCompare the signal
to a probe whose
frequency can be varied

to decide whether the signal has a periodic component; if it does, we want to
determine its frequency. Our detector is based on this simple idea: Compare
the signal to a test probe of known frequency; vary the frequency of the probe
until there is a positive response. Of course, we still need to explain how the
comparison is made, and what constitutes a positive response.

Although the detector will work on a very noisy signal, like the one above,
we will understand it better if we first use it to analyze a signal whose periodic
nature is evident. Let the signal S(t) be a pure sine wave lying above theThe test probe

t-axis, and suppose that t is the time measured in seconds. Our test probe



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

12.3. THE POWER SPECTRUM 801

is the function

P (t) = sin(2πωt)

whose frequency is ω cycles per second. As its graph demonstrates, the values
of P are equally likely to be positive or negative.

Is the same true for the product P (t)S(t)? Suppose first that S(t) has When the signal
matches the

test frequency
the same frequency as P (t) (below, left). As you can see, the positive values
of P (t) are always multiplied by the larger values of S(t). By contrast, the
negative values of P (t) are always multiplied by the smaller values of S(t).
Consequently, the positive values of P (t)S(t) outweigh the negative ones. On
average, the value of the product is positive. In fact, the average value of
the product is half the amplitude of the original signal. Later on we will see
why this is so.

original
signal

t

S
frequencies match

2A

test
probe t

P

their
product t

S·P

S·P = A/2

average value = A/2

t

S
frequencies do not match

t

P

t

S·P

average value ≈ 0

On the right we see what happens if S(t) is not related to P (t). In that When the signal
doesn’t match the

test frequency
case, a large value of S(t) is just as likely to multiply a positive value of P (t)
as a negative one. Consequently, the product P (t)S(t) will have both large
positive and large negative values. On average, the value of the product will
be about 0.

Let’s use the detector on the signals we constructed on page 799. In both
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we started with a pure sine wave and added some white noise. In the first,
the signal-to-noise ratio was 4:1.

original
signalt

S
frequencies match

A

test
probet

P

their
productt

S·P

S·P ≈ A/2

average value ≈ A/2

t

S
frequencies do not match

t

P

t

S·P

average value ≈ 0

In the second the noise was stronger; the signal-to-noise ratio was 1:1.

original
signalt

S
frequencies match

A

test
probet

P

their
productt

S·P

S·P ≈ A/2

average value ≈ A/2

t

S
frequencies do not match

t

P

t

S·P

average value ≈ 0

To use the detector yourself, you have to be able to calculate the average
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value of a function. This is discussed in chapter 6.3. The average value of
y = f(x) on the interval a ≤ x ≤ b is

The average value
of a function

1

b − a

∫ b

a

f(x) dx.

Our detector is the average value of the product of the signal S(t) and the
test probe P (t) = sin(2πωt).

Frequency detector: D(ω) =
1

b − a

∫ b

a

S(t) sin(2πωt) dt.

Clearly, the value of the detector depends on the frequency ω of the probe Integrals
with parameters
define functions

P . We have tried to reflect this in the notation: the detector is a function D
whose input is the frequency ω. The output of the function is calculated as
an integral in which the input ω plays the role of a parameter.

This is the first time we have defined a function as an integral with a
parameter. Let’s see how the detector works to analyze the signal S(t) =
3 sin(5t) over the interval 0 ≤ t ≤ 10. We have

D(ω) =
1

10

∫ 10

0

3 sin(5t) sin(2πωt) dt.

In the exercises at the end of chapter 11.3 we obtained an explicit formula
for the integral of the product of two sine functions. Find that formula and
check that it yields the following:

D(ω) =
3

10(4π2ω2 − 25)
(5 cos(50) sin(20πω)− 2πω sin(50) cos(20πω)).

Notice, in your own calculations, that ω emerges as the variable on which
the whole expression depends.

The graph of D(ω) is shown on the top of the next page. You should plot
it yourself, using a computer graphing utility. For most frequencies ω, the D(ω) peaks when

ω is the frequency
of the signal

value of the detector D is close to 0. There is a single strong peak, which
you can find at ω ≈ .795 cycles/sec. As it happens, the frequency of the
signal S = 3 sin(5t) is 5/2π = .79577 . . . cycles/sec! Moreover, the height of
the peak is about 1.5, which is exactly half the amplitude of the signal.
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1 2 3

1

ω
cycles/sec

y

y = D(ω)

5/2π
Detecting the frequency of 3sin(5t ) on the interval  0 ≤ t ≤ 10

The graph above tests the signal S(t) when the detector is integrated
over a time interval that is 10 seconds long. That is, 0 ≤ t ≤ 10 seconds. If
we repeat the test by integrating over a much larger interval, the frequency
detector gives us a sharper report on the frequency of the signal. In the
graph below the function D(ω) was calculated by integrating over the interval
0 ≤ t ≤ 100 seconds.

The peak in D(ω)
is sharper if the signal
is tested over a
longer time interval

1 2 3

1

ω
cycles/sec

y

y = D(ω)

5/2π
Detecting the frequency of 3sin(5t ) on the interval  0 ≤ t ≤ 100

Computation. Of course, it is rare to find a formula for D(ω) in terms of
the frequency ω. For most signals S(t), the best we can do is calculate the
value of the integral numerically for a sequence of values of the parameter
ω. The program DETECTOR, which is listed on the next page, does this.The program

DETECTOR As it is written, it analyzes the function 3 sin(5t) on the interval 0 ≤ t ≤ 10,
and it produces the graph D(ω) at the top of this page. The “outer loop”

FOR j = 1 TO omegasteps . . . NEXT j

plots D(ω) over the interval 0 ≤ ω ≤ 3, using 210 equally spaced values of
ω. Each D(ω) is an integral whose value is first calculated as a midpoint
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Riemann sum with 27 steps. The calculation is carried out by the short
“inner loop”

FOR k = 1 TO numberofsteps . . . NEXT k,

which you should recognize as an adaptation of the program RIEMANN from
chapter 6.

Program: DETECTOR
To detect the frequency of a signal

Set up GRAPHICS
startomega = 0

endomega = 3

omegasteps = 2 ^ 10

deltaomega = (endomega - startomega) / omegasteps

twopi = 8 * ATN(1)

DEF fnf (t) = 3 * SIN(5 * t)

a = 0

b = 10

numberofsteps = 2 ^ 7

deltat = (b - a) / numberofsteps

omega = startomega

oldomega = omega

oldaccum = 0

FOR j = 1 TO omegasteps

t = a + deltat / 2

accum = 0

FOR k = 1 TO numberofsteps

deltaS = (fnf(t) * SIN(twopi * omega * t) * deltat) / (b - a)

accum = accum + deltaS

t = t + deltat

NEXT k

omega = omega + deltaomega

Plot the line from (oldomega, oldaccum) to (omega, accum)

oldomega = omega

oldaccum = accum

NEXT j

If we modify the program DETECTOR so that it analyzes the function

S(t) = 3 sin(5t) + sin(8t),

we get the graph at the top of the next page. The scale on the ω-axis has also
been modified to make it easier to read multiples of 1/2π cycles per second.
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Notice the strongest peak is at ω = 5/2π cycles/sec, and D ≈ 1.5 there. But
there is now a second peak at ω = 8/2π cycles/sec, where D ≈ .5. Indeed,
S consists of two periodic components, one with three times the amplitude
of the other. The stronger component has frequency 5/2π cycles/sec, the
weaker 8/2π cycles/sec.

ω

5/2π 10/2π 15/2π

0

1

y

cycles/sec

The following example first appeared in chapter 7.2. It is clear from the
graph that it has a basic frequency of 5 Hz. The detector shows that it also
has an equally strong component at 10 Hz and a much weaker component at
15 Hz. Can you guess a formula for g(t)?

A periodic
signal . . .

. . . and its
frequency detector

0 1 2 3 seconds

t

y
y = g(t)

ω
0

5 10 15

2

10

12.5
z

z = D(ω)

cycles/sec

The graph of z = D(ω) was produced by DETECTOR. The integral was
calculated for a = 0, b = 10, and numberofsteps = 2 ^ 9.
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The Problem of Phase

Our detector is built on the premise that, if you take the
product of two functions of the same frequency, its average
value will be different from 0. This is illustrated by the
top three graphs on the left. The signal and the probe
are both sin(t). Their product is a function that ranges
between 0 and 1, and has average value 1/2. However,
something quite different happens if we change the signal
from sin(t) to cos(t). This doesn’t change the period, but it
does change the product, as you can see in the three lower
graphs. The new product is centered around the t-axis; its
average value is 0. Thus the detector fails to reveal that
the signal has the same frequency as the probe.

A closer look at the two sets of graphs will show what
has happened. In the first case, when P is positive, so is
S. When P is negative, so is S. Thus, the product S · P
is never negative; on average, its value is positive. This is
what we expect.

The second case is only a little more complicated. When
P is positive, S is positive only half the time; the other half
it is negative. Consequently, the product S · P takes both
positive and negative values. The same thing happens when
P is negative. On average, the value of the product is 0,
even though the frequencies of P and S match.

The problem is that their phases don’t match. The
signal S = cos(t) hits its peak π/2 seconds before the probe
P = sin(t). This kind of a difference is called a phase
shift. In the exercises for chapter 7.2, you showed that if
the phase of the sine function is shifted to the left by π/2,
the result is the cosine function:

S = sin(t + π/2) = cos(t).

t

S S = sin(t )

signal and probe
in phase

t

P P = sin(t )

t

S·P

t

S S = cos(t )

signal and probe
out of phase

t

P P = sin(t )

t

S·P

Since π/2 radians is the same as 90◦, we sometimes express this equation by
saying that “the sine and the cosine are 90◦ out of phase.”

Of course the signal could involve a phase shift of any amount ϕ: S = Arbitrary phase shifts

sin(t − ϕ). All these signals have the same period as the probe P = sin(t).
Exercise 20 of chapter 7.2 shows what happens if this signal is tested against
the probe: the average value of the product S · P is cos(ϕ)/2. Clearly,
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this depends on the size of the phase shift ϕ. In particular, if ϕ = 0 (soThe average value
varies with the phase S = sin(t)), the average value is 1/2. If ϕ = −π/2 (so S = cos(t)), the

average value is 0. The formula therefore agrees with what we already know
for the two signals we considered as examples.

There is one more case worth glancing at: ϕ = ±π. This is also called
a phase shift of 180◦. It doesn’t matter whether you go forward 180◦ or
backward; in either case S = sin(t ± π) = − sin(t). This time the average
value of the product is −1/2.

The problem of phase is now be clear: The probes P = sin(2πωt) haveThe problem
of phase . . . trouble detecting the frequency of a signal that is out of phase with them.

However, any phase-shifted sine function can be expressed as a sum of pure
sine and cosine functions:

sin(bt − ϕ) = M sin(bt) + N cos(bt),

where M = cos(ϕ) and N = − sin(ϕ). (See the exercises.) Since the sine
probes P will detect M sin(bt), we need only construct a second set of probes. . . and its solution

to detect N cos(bt). The test probes we add are the cosine functions

Pc = cos(2πωt).

We use the subscript “c” to distinguish these from the sine probes, which
henceforth will be denoted Ps.

We must also construct a second detector, to handle the new cosineTwo new detectors

probes. Let’s take this opportunity to make a technical adjustment: we
redefine a detector to be twice the average value of the signal and the probe.
In that way, the height of the detector at a peak equals the amplitude of the
signal at that frequency—rather than half the amplitude.

Sine detector: Ds(ω) =
2

b − a

∫ b

a

S(t) sin(2πωt) dt.

Cosine detector: Dc(ω) =
2

b − a

∫ b

a
S(t) cos(2πωt) dt.

You can modify the program DETECTOR to produce the graphs of Ds(ω)The graphs of
Ds and Dc and Dc(ω). You can see below how they analyze the signal S = cos(7t) over

the interval 0 ≤ t ≤ 10. The cosine detector Dc has a shape we’ve seen
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ω

5/2π 10/2π 15/2π

0

1
y

cycles/sec

sine
detector

y = Ds(ω)

ω

5/2π 10/2π 15/2π

0

1

y

cycles/sec

cosine
detector

y = Dc(ω)

before. It has a single peak at ω = 7/2π cycles/sec, which is the frequency
of the signal. The peak is 1 unit high, which is the amplitude of the signal.
The sine detector has an unfamiliar shape. Notice first that Ds(7/2π) = 0.
This confirms our earlier observation that the average value of the product
of a sine and a cosine at the same frequency is 0. For values of ω slightly
larger or smaller than 7/2π, though, the sine detector swings relatively far
from 0. This pattern is typical when a detector is analyzing a signal that is
90◦ out of phase with the probes.

Resonance. Try this experiment. Sit at a piano and hold all the pedals
down. Then sing a note. If you sing loud enough, and hold the note long
enough, one of the piano strings will start vibrating. If you stop abruptly
and listen to the string, you will hear it sounding the same note you were
singing. The piano has detected the frequency of your signal! It is the The physical analogue

of a detector
is a resonator

physical analogue of our mathematical frequency detectors. The response of
the string is called resonance. Had you sung a lower note, a larger string
would have resonated.

Resonance gives us a vivid language for describing how our detectors
work. We can say a test probe “resonates” with a signal when their product
is different from zero on average. The larger the average value, the stronger
the resonance.
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Resonance occurs all around us. Sometimes it is a nuisance—for instance, when the windows in
our house rattle while a heavy truck drives by, or an air conditioner runs. Sometimes we exploit
it deliberately—for instance, when we use a radio tuner as an electronic resonator to detect and
amplify certain electromagnetic waves.

Detector as transform

We now have two distinct ways to describe a signal S. The function S(t)
is one way. It tells us how strong the signal is at each instant t. But we
can also think of the signal as a mixture of sine and cosine waves of different
frequencies. The detectors Ds(ω) and Dc(ω) tell us how strong the signal is
at each frequency ω. That is the second way.

There is a direct connection between these two descriptions, of course. It
is provided by the formulas

Ds(ω) =
2

b − a

∫ b

a

S(t) sin(2πωt) dt Dc(ω) =
2

b − a

∫ b

a

S(t) cos(2πωt) dt.

In effect, these formulas tell us how to transform the first description S(t)Integrals transform
S into Ds and Dc into the second Ds(ω), Dc(ω). The transformation is so complete that even

the input variable is changed—from t to ω. Look back at the formulas to see
how the new variable ω is brought in.

Our detectors are essentially the same as the Fourier sine transform
and the Fourier cosine transform. There is also an inverse Fourier
transform that works in reverse: it produces S(t) from the frequency data
Ds(ω) and Dc(ω). The Fourier transforms are an important tool in mathe-
matics and in science. For example, a hologram is the Fourier transform of
an ordinary image. Fourier transforms and their inverses are used in photo
restoration, in the enhancement of the digitized pictures sent back from cam-
eras in space, and in filtering the signal in a stereo set.

The French mathematician Jean Baptiste Fourier (1768–1830) introduced what we call Fourier
transforms and Fourier series to study the conduction of heat. Now his methods are used to
study all sorts of periodic and non-periodic phenomena. They are also the foundation for the
part of pure mathematics called harmonic analysis.

The Power Spectrum

The sine and cosine detectors provide enough information to reconstruct theA detector that ignores
phase differences original signal in complete detail—including phase. Often, though, they pro-

vide more detail than we want. We can use another tool—called the power



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

12.3. THE POWER SPECTRUM 811

spectrum—to determine only the strength of the different frequencies that
occur in a signal, without regard to their phase. The power spectrum is
constructed from the two detectors in the following way:

Power spectrum: P (ω) =
√

[Ds(ω)]2 + [Dc(ω)]2

To see how the power spectrum works, we’ll consider the signal S(t) =
A sin(7t − ϕ). This is a sine wave of frequency ω = 7/2π and amplitude A.
Let’s concentrate first on ω = 7/2π. If there were no phase shift ϕ present,
we would expect that

Ds(7/2π) = A Dc(7/2π) = 0.

However, because there is a phase shift, the actual values turn out to be

Ds(7/2π) = A cos ϕ Dc(7/2π) = −A sin ϕ.

(These calculations are given as exercises.) The values of the detectors clearly
depend on the phase shift. By contrast,

P (7/2π) =
√

[Ds(7/2π)]2 + [Dc(7/2π)]2

=

√

A2 cos2 ϕ + A2 sin2 ϕ

= A.

We have used the fact that cos2 ϕ + sin2 ϕ = 1 for every ϕ. Thus, the power
spectrum does not depend on the phase. It tells us only the amplitude of
the signal at the frequency ω = 7/2π.

If we calculate the power spectrum over all frequencies ω, we get the
graph shown at the top of the next page. The program POWER generates The program POWER

this graph. It was derived from the program DETECTOR. Compare the
two programs, particularly the terms deltaS and deltaC. In POWER, they
have been multiplied by 2, to agree with our new definition of Ds and Dc on
page 808.

Power spectrum of
3 sin(7t − π/3)

ω

5/2π 10/2π 15/2π
0

3

y

cycles/sec

y = P(ω)
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Program: POWER
The power spectrum of a signal

Set up GRAPHICS
startomega = 0

endomega = 3

omegasteps = 2 ^ 9

deltaomega = (endomega - startomega) / omegasteps

pi = 4 * ATN(1)

twopi = 2 * pi

DEF fnf (t) = 3 * SIN(7 * t - pi / 3)

a = 0

b = 10

numberofsteps = 2 ^ 6

deltat = (b - a) / numberofsteps

omega = startomega

oldomega = omega

oldpower = 0

FOR j = 1 TO omegasteps

t = a + deltat / 2

accumS = 0

accumC = 0

power = 0

FOR k = 1 TO numberofsteps

deltaS = 2 * (fnf(t) * SIN(twopi * omega * t) * deltat) / (b - a)

accumS = accumS + deltaS

deltaC = 2 * (fnf(t) * COS(twopi * omega * t) * deltat) / (b - a)

accumC = accumC + deltaC

t = t + deltat

NEXT k

power = SQR(accumS ^ 2 + accumC ^ 2)

omega = omega + deltaomega

Plot the line from (oldomega, oldpower) to (omega, power)

oldomega = omega

oldpower = power

NEXT j

To see how the power spectrum detects the frequencies in a signal whileTwo signals whose
components differ
only in phase

overlooking the phases of the different components, consider these two sig-
nals:

g(t) = 10 sin(7t) + 7 cos(13t) + 5 cos(23t)

h(t) = 10 sin(7t) + 7 cos(13t) − 5 cos(23t)

They differ only in the sign of the last term. This is equivalent to a phase
shift of 180◦ in that term. The graphs are drawn below (with constants
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0 2 4 6 8 10 12 seconds

t

y

y = h(t)

y = g(t)

added to separate them vertically). It is remarkable how different the graphs
appear to be, considering how nearly alike their formulas are. You can find
similarities if you look closely, though. For instance, the peaks of one graph
tend to match the peaks of the other.

ω

5/2π 10/2π 15/2π 20/2π
0

5

10
y

cycles/sec

y = P(ω)

power
spectrum

of g(t )

ω

5/2π 10/2π 15/2π 20/2π
0

5

10
y

cycles/sec

power
spectrum

of h(t )

The power spectrum, however, has no trouble detecting the similarities
between the two signals. As you can see, they indicate that the same domi-
nant frequencies occur in g and h, and that corresponding frequencies occur
with the same amplitude. We learn that the formula for g or h can be written
as

10 sin(7t − ϕ1) + 7 sin(13t − ϕ2) + 5 sin(23t − ϕ3).

The only thing we can’t learn from the power spectrum are the three phase
differences ϕ1, ϕ2, ϕ3.
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The graphs of the power spectra were drawn by POWER, using the fol-
lowing values:

endomega = 4

omegasteps = 2 ^ 8

numberofsteps = 2 ^ 7

These two graphs actually differ very slightly. You can see the difference
most clearly near ω = 20/2π.

For a final demonstration of the properties of the power spectrum, weDetecting a periodic
wave in a noisy signal return to the signal + noise problem that we raised at the beginning of this

section. Let’s see what happens to the power spectrum of a pure sine wave
when we gradually gradually add noise. For simplicity, we take the frequency
of the pure signal to be 2 cycles/sec. The spectrum has a single strong spike
at this frequency.

ω
0 2 4 6 8 10 12 14 16 18 20 22 24

y

cycles/sec

power
spectrum

t

u

pure signal

seconds1 2 3 4 5 6

One the following pages you can see what happens as the noise level
is increased. The power spectrum, which was virtually zero for all ω > 3
cycles/sec, is now non-zero for almost all frequencies in the range we have
graphed. In other words, the noise is a mixture of many frequencies. NoticeIn the power spectrum,

noise and signal are
separated

how the height of the power graph increases with the strength of the noise.
This is most noticeable in the higher frequencies. Eventually, in the final
graph, we lose sight of the signal; the noise has swamped it. The signal
to noise ratio is 1:2.5, meaning that the noise is 21

2
times as strong as the

signal. Nevertheless, the power spectrum still shows a strong spike at ω = 2
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cycles/sec. This corresponds to the signal. The power spectrum can still see
the signal even when we can’t!

ω
0 2 4 6 8 10 12 14 16 18 20 22 24

y

cycles/sec

power
spectrum

t

u

signal to noise
ratio: 4:1 seconds1 2 3 4 5 6

ω
0 2 4 6 8 10 12 14 16 18 20 22 24

y

cycles/sec

power
spectrum

t

u

signal to noise
ratio: 1:1 seconds3 6



DVI file created at 11:39,  1 February 2008
Copyright 1994, 2008 Five Colleges, Inc.

816 CHAPTER 12. CASE STUDIES

ω
0 2 4 6 8 10 12 14 16 18 20 22 24

y

cycles/sec

power
spectrum

t

u

signal to noise
ratio: 1:2.5

seconds6

Exercises

The problem of phase

1. Use the “sum of two angles formula,”

sin(A + B) = sin(A) cos(B) + cos(A) sin(B),

to show that the circular function sin(bt − ϕ) with period 2π/b and phase
difference ϕ can be written as a combination of pure sine and cosine functions
of the same period:

sin(bt − ϕ) = M sin(bt) + N cos(bt).

show that M = cos(ϕ) and N = − sin(ϕ). [Note that M2 + N2 = 1.]

2. a) Express sin(5t − π/3) as a sum of a pure sine function and a pure
cosine function.
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b) Express
√

3
2

sin(7t) + 1
2
cos(7t) in the form A sin(bt − ϕ). To check your

result, graph it together with the given function using a computer graphing
utility.

c) Express f(t) = sin(t) + 2 cos(t) in the form A sin(bt − ϕ). Notice that
the formula in exercise 1 requires that M2 + N2 = 1, but in this example
M2 + N2 = 5. Therefore, first write

f(t) =
√

5
(

1√
5
sin(t) + 2√

5
cos(t)

)

.

The expression in parentheses has the right form. Does your result check on
a computer?

3. Suppose

A sin(bt − ϕ) = M sin(bt) + N cos(bt).

How are A, M , and N related?

4. The functions sin(t) + 2 cos(t) and 2 sin(t) + cos(t) have the same period
but differ in phase. What is the phase difference? Determine this two ways:
by graphing, and by writing each expression as a single function of the form
A sin(bt − ϕ).

5. Choose values for A, b, and ϕ so that the function

3 sin(2x) + 4 cos(2x) + A sin(bx − ϕ)

is identically zero—that is, equal to 0 for every value of x.

6. Choose values of A and ϕ so that the function

sin(x) + sin(x + 1) + sin(x + 2) + A sin(x − ϕ)

is identically zero.

The programs DETECTOR and POWER

The purpose of these exercises is to give you experience interpreting the power
spectrum of a known signal using the program POWER and modifications
of DETECTOR. The first exercise asks you to construct these modifications.
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7. Modify DETECTOR to produce two new programs, SDETECTOR and
CDETECTOR, which generate the sine detector and the cosine detector
functions that appear on page 808.

8. a) Compare the outputs of f(t) = sin(t) and g(t) = cos(t) on POWER.
Use the domain 0 ≤ ω ≤ 1. Does POWER distinguish between these func-
tions? Would you expect it to?

b) Compare f(t) and g(t) using SDETECTOR. Does SDETECTOR distin-
guish between these functions? Would you expect it to?

c) Compare f(t) and g(t) using CDETECTOR. Does CDETECTOR distin-
guish between these functions? Is the output of g(t) on CDETECTOR the
same as the output of f(t) on SDETECTOR?

9. a) Describe the power spectrum of the signal S = sin(t) + cos(t). How
many peaks are there, and where are they?

b) How does the spectrum of S compare with the two generated in the last
question?

c) Describe the output of SDETECTOR and CDETECTOR for the signal
S. Compare these outputs to the corresponding outputs for f and g in the
last exercise.

10. a) Graph the function

h(t) = 10 sin(7t) + 7 cos(13(t) − 5 cos(23t)

over the domain 0 ≤ t ≤ 14. Compare your result with the graph on page 812.

b) Graph the power spectrum of h(t) over the frequency domain 0 ≤ ω ≤ 4.
Compare your result with the text. How many peaks are there? Where are
they? How high are they? Do these results agree with the amplitude and
frequency information provided by the formula for h(t)?

11. (Continuation of the previous exercise.) Use SDETECTOR to analyze
h(t) over the same frequency domain. Compare the pattern near ω = 13/2π
with the patterns generated by the sine and cosine detectors that appear on
page 809. Compare the patterns near ω = 7/2π and near ω = 23/2π the
same way. Would you expect the patterns near ω = 13/2π and ω = 23/2π
to be similar? Are they? Are they similar to the pattern near ω = 7/2π? Is
this what you would expect?
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12. (Continuation.) Use CDETECTOR to analyze h(t). Follow the guide-
lines of the previous question.

A Grain of Salt

The purpose of the power spectrum is to make visible the periodic patterns
contained with a given function. However, our method of computing the
spectrum can introduce spurious information, too. It can tell us there are
periods that are not really present in the function. So we must take the
calculations with a grain of salt. The purpose of these exercises is to point
out the spurious information, show why it arises, and how we can get rid of
it.

13. Use the program POWER to graph the power spectrum of the function
sin 2πx on the interval 0 ≤ x ≤ 10. Let 0 ≤ ω ≤ 3. Set

numberofsteps = 100

but let all the other parameters keep the values they have in the program.

[Answer: The power spectrum has a single peak of height 1 at ω ≈ 1]

14. Now increase the domain of integration to 0 ≤ x ≤ 30, and set

numberofsteps = 300

to adjust for the increase in the size of the domain. Use POWER again to
graph the power spectrum. Compare this spectrum with the previous one.

15. Leave 0 ≤ x ≤ 30, but restore numberofsteps = 100. Use POWER
once again to graph the power spectrum. Compare this spectrum with the
previous two.

[Answer: A new peak, of height 1, appears at ω ≈ 7/3.]

16. Let numberofsteps = 50, and calculate the power spectrum one more
time. What happens?

When we reduce the number of integration steps, new peaks appear in
the power spectrum. These new peaks represent spurious information: the
function sin 2πx has no components whose frequencies are 2/3, 7/3, or 8/3.
Let’s see why this happens. We’ll concentrate on ω = 7/3. First, you must
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decide whether the peak in the power spectrum at ω = 7/3 comes from the
sine or the cosine detector.

17. Use SDETECTOR and CDETECTOR to analyze sin(2πx). Take 0 ≤
x ≤ 30, 0 ≤ ω ≤ 3, and set numberofsteps = 100. One of these detectors
has the value 0 when ω = 7/3. Which one?

18. According to the previous exercise, the peak in the power spectrum that
is detected at ω ≈ 7/3 comes from the integral

2

30

∫ 30

0

sin(2πx) sin
(
2π 7

3
x
)

dx,

not from the cosine integral. By using one of the sine and cosine integrals
from the exercises for chapter 11.3, determine the exact value of this integral.
Is this the value you expected to get?

The program POWER calculates the spectrum numerically. In particular,
we used it to calculate

∫ 30

0

sin(2πx) sin
(
2π 7

3
x
)

dx,

with 100 steps. The step size is therefore ∆x = .3. In the following exercises
you will duplicate this numerical work “by hand.”

19. Make a sketch of the graph of the function

h(x) = sin(2πx) sin
(
2π 7

3
x
)

on an appropriate interval. What is the period of this function?

20. Determine the value of h(x) at x = 0, .3, .6, .9, 1.2, and 1.5, and use
these values to construct a Riemann sum for the integral

∫ 1.5

0

h(x) dx

using left endpoints and a step size of ∆x = .3. Mark these values of h on
the sketch you made in the previous exercise.

[Answer: The Riemann sum is −.3(2 sin2(2π/5) + 2 sin2(π/5)) = −.75.]
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21. Evaluate the expression

1

15

∫ 30

0

h(x) dx

using a left endpoint Riemann sum with a step size of ∆x = .3 How can you
use the previous exercise to answer this question?

[Answer: −1. Since h(x) is periodic with period x = 1.5, the interval [0, 30]
contains 20 periods of h. The integral of h over [0, 30] is therefore 20 times
its integral over [0, 1.5].]

22. Compare the values of the detector

2

30

∫ 30

0

sin(2πx) sin
(
2π 7

3
x
)

dx,

you have obtained by antidifferentiation and by numerical integration.

These exercises demonstrate that the exact and computed values of the
power spectrum can be quite different, essentially because the steps in a
Riemann sum can pick out very special values of the integrand.

One way to deal with the problem is to increase the number of steps. The true spectrum
is the limit of the
computed graphs
of the spectrum

How will you know if you have gone far enough? Increase in stages until the
graph of the power spectrum stabilizes—that is, until it no longer changes
when you make a further increase in the number of steps.

Of course, increasing the number of steps increases computer time. This
creates new problems. To deal with them, however, we can switch to more
efficient numerical integration methods. Simpson’s rule (chapter 11.6) is the
most efficient method we have covered. You should try rewriting DETEC-
TOR using Simpson’s rule to see how it improves the performance.
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12.4 Fourier Series

In chapter 10.6 we obtained polynomials which were good approximations to
a function over an interval, where “good” meant minimizing the mean squared
separation between the function and the approximating polynomials.

While polynomials are the most obvious approximating functions to use
due to the ease with which they can be evaluated, we have seen that findingDifficulties with

polynomial
approximations

good approximating polynomials leads to several serious technical complica-
tions. The first is that we have to solve systems of equations to determine
the unknown coefficients, a procedure that is very time-consuming, even for
a computer if we are trying to get a polynomial of, say, degree 30. Further, if
we are trying to make the approximation over even a moderately-sized inter-
val, since we are evaluating expressions of the form xn, we get large numbers
very rapidly as x and n get large. This in turn leads to roundoff problems in
the computer routines.

Another aspect of these polynomial approximations that makes them
complicated is that the values of the coefficients change as we change the
degree of the approximating polynomial. Thus if we determine the least
squares fourth-degree approximation and then decide we want the fifth-degree
approximation instead, all the coefficients have to be recalculated. Know-
ing what the coefficient of x3 was in the fourth-degree approximation is no
help at all in knowing what the coefficient of x3 will be in the fifth-degree
approximation.

There are approximating functions of another kind that avoid such diffi-
culties. Moreover, these functions are natural ones to use when we are tryingApproximating

periodic functions to approximate periodic functions. In such cases it is reasonable to take the
simplest periodic functions—sines and cosine—and try to combine them to
approximate more complicated periodic functions. This suggests that we
want to look at functions of the form

φ(x) = a0 + a1 cos x + a2 cos 2x + · · ·+ an cos nx

+ b1 sin x + b2 sin 2x + · · · + bn sin nx

= a0 +

n∑

k=1

ak cos kx + bk sin kx.

Such a combination is called a trigonometric polynomial of degree n.
Note that any function of this form will in fact be periodic with period 2π.
More generally, if we were interested in approximating a function of period T ,
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we would want to look at trigonometric polynomials of the form Trigonometric
polynomial of degree n

and period Tφ(x) = a0 + a1 cos
2πx

T
+ a2 cos

4πx

T
+ · · · + an cos

2nπx

T

+ b1 sin
2πx

T
+ b2 sin

4πx

T
+ · · ·+ bn sin

2nπx

T

= a0 +

n∑

k=1

ak cos
2kπx

T
+ bk sin

2kπx

T
.

You should verify that this does indeed have period T .
To find the coefficients ak and bk of the trigonometric polynomial that

best fits a period-2π function f over the interval [c, c+2π], we proceed exactly
as we did in the previous section, using the least squares criterion. That is,
for a given degree n, we want to find coefficients a0, . . . , an and b1, . . . , bn

that minimize the integral
∫ c+2π

c

(f(x) − φ(x))2 dx.

In practice, c is usually either 0 or −π.
The solution turns out to be remarkably compact and easy to state. One Coefficients are

independent of nof the key features of the formulas for the coefficients is that they are inde-
pendent of each other and of the particular value of n being used. Thus, for
example, a3 in the 7-th degree approximation has the same value as a3 in
the 39-th degree approximation. This is a major advantage compared to the
polynomial approximations over intervals that we worked with in chapter 10.

For a function f with period 2π, its least squares nth degree
trigonometric polynomial approximation over a full period is

φn(x) = a0 +
n∑

k=1

ak cos kx + bk sin kx,

where

a0 =
1

2π

∫ 2π

0

f(x) dx,

ak =
1

π

∫ 2π

0

f(x) · cos kx dx for k = 1, 2, . . . , n,

bk =
1

π

∫ 2π

0

f(x) · sin kx dx for k = 1, 2, . . . , n.
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The infinite series

a0 +

∞∑

k=1

ak cos kx + bk sin kx

with the prescribed values for ak and bk is called the Fourier series for f ,
and the coefficients ak and bk are called the Fourier coefficients for f . It
turns out that any continuous function equals its Fourier series in the same
sense we used earlier with Taylor series—for any x in the given interval,
f(x) is the limit as n → ∞ of the nth degree approximating trigonometric
polynomials evaluated at x. The derivation is straightforward, but we shall
leave it to the end of this section so we can look at some examples first.

Joseph Fourier (1768–1830) was active in both politics and in mathematics. He was an advocate
of the French Revolution, worked as an engineer in Napoleon’s army, and served as a prefect for
a while. In mathematics he was interested in the mathematics of heat conduction and developed
the series that now bear his name as a tool for investigating problems in this area. His ideas
initially met with considerable resistance, but eventually became a central tool in mathematics.

Although our formulas give the values of ak and bk in terms of integrals
over [0, 2π], periodicity of the integrands implies that integrations over any
interval of width 2π gives the same values. In practice (as in the first example,
immediately below), we often use [−π, π] instead of [0, 2π].

Example 1 Let’s find the approximating trigonometric polynomials for

f(x) =

{

π + x if −π ≤ x ≤ 0,

π − x if 0 ≤ x ≤ π.

Then the graph of f simply consists of two line segments:

The graph of f
is “triangular”

−3 −2 −1 0 1 2 3

1

2

3

x

y

Now make f(x) periodic over the entire x-axis by horizontal translations:
f(x) = f(x−2π). The periodic graph is shown in gray, above. We can obtain
first Fourier coefficient without any calculus at all: a0 = (1/2π) π2 = π/2. It
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is just the area of one triangle divided by 2π. The other coefficients can be
evaluated with integration by parts (chapter 11.3). We have

ak =
1

π

∫ π

−π

f(x) cos kx dx

=
1

π

∫ 0

−π

(π + x) cos kx dx +
1

π

∫ π

0

(π − x) cos kx dx.

The first of these integrals can be evaluated as

∫ 0

−π

(π + x) cos kx dx = (π + x)
sin kx

k

∣
∣
∣
∣

0

−π

−
∫ 0

−π

sin kx

k
dx

= 0 +
cos kx

k2

∣
∣
∣
∣

0

−π

=







2

k2
if k is odd,

0 if k is even.

Similarly we find

∫ π

0

(π − x) cos kx dx = (π − x)
sin kx

k

∣
∣
∣
∣

π

0

+

∫ π

0

sin kx

k
dx

= 0 − cos kx

k2

∣
∣
∣
∣

π

0

=







2

k2
if k is odd,

0 if k is even.

Combining these two integrals we find

ak =







4

πk2
if k is odd,

0 if k is even.

An analogous derivation will show that all the bk are 0; this is left to the
exercises. We can thus write down the Fourier series for f :

The Fourier series for f
f(x) =

π

2
+

4

π

(
cos x

1
+

cos 3x

9
+ · · · + cos (2n + 1)x

(2n + 1)2
+ · · ·

)

.
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Let

φn(x) =
π

2
+

4

π

n∑

k=0

cos (2k + 1)x

(2k + 1)2
.

Here are the graphs of φ1(x), φ2(x), and φ10(x):

−3 −2 −1 0 1 2 3

1

2

3
y

x

y = φ1(x)

−3 −2 −1 0 1 2 3

1

2

3
y

x

y = φ2(x)

−3 −2 −1 0 1 2 3

1

2

3
y

x

y = φ10(x)

We see that φ10(x) already appears to be a very good approximation to f(x).
If we look at the maximum separation between f(x) and φn(x) over [−π, π]
for different values of n, we get the following:

n 1 2 10 50 100 1000

max
−π≤x≤π

|f(x) − φn(x)| .298 .156 .032 .0064 .0032 .00032

Since φn(x) is periodic, if we graph it over a larger interval, we get anApproximating a
triangular wave-form approximation to a triangular wave-form. Here, for example, is the graph

of φ20(x) over the interval [−π, 5π]:

−2 0 2 4 6 8 10 12 14 16

1

2

3

y

x

Remark 2 In addition to their use in approximating functions, Fourier
series can lead to some interesting, and non-obvious, mathematical results.
For instance in the preceding example, we have f(0) = π . On the other
hand, we should get the same value if we set x = 0 in the Fourier series for
f . This leads to the identity

π =
π

2
+

4

π

(
1

1
+

1

9
+

1

25
+

1

49
+

1

81
+ · · ·

)

.
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With a little rearranging, this can be rewritten as

π2

8
= 1 +

1

9
+

1

25
+

1

49
+

1

81
+ · · ·

—that is, if we add up the reciprocals of the squares of all the odd integers,
we get π2/8!

The formulas given on page 823 for approximating functions with period The general rule
for calculating
Fourier series

2π extend readily to approximating periodic functions of any period T . For
instance, if we wanted to approximate some function f over the interval
[0, T ], we have the following formulas. Check that when T = 2π, these
equations reduce to the earlier ones. Again, there is nothing special about
the interval [0, T ]. If we had wanted to make the approximation over any
other interval of length T—for example, [−T/2, T/2]—we simply change the
limits of integration to be the endpoints of that interval.

For a function f(t) with period T , its least squares nth degree
trigonometric polynomial approximation over a full period is

φn(x) = a0 +
n∑

k=1

ak cos
2kπx

T
+ bk sin

2kπx

T
,

where

a0 =
1

T

∫ T

0

f(x) dx,

ak =
2

T

∫ T

0

f(x) · cos
2kπx

T
dx for k = 1, 2, . . . , n,

bk =
2

T

∫ T

0

f(x) · sin 2kπx

T
dx for k = 1, 2, . . . , n.

Example 2 Consider the predator–prey model of May that we examined Fourier series for the
periodic solutions of
May’s predator-prey

model

in chapter 7.3. Recall that there were two species, the predator y and the
prey x, interacting according to the model

prey: x′ = .6 x
(

1 − x

10

)

− .5 xy

x + 1
,

predator: y′ = .1 y
(

1 − y

2x

)

.
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We discovered that the populations seemed to move towards periodic cycles,
regardless of the initial conditions (although the phase of the cycles did de-
pend on the starting values). In particular, if we begin with values on this
cycle, our solution should be perfectly periodic with period, it turned out,
T = 38.6 days. So let’s start with x = 7.75 and y = 2.38, values that put
us at the peak of the prey cycle. Now go to the differential equations and
compute the solution numerically, storing the x-values as an array. We can
then use these values to calculate all the integrals needed to find the Fourier
coefficients to approximate the function x(t). Here are the first 13 terms of
the series:

x(t) = 3.7951 + 3.8125 cos
2πx

T
+ .1514 cos

4πx

T
+ .0326 cos

6πx

T

− .0303 cos
8πx

T
− .0609 cos

10πx

T
+ .0308 cos

12πx

T
+ · · ·

+ 1.1724 sin
2πx

T
− .0867 sin

4πx

T
− .3954 sin

6πx

T

+ .0639 sin
8πx

T
− .0142 sin

10πx

T
+ .0129 sin

12πx

T
+ · · · .

Let φ3(t) be the 7-term trigonometric polynomial whose final terms in-
volve cos(6πt/T ) and sin(6πt/T ). Below we graph φ3(t) (dashed line) and
x(t) (solid gray line) together. They are almost indistinguishable; we let
φ3(t) run on a little beyond x(t) so you can see it’s there.

2

4

6

8

20 40 60 80 100 120
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Derivation of the formula for the Fourier coefficients

The logic behind the derivation is the same as that used in the previous
subsection to find the least squares polynomial approximations. Fix n and
let

φ(x) = a0 +
n∑

k=1

ak cos
2kπx

T
+ bk sin

2kπx

T
,

where now we want to choose values of the ak and bk to minimize the integral
∫ T

0

(f(x) − φ(x))2 dx.

The value of this integral is thus a function of the undetermined coefficients
a0, . . . , an and b1, . . . , bn. To find the coefficients that minimize that value
we calculate the partial derivatives with respect to a0, a1, . . . as before and
set them equal to 0.

Note that
∂

∂am
φ(x) = cos

2mπx

T
and

∂

∂bm
φ(x) = sin

2mπx

T
,

so that

∂

∂am

∫ T

0

(f(x) − φ(x))2 dx =

∫ T

0

2(f(x) − φ(x))

(

− cos
2mπx

T

)

dx

and

∂

∂bm

∫ T

0

(f(x) − φ(x))2 dx =

∫ T

0

2(f(x) − φ(x))

(

− sin
2mπx

T

)

dx.

The condition that all the partial derivatives must be 0 thus leads to the
equations

∫ T

0

2(f(x) − φ(x))(−1) dx = 0,

∫ T

0

2(f(x) − φ(x))

(

− cos
2πx

T

)

dx = 0,

∫ T

0

2(f(x) − φ(x))

(

− cos
4πx

T

)

dx = 0,

...
∫ T

0

2(f(x) − φ(x))

(

− cos
2nπx

T

)

dx = 0,
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and

∫ T

0

2(f(x) − φ(x))

(

− sin
2πx

T

)

dx = 0,

∫ T

0

2(f(x) − φ(x))

(

− sin
4πx

T

)

dx = 0,

...
∫ T

0

2(f(x) − φ(x))

(

− sin
2nπx

T

)

dx = 0.

These equations can be rewritten as

∫ T

0

f(x) dx =

∫ T

0

φ(x) dx,

∫ T

0

f(x) cos
2πx

T
dx =

∫ T

0

φ(x) cos
2πx

T
dx,

∫ T

0

f(x) cos
4πx

T
dx =

∫ T

0

φ(x) cos
4πx

T
dx,

...
∫ T

0

f(x) cos
2nπx

T
dx =

∫ T

0

φ(x) cos
2nπx

T
dx,

and

∫ T

0

f(x) sin
2πx

T
dx =

∫ T

0

φ(x) sin
2πx

T
dx,

∫ T

0

f(x) sin
4πx

T
dx =

∫ T

0

φ(x) sin
4πx

T
dx,

...
∫ T

0

f(x) sin
2nπx

T
dx =

∫ T

0

φ(x) sin
2nπx

T
dx,

The Fourier coefficients ak and bk that we seek appear in φ, and we shall
obtain them by calculating the integrals on the right (the ones involving φ)
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in the equations above. Since

φ(x) = a0 +

n∑

k=1

ak cos
2kπx

T
+

n∑

k=1

bk sin
2kπx

T
,

we have (for each m = 0, 1, . . . , n)

φ(x) cos
2mπx

T
= a0 cos

2mπx

T
+

n∑

k=1

ak cos
2kπx

T
cos

2mπx

T

+
n∑

k=1

bk sin
2kπx

T
cos

2mπx

T
,

and (for each m = 1, . . . , n)

φ(x) sin
2mπx

T
=

n∑

k=1

ak cos
2kπx

T
sin

2mπx

T
+

n∑

k=1

bk sin
2kπx

T
sin

2mπx

T
.

The integrals of the expressions on the left therefore reduce to sums of Integrating products
of sines and cosinesintegrals of various products of sines and cosines. In each sum, only one term

yields a nonzero integral. All the values are given below. The formulas are
left for you to derive in the exercises, using integration formulas from the
exercises in chapter 11.3. For integers k and m, we have

∫ T

0

sin
2kπx

T
cos

2mπx

T
dx = 0 for all k and m;

∫ T

0

sin
2kπx

T
sin

2mπx

T
dx =

{

T/2 if k = m,

0 otherwise;

∫ T

0

cos
2kπx

T
cos

2mπx

T
dx =







T/2 if k = m 6= 0,

T if k = m = 0,

0 otherwise.

For m = 0 we have cos
2mπx

T
= cos 0 = 1, so

∫ T

0

φ(x) cos
2mπx

T
dx =

∫ T

0

a0 dx = a0 · T ;
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it follows that

a0 =
1

T

∫ T

0

φ(x) dx.

For each m = 1, 2, . . . , n, we have, first of all,

∫ T

0

φ(x) cos
2mπx

T
dx =

∫ T

0

am cos2 2mπx

T
dx = am · T/2,

from which it follows that

am =
2

T

∫ T

0

φ(x) cos
2mπx

T
dx.

Second, we have

∫ T

0

φ(x) sin
2mπx

T
dx =

∫ T

0

bm sin2 2mπx

T
dx = bm · T/2,

so

bm =
2

T

∫ T

0

φ(x) sin
2mπx

T
dx.

The derivation is complete.

Exercises

1. Use the formulas on page 716 in chapter 11.3 to derive the following
equalities; k and m are integers.

a)

∫ T

0

sin
2kπx

T
cos

2mπx

T
dx = 0 for all k and m.

b)

∫ T

0

sin
2kπx

T
sin

2mπx

T
dx =

{

T/2 if k = m,

0 otherwise.

c)

∫ T

0

cos
2kπx

T
cos

2mπx

T
dx =







T/2 if k = m 6= 0,

T if k = m = 0,

0 otherwise.

2. Show that in the Fourier series for the triangular function discussed in
the text (example 1, page 824), all the coefficients of the sine terms really
are 0.
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3. Find the Fourier series for the following functions over the interval [−π, π]:

a) f(x) = x. [Ans. 2

∞∑

k=1

(−1)n−1 sin nx

n
]

b) f(x) = π2 − x2.

c) f(x) =

{

0 if −π ≤ x ≤ 0,

x2 if 0 ≤ x ≤ π.

4. In May’s predator–prey model, find the first seven terms of the Fourier
series for the predator species, y(t). Use T = 38.6 days and the initial
conditions x = 7.75 and y = 2.38, and in example 2 in the text (page 827).
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α-ray, 781
cosh, 628
exp, 233
λ, 581
∇, 541, 550, 581
π, calculation of, 627
sinh, 628
e, 228, 229, 231
e, raised to imaginary powers, 627
n!, 770, 789
x-intercept, 37
y-intercept, 34
z-intercept, 537

Abel, Niels, 329
absolute error, 140
abstraction, 27
acceleration, 104

due to gravity, 223
accumulation function

as antiderivative, 688
accuracy to a given number of decimal

places, 66
addition rule, 149
Afghanistan, 47, 60, 240
air resistance, 224
alcohol, 195
algebraic function, 41
algorithm, 94
alpha ray, 781
alternating series

convergence criterion, 652
convergence of, 652

definition of, 651
error bound, 653

amplitude, 427
Anderson, R., 297, 475
angle, 425
angular momentum, 643
annual birth rate, 104
antiderivative, 263, 407, 417, 682, 683,

689, 762
definition of, 682
importance of, 690

antidifferentiation, 263, 407, 682
approximation, 10, 122, 343

least squares, 670
linear, 547
trapezoidal, 754

array, 639
asymptotic line, 549
attractor, 470, 578

spiral, 470
average value, 398, 801, 803, 807

Babylonian algorithm, 94, 328
basic function, 147
basin of attraction, 477, 578
Bateman, 782
Bessel equation, 634, 642

order p, 634
Bessel function, 642

J0, 636, 643
J0, graph of, 636
J1, 642, 643
of order p, 634

835
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Bessel, Wilhelm Friedrich, 634

best fit at a point, 598

binomial probability distribution, 776

binomial theorem, 629

bound

integral, 771

lower, 386

upper, 386

Brownian motion, 114

carbon dioxide, 45

Cardan’s formulas, 328

Cardano, Geronimo, 328

carrying capacity, 86, 118, 183, 184

catastrophe, 565, 567

celestial mechanics, 582

Celsius, 44

center, 473

chain, 159, 160

chain rule, 157, 158, 162

change, 15

accumulated, 266

partial, 536, 546

total, 536, 546

changing rates, 103

chaotic system, 506

circular functions, 41

closed form solution, 681

closed-form solution, 447

code, 49

color, 427

compartment diagram, 2, 9

competition, 480

competitive exclusion

principle of, 482

completing the square, 740

complex numbers, 627

composite, 162

composition of functions, 162

computability, 232

computer, 49

computer graphing, 39

concave downward, 310

concave upward, 310

constrained extreme, 581

constraint, 564, 566, 568, 569, 581

dimension-reducing, 569

constraint curve, 570, 581

constraint equation, 582

constructive definition, 593

continuity, 304

contour, 520, 524, 525, 535

linear function, 538

convergence, 645

definition of, 645

of a sequence, 67

convergence criterion

alternating series, 652

geometric series, 651

converse, 574

cooling, 48

cosecant

antiderivative of, 728

cosine, 424, 440

cosine detector, 808

cotangent

antiderivative of, 744

counter, 52

critical point, 303, 573, 574, 581

Curie, M., 782

curtain, 573

curvature, 550

cusp, 304

cylinder, 572

data, 121

definite integral, 690

degree of a polynomial, 150

delta notation, 15

demand, 334
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derivate

second, 293

derivative, 37, 101, 120, 130, 145, 147,
150, 249, 275

addition rule, 682

partial, 168, 545, 550, 575, 577, 578,
582

second partial, 299

difference quotient, 120

differentiable, 122, 276

differential, 159, 180

differential equation, 37, 179

partial, 300

periodic solution, 433

differential geometry, 550

differential notation, 704

differentiation, 147, 149, 153, 239, 276,
682

addition rule, 149

constant multiple rule, 149

dimension

of a curve or surface, 570

direction field, 476

distance as a Riemann sum, 352

distance formula, 90

divergence

definition of, 645

divergence criterion, 648

domain, 28, 39, 255, 565, 567, 684

natural, 39

dose rate, 104

doubling time, 246

Dupin indicatrix, 549

dynamical system, 461, 523, 550, 578

autonomous, 462

eccentricity cycle, 420

ecology, 444

efficient computation, 752

electric power, 342

electrical energy, 342

elliptic point, 549

endogenous factor, 269

energy, 401, 450, 518, 522, 531

conservation of, 450

dissipation of, 518

energy accumulation function, 344

energy minimum, 518

epidemic, 1

epidemiology, 1

equation, 201

equilibrium, 444

stable, 444

unstable, 444

equilibrium point, 469

attractor, 470

neutral, 473, 495

node, 493

repellor, 470

saddle point, 470, 494

spiral, 493

spiral attractor, 470

spiral repellor, 470

error, 138, 143, 385, 417

absolute, 140

percentage, 141

propagation, 139

relative, 139, 140

error analysis, 216

error bound, 386, 395, 757

alternating series, 653

error function, 613

error propagation, 216

estimate, 11, 14, 56, 136, 141

Euler’s constant, 666

Euler’s method, 79, 182, 201, 264

Euler, L., 79, 229, 582

event

in probability, 786

existence and uniqueness principle, 205
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existence of extremes, 305

exogenous factor, 269

expanding house, 136, 157

expectation, 789

expected value, 790

exponential function, 132, 149

extreme, 565, 569, 573, 581

constrained, 581

global, 302

local, 302, 565

factorial, 599, 770, 789

Fahrenheit, 44

falling body, 262, 731

falling object, 105, 155, 223, 242

feedback structure, 477

fermentation, 195

Ferrari, Luigi, 329

Fibonacci, 328

field of view, 111

Finerty, 419

first integral, 451, 453, 454, 473, 523,
531

fixed line, 493

flow chart, 16

FOR–NEXT loop, 53

formula, 28, 109, 121, 147, 170, 207

graph, 109

Fourier coefficients, 824

Fourier series, 824

Fourier transform, 810

inverse, 810

Fourier, J., 824

Fourier, J. B., 810

foxes, 186

fractal, 114, 545

freefall, 118

frequency, 422, 423

of a signal, 800

frequency detector, 803

function, 27

accumulation, 403, 405, 407, 412,
416

algebraic, 41

arccosine, 695

arcsine, 685

arctangent, 687

basic, 147

circular, 41, 424

continuous, 304

derivative, 145

energy accumulation, 402

exponential, 132, 149, 183, 212, 227,
236, 238, 253

factorial, 765

hyperbolic, 628, 642

inverse, 255, 684

linear, 535

locally linear, 113

logarithm, 247

monotonic, 390, 417

normal density, 761

of one variable, 571

of several variables, 35

of three variables, 525, 552

of two variables, 512, 544

periodic, 422

piecewise constant, 341

power, 149

step, 341, 783

transcendental, 41

trigonometric, 41

function, gamma, 765

function, normal density, 764

fundamental theorem of calculus, 403,
405, 410, 413, 416, 688, 690, 760

Galois, Evariste, 329

gamma function, 765

Geiger, 782
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geometric series, 649

convergence criterion, 651

geometry

differential, 550

global, 127, 145

gradient, 540, 541, 550, 552, 574, 581

geometric interpretation, 543, 551,
578, 581

graph, 3, 19, 30, 116, 145, 150, 511, 534

computer, 39

data, 108

formula, 109

horizontal slice, 522

linear function, 537

magnifying a, 534

reading a, 512

slice of a, 514, 516, 522

surface, 512, 523, 534

gravity, 223

greenhouse effect, 45

grid line, 514, 537, 548

growth

bacterial, 48, 240, 258

constant per capita, 206

exponential, 213, 237, 252

most rapid, 541

growth rate

natural, 183

net, 47

per capita, 47, 181

population, 104

half life, 781

hard spring, 436, 531

hare, 193

harmonic series, 649

logarithmic approximation, 665

Hertz, 424

Hopf bifurcation, 192, 502, 504

Hudson’s Bay Company, 419, 798

hyperbolic point, 549

ideal gas law, 172

immunity

acquisition of, 474

immunity loss, 25

improper integral, 759, 761

evaluating, 761

finite value of, 763

impulse, 451

indefinite integral, 690, 711, 721, 762

notation, 691

index, 639

infected, 2

inflation

rate of, 106

information, 798

initial condition, 87, 180, 207

initial point, 536

initial value, 6

initial value problem, 180, 218, 403

initial-value form, 33, 536

input, 16, 28

input–output diagram, 159

integral, 373, 375, 376, 403, 415, 416,
689

definite, 690

improper, 759, 761

evaluating, 761

indefinite, 690, 711

sine and cosine, 716

variable limits, 403

integrals

table of, 694

integrand, 376, 690, 706, 761

integration, 378, 690

integration by inverse substitution, 735

integration by parts, 693, 711, 712

cautionary tale, 712

correspondence to product rule, 693
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integration by substitution, 693
correspondence to chain rule, 693

integration rules, 392, 417
intercept, 537
intercept form, 537
interest rates, 243
interior point, 565, 567–569, 573, 581
interpolation, 34
interpolation form, 34
interval

finite closed, 306
interval of convergence, 625, 656, 660
inverse, 248
inverse function, 255
inverse substitution

integration by, 735

Khayyam, Omar, 629
kilohertz, 424
kilowatts, 342

Lagrange multiplier, 581
Lagrange, J. L., 582
leaking tank, 222, 730
least squares polynomial approximation,

general rule, 672
left Riemann sum, 754
Legendre polynomials, 644
Legendre’s equation, 643
Leibniz’s notation, 123, 162
Leibniz, G., 123, 159
length of a curve, 89
Leonardo of Pisa, 328
Leslie–Gower model, 479
level, 520, 524, 525
level curve, 522
level set, 528
level surface, 526, 528
light, 427
light bulbs

lifetime of, 759

limit, 67, 82, 111, 378, 580

limit cycle, 500

linear approximation, 547

linear function, 30, 44, 72, 150, 170, 535

contours, 538

formula, 536

formulas, 33

gradient, 541

graph, 31, 537

initial-value form, 536

intercept form, 537

linear range, 436

linearize, 486

link, 160

local extreme, 565

local linearity, 108, 112, 119, 128, 534,
544, 550

local maximum, 565

local minimum, 565

localize, 486

log–log plot, 211

log–log scale, 476

logarithm, 247, 771

logarithm function, 247

logarithmic scale, 210

logistic equation, 80, 85, 183

logistic growth, 189, 644, 725

loop, 15, 17

DO-WHILE, 77, 198

Lorenz, Edward, 505

Lotka, A., 193

Lotka–Volterra equations, 187, 193, 532

Lotka–Volterra model, 419, 457, 478, 482

lunar cycle, 422

lynx, 193, 419, 798

magnify, 40

Malthus, T., 241

Mathematica, 520
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maximum, 19, 515, 519, 521, 564, 566,
573, 578

local, 565, 575

May model, 456, 833

May, R., 191, 297, 419, 444, 475, 827

mean, 669

mean square separation, 669

measles, 6

megahertz, 424

megawatts, 342

method of steepest ascent, 578

method of steepest descent, 579

microscope, 108, 112, 115, 250, 534

microscope coordinates, 126

microscope equation, 124, 126, 128, 133,
136, 154, 157, 169, 544–546

midpoint trapezoid, 755

Milankovitch, M., 420

Mill, J. S., 566

minimax, 515, 519, 527

minimum, 515, 518, 519, 521, 525, 564,
573

local, 565

Mississippi, 20

model, 2, 10, 44, 58, 179, 200, 788

probability, 784

motion, 223

multiplier, 31, 128, 129, 157, 169, 535,
545

Lagrange, 581

multiplier equation, 581

mutualism, 479

natural domain, 39

natural logarithm, 247

neutral point, 495

Newton’s law of cooling, 48, 197, 221,
241, 730

Newton’s laws of motion, 434, 441

Newton’s method, 218, 323

Newton, I., 10, 48, 123, 582
node, 493
notation

antiderivative, 689
indefinite integral, 691

obliquity cycle, 420
one-to-one, 255
optimization, 58, 301, 564, 574
optimum, 58, 564
orchard, 58
ordered pair, 35
oscillating spring, 225
oscillation, 523
oscillator

harmonic, 440
linear, 434
non-linear, 437
Van der Pol, 459

output, 16, 28
ox-bow, 20

parabolic point, 549
paradigm shift, 566
parameter, 35, 187, 214, 219, 411, 566
partial derivative, 168, 545, 550
partial differential equations, 300
partial fractions, 725, 726, 728, 732
partial fractions decomposition, 726
partial rate of change, 536
partial slope, 539, 545
pendulum, 441, 455, 471, 518, 522
percentage error, 141
period, 422, 423

of an oscillation, 226
periodic, 420
periodic behavior, 419
periodic function, 422
phase, 429, 807, 810

difference, 429
shift, 429, 512, 807
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phase portrait, 466

piecewise linear function, 71, 72, 76

pitch, 427

plate tectonics, 566

plot

contour, 520, 524, 535, 543, 568, 569,
577

density, 519, 524, 566

terraced, 524

Poincaré–Bendixson Theorem, 501

point-slope form, 34

Poisson distribution, 781, 789

Poisson model, 789

derivation, 793

Poland, 47, 60, 240

polonium, 781

polynomial, 150

best-fitting, 599

rapid evaluation of, 629

trigonometric, 742, 822

population

world, 190, 206, 219

population growth rates, 104

population model

single-species, 181

two-species, 186

power

electric, 401

power function, 149

power series, 632

power spectrum, 421, 798, 811

precession, 420

predator, 186

predator–prey model, 444, 456, 462, 827

prediction, 792

present value, 259

probability, 770, 785

of an event, 786

probability distribution

binomial, 776

probability model, 788, 795
probablity distribution

Poissson, 781
product rule, 711
program, 15, 49

BABYLON, 94
DETECTOR, 805
DO-WHILE, 77
HARMONIC, 664
LENGTH, 91
NEWTON, 323
PLOT, 268, 405, 765
POWER, 812
RIEMANN, 404, 708, 756, 764
SEQUENCE, 83, 86
SIR, 50, 64
SIRPLOT, 69
SIRSERIES, 638
SIRVALUE, 64, 580
TABLE, 267, 404
TAYLOR, 603

propagation of error, 138
proportional, 31
Pythagorean theorem, 90, 542

quadratic formula, 38, 204
quantum, 644
quantum theory, 643
quarantine, 9, 23
quasi-periodic, 504

rabbits, 181
radian, 41, 425
radian measure, 425
radiation, 240, 258, 782
radioactive decay model, 782
radioactivity, 48, 60, 240
radium, 781
radius of convergence, 656
range, 28
range of Riemann sums, 375
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Raphson, Joseph, 328

rate, 5, 21, 31, 102, 104, 116

of accumulation, 340

of recovery, 6

of transmission, 8

rate equation, 7, 10, 17, 37, 60

rate of change, 5, 37, 101, 109, 112, 157

partial, 536, 538, 539, 541

ratio test, 657

recovered, 2

recovery, 6

coefficient, 8

recursion relation, 633, 638

reduction formula, 676

for cosine, 747

for integrating sinn x, 745

reflection, 250

relative error, 139, 140

relativity

general, 550

repellor, 470

spiral, 470

reproductive rate, 181

rescaling, 551, 675

reservoir, 265

resonance, 809

Riemann sum, 351, 359, 394, 416

Riemann, B., 351

right Riemann sum, 754

root, 91, 93

roundoff error, 75

Rutherford, E., 782, 783

saddle, 515, 517, 521

saddle point, 470, 494, 515, 575

sales tax, 44

sampling point, 359

sampling time, 350

secant

antiderivative of, 729

second derivative, 293

second derivative test, 311

semi-log plot, 211

separation of variables, 723, 729

sequence, 81

sigma notation, 363, 417

signal and noise, 798

signal-to-noise ratio, 799

signed area, 384, 417

Simpson’s rule, 675, 756, 757

sine, 424, 440

sine detector, 808

slice, 514, 516, 537

slope, 31, 109, 112, 538

partial, 539, 545

slope-intercept form, 34

soft spring, 532

solution, 201

approximate, 79, 88

by radicals, 329

closed form, 681

exact, 82

sound, 427

speed, 449

spike, 544, 573

spiral, 493

spring

hard, 436, 531

linear, 433, 434, 451

non-linear, 436, 437, 453

soft, 439, 442, 532

spring constant, 434

spring force, 225, 433

stabilize, 66, 82, 92, 111, 373

state, 462

immune, 477

resting, 477

virgin, 477

state space, 462

steepest ascent
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method of, 578

steepest descent

method of, 579

Stirling’s formula, 770

Stirling, J., 770

Stone–Weierstrass Theorem, 668

strange attractor, 506

string theory, 550

subroutines SUS and INF, 639

successive approximation, 61, 67, 82, 111,
181

sum

partial, 645

sum of a series

definition of, 645

summation, 790

summation notation, 362

sunrise, 101, 167

supergrowth, 190, 206, 214, 723, 732

surface

level, 528

survival rate, 104

susceptible, 2

symbiosis, 479

tangency

point of, 321

tangent, 548, 568, 570

antiderivative of, 744

tangent line, 321, 322

tangent plane, 548

Tartaglia, Nicolo, 328

Taylor polynomial

centered at a point other than the
origin, 602

definition, 599

graphs for 1/(1 + x2), 624

graphs for sinx, 600

Taylor series, 624

definition, 622, 623

table of, 624

Taylor, Brook, 625

temperature function, 511

temperature profile, 107

terminal velocity, 225

terrace, 524

terraced density plot, 524

test probe, 800

there and back again, 14, 23, 56, 62, 75

thermal expansion, 46

thermometer, 44

threshold, 18, 23

total change, 536

trade-off, 174, 557

trade-off line, 558

trajectory, 462, 523, 578

transcendental function, 41

transform, 810

transmission, 8

coefficient, 9

trapezoid, 753, 771

trapezoid rule, 753

trial and error, 693

trigonometric functions, 41

trigonometric identities, 716, 718

Twain, M., 20

uncertainty, 138, 156

units, 33, 104, 123, 172

Van der Pol oscillator, 459

variable, 3

vector, 541, 550

vector field, 466, 550, 552

velocity, 104

velocity vector, 466

Verhulst, O., 183

vibrating string, 439

Volterra, V., 193

volume as a Riemann sum, 369
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Wallis’s formula, 773
Wallis, J., 773
watts, 342
wave-form

triangular, 826
window, 68, 121, 125
work, 337

accumulated, 339

yeast, 195

zooming, 108, 110


